}

Contexto

El conjunto de datos es de la Universidad de Nueva York y contiene 90 observaciones que incluyen los costos de 6 aerolíneas estadounidenses durante 15 años, de 1970 a 1984.

Las variables son:

Instalar paquetes y llamar librerías

library(tidyverse)

# install.packages("gplots")
library(gplots)

# install.packages("plm")
library(plm)

# install.packages("DataExplorer")
library(DataExplorer)

# install.packages("forecast")
library(forecast)

# install.packages("lavaan")
library(lavaan)

# install.packages("lavaanPlot")
library(lavaanPlot)

Importar la base de datos

df <- read.csv("~/vuelos.csv")

Entender la base de datos

summary(df)
##        I             T            C                 Q          
##  Min.   :1.0   Min.   : 1   Min.   :  68978   Min.   :0.03768  
##  1st Qu.:2.0   1st Qu.: 4   1st Qu.: 292046   1st Qu.:0.14213  
##  Median :3.5   Median : 8   Median : 637001   Median :0.30503  
##  Mean   :3.5   Mean   : 8   Mean   :1122524   Mean   :0.54499  
##  3rd Qu.:5.0   3rd Qu.:12   3rd Qu.:1345968   3rd Qu.:0.94528  
##  Max.   :6.0   Max.   :15   Max.   :4748320   Max.   :1.93646  
##        PF                LF        
##  Min.   : 103795   Min.   :0.4321  
##  1st Qu.: 129848   1st Qu.:0.5288  
##  Median : 357434   Median :0.5661  
##  Mean   : 471683   Mean   :0.5605  
##  3rd Qu.: 849840   3rd Qu.:0.5947  
##  Max.   :1015610   Max.   :0.6763
str(df)
## 'data.frame':    90 obs. of  6 variables:
##  $ I : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ T : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ C : int  1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
##  $ Q : num  0.953 0.987 1.092 1.176 1.16 ...
##  $ PF: int  106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
##  $ LF: num  0.534 0.532 0.548 0.541 0.591 ...
head(df)
##   I T       C        Q     PF       LF
## 1 1 1 1140640 0.952757 106650 0.534487
## 2 1 2 1215690 0.986757 110307 0.532328
## 3 1 3 1309570 1.091980 110574 0.547736
## 4 1 4 1511530 1.175780 121974 0.540846
## 5 1 5 1676730 1.160170 196606 0.591167
## 6 1 6 1823740 1.173760 265609 0.575417
# create_report(df)
plot_missing(df)

plot_histogram(df)

plot_correlation(df)

## Revisar Heterogeneidad

plotmeans(C ~ I, main= "Heterogeneidad entre aerolíneas", data=df)

## Creación de Datos de Panel

df1 <- pdata.frame(df, index=c("I", "T"))

## Revisar Heterogeneidad

cat("\033[33mRevisar Heterogeneidad\033[0m\n")  
## Revisar Heterogeneidad
plotmeans(C ~ I, main="Heterogeneidad entre aerolíneas", data=df)

## Creación de datos de panel

cat("\033[33mCreación de Datos de Panel\033[0m\n")  
## Creación de Datos de Panel
df1 <- pdata.frame(df, index=c("I","T"))

## Modelo 1: Regresión agrupada (pooled)

cat("\033[33mModelo 1. Regresión Agrupada (pooled)\033[0m\n")  
## Modelo 1. Regresión Agrupada (pooled)
pooled <- plm(C ~ Q + PF + LF, data=df1, model="pooling")
summary(pooled)
## Pooling Model
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "pooling")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -520654 -250270   37333  208690  849700 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept)  1.1586e+06  3.6059e+05  3.2129   0.00185 ** 
## Q            2.0261e+06  6.1807e+04 32.7813 < 2.2e-16 ***
## PF           1.2253e+00  1.0372e-01 11.8138 < 2.2e-16 ***
## LF          -3.0658e+06  6.9633e+05 -4.4027 3.058e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1.2647e+14
## Residual Sum of Squares: 6.8177e+12
## R-Squared:      0.94609
## Adj. R-Squared: 0.94421
## F-statistic: 503.118 on 3 and 86 DF, p-value: < 2.22e-16

## Modelo 2: Efectos Fijos (within)

## Modelo 3: Efectos Aleatorios (Walhus / Amemiya / Nerlove)
walhus  <- plm(C ~ Q + PF + LF, data = df1, model = "random", random.method = "walhus")
amemiya <- plm(C ~ Q + PF + LF, data = df1, model = "random", random.method = "amemiya")
nerlove <- plm(C ~ Q + PF + LF, data = df1, model = "random", random.method = "nerlove")

summary(walhus)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "walhus")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 7.339e+10 2.709e+05 0.969
## individual    2.363e+09 4.861e+04 0.031
## theta: 0.1788
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -524180 -243611   39332  199517  824905 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.1267e+06  3.6994e+05  3.0455  0.002323 ** 
## Q            2.0647e+06  7.1927e+04 28.7051 < 2.2e-16 ***
## PF           1.2075e+00  1.0358e-01 11.6578 < 2.2e-16 ***
## LF          -3.0314e+06  7.1431e+05 -4.2438 2.198e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1.0182e+14
## Residual Sum of Squares: 6.5784e+12
## R-Squared:      0.93539
## Adj. R-Squared: 0.93314
## Chisq: 1245.09 on 3 DF, p-value: < 2.22e-16
summary(amemiya)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "amemiya")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 4.270e+10 2.066e+05 0.084
## individual    4.640e+11 6.812e+05 0.916
## theta: 0.9219
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -603585 -144415   22641  158005  485417 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.0746e+06  4.2105e+05  2.5522    0.0107 *  
## Q            3.2090e+06  1.6482e+05 19.4695 < 2.2e-16 ***
## PF           8.1014e-01  9.6147e-02  8.4260 < 2.2e-16 ***
## LF          -3.7168e+06  6.1330e+05 -6.0603 1.359e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    5.1238e+13
## Residual Sum of Squares: 3.8227e+12
## R-Squared:      0.92539
## Adj. R-Squared: 0.92279
## Chisq: 1066.71 on 3 DF, p-value: < 2.22e-16
summary(nerlove)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "nerlove")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 3.985e+10 1.996e+05 0.066
## individual    5.602e+11 7.485e+05 0.934
## theta: 0.9313
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -601947 -145039   18713  154903  483623 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.0752e+06  4.4535e+05  2.4142   0.01577 *  
## Q            3.2323e+06  1.6521e+05 19.5652 < 2.2e-16 ***
## PF           8.0229e-01  9.5804e-02  8.3743 < 2.2e-16 ***
## LF          -3.7338e+06  6.0963e+05 -6.1247 9.084e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    5.1133e+13
## Residual Sum of Squares: 3.7726e+12
## R-Squared:      0.92622
## Adj. R-Squared: 0.92365
## Chisq: 1079.63 on 3 DF, p-value: < 2.22e-16

## Comparación Pooled vs Efectos fijos

cat("\033[33mModelo Pooled vs Modelo de Efectos Fijos\033[0m\n")  
## Modelo Pooled vs Modelo de Efectos Fijos

Modelo 4. Comparación Efectos Fijos vs Aleatorios (Hausman)

## 0) Panel limpio y bien indexado
df1 <- na.omit(pdata.frame(df, index = c("I","T")))

## 1) Mismo conjunto de regresores en ambos modelos
within <- plm(C ~ Q + PF + LF, data = df1, model = "within", effect = "individual")

## RE robusto (método 'swar' es el más estable para Hausman)
random <- plm(C ~ Q + PF + LF, data = df1, model = "random", effect = "individual", random.method = "swar")

## 2) Hausman (FE vs RE)
hausman <- phtest(within, random)
hausman
## 
##  Hausman Test
## 
## data:  C ~ Q + PF + LF
## chisq = 60.87, df = 3, p-value = 3.832e-13
## alternative hypothesis: one model is inconsistent

Prueba de Hausman

hausman <- phtest(within, walhus)
hausman
## 
##  Hausman Test
## 
## data:  C ~ Q + PF + LF
## chisq = 65.039, df = 3, p-value = 4.919e-14
## alternative hypothesis: one model is inconsistent

Modelo 5. Elección del Modelo Adecuado

# Interpretación de la prueba Hausman:
# - H0: El modelo de efectos aleatorios es consistente y eficiente
# - H1: El modelo de efectos aleatorios NO es consistente → usar efectos fijos

if (hausman$p.value < 0.05) {
  print("Se rechaza H0: Se recomienda el modelo de efectos fijos")
} else {
  print("No se rechaza H0: Se recomienda el modelo de efectos aleatorios")
}
## [1] "Se rechaza H0: Se recomienda el modelo de efectos fijos"

Conclusiones Generales

  • Con el test F (Pooled vs Fijos) decidimos si hay efectos individuales.
  • Con la prueba de Hausman decidimos entre efectos fijos y aleatorios.
  • Dependiendo de los resultados, seleccionamos el modelo final para interpretar.

Tema 2: Series de tiempo

df2 <- df %>% group_by(T) %>% summarise("Cost" = sum(C))

Generar series de tiempo

ts <- ts(data=df2$Cost, start=1970, frequency = 1)

## Generar el Modelo ARIMA

arima <- auto.arima(ts)
summary(arima)
## Series: ts 
## ARIMA(0,2,1) 
## 
## Coefficients:
##          ma1
##       0.6262
## s.e.  0.2198
## 
## sigma^2 = 9.087e+10:  log likelihood = -182.19
## AIC=368.37   AICc=369.57   BIC=369.5
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE    MAPE      MASE        ACF1
## Training set 27996.87 269624.3 201889.4 0.7953103 2.71744 0.2597085 -0.06184266

## Graficar el Pronóstico

pronostico <- forecast(arima, level = 95, h = 5)
pronostico
##      Point Forecast    Lo 95    Hi 95
## 1985       14087526 13496696 14678356
## 1986       14990145 13329820 16650471
## 1987       15892764 12881265 18904264
## 1988       16795384 12198346 21392421
## 1989       17698003 11310993 24085012
plot(pronostico, main = "Costos Totales de las Aerolíneas")

# Tema 3: Modelos de Ecuaciones Estructurales

modelo <- '
  # Regresiones
  Q ~ LF
  C ~ I + T + PF + LF
  LF ~ PF + I
  PF ~ T
  # Variables latentes
  # Varianzas y covarianzas
  # Intercepto
'

## Generar el diagrama

df3 <- scale(df)
df4 <- cfa(modelo, df3)
summary(df4)
## lavaan 0.6-19 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                            90
## 
## Model Test User Model:
##                                                       
##   Test statistic                               166.924
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Q ~                                                 
##     LF                0.425    0.095    4.462    0.000
##   C ~                                                 
##     I                 0.105    0.025    4.158    0.000
##     T                 0.140    0.063    2.211    0.027
##     PF                0.194    0.065    2.986    0.003
##     LF                0.271    0.100    2.726    0.006
##   LF ~                                                
##     PF                0.491    0.085    5.812    0.000
##     I                -0.346    0.085   -4.099    0.000
##   PF ~                                                
##     T                 0.931    0.038   24.233    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .Q ~~                                                
##    .C                 0.811    0.123    6.612    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Q                 0.810    0.121    6.708    0.000
##    .C                 0.859    0.128    6.708    0.000
##    .LF                0.636    0.095    6.708    0.000
##    .PF                0.131    0.020    6.708    0.000
lavaanPlot(df4, coef=TRUE, cov=TRUE)