Teoría

El bosque aleatorio es un algoritmo de aprendizaje automático que combina el resultado de múltiples árboles de decisión para llegar a un resultado óptimo.

En esta base de datos tenemos los precios de algunas casas de la ciudad de Melbourne:

Ejemplo 1. Melbourne

En esta Base de datos tenemos los precios de mas de 13,000 casas de la ciudad de Melbourne

Instalar paquetes y llamar librerías

#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#install.packages("rpart")
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)
#install.packages("randomForest")
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
#install.packags("modelr") #calcular Errores
library(modelr)
#install.packags("caret") 
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:purrr':
## 
##     lift

Improtar la base de datos

df<- read.csv("/Users/karlalopez/Downloads/melbourne.csv")

Entender la Base de Datos

summary(df)
##     Suburb            Address              Rooms            Type          
##  Length:13580       Length:13580       Min.   : 1.000   Length:13580      
##  Class :character   Class :character   1st Qu.: 2.000   Class :character  
##  Mode  :character   Mode  :character   Median : 3.000   Mode  :character  
##                                        Mean   : 2.938                     
##                                        3rd Qu.: 3.000                     
##                                        Max.   :10.000                     
##                                                                           
##      Price            Method            SellerG              Date          
##  Min.   :  85000   Length:13580       Length:13580       Length:13580      
##  1st Qu.: 650000   Class :character   Class :character   Class :character  
##  Median : 903000   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1075684                                                           
##  3rd Qu.:1330000                                                           
##  Max.   :9000000                                                           
##                                                                            
##     Distance        Postcode       Bedroom2         Bathroom    
##  Min.   : 0.00   Min.   :3000   Min.   : 0.000   Min.   :0.000  
##  1st Qu.: 6.10   1st Qu.:3044   1st Qu.: 2.000   1st Qu.:1.000  
##  Median : 9.20   Median :3084   Median : 3.000   Median :1.000  
##  Mean   :10.14   Mean   :3105   Mean   : 2.915   Mean   :1.534  
##  3rd Qu.:13.00   3rd Qu.:3148   3rd Qu.: 3.000   3rd Qu.:2.000  
##  Max.   :48.10   Max.   :3977   Max.   :20.000   Max.   :8.000  
##                                                                 
##       Car           Landsize         BuildingArea     YearBuilt   
##  Min.   : 0.00   Min.   :     0.0   Min.   :    0   Min.   :1196  
##  1st Qu.: 1.00   1st Qu.:   177.0   1st Qu.:   93   1st Qu.:1940  
##  Median : 2.00   Median :   440.0   Median :  126   Median :1970  
##  Mean   : 1.61   Mean   :   558.4   Mean   :  152   Mean   :1965  
##  3rd Qu.: 2.00   3rd Qu.:   651.0   3rd Qu.:  174   3rd Qu.:1999  
##  Max.   :10.00   Max.   :433014.0   Max.   :44515   Max.   :2018  
##  NA's   :62                         NA's   :6450    NA's   :5375  
##  CouncilArea          Lattitude        Longtitude     Regionname       
##  Length:13580       Min.   :-38.18   Min.   :144.4   Length:13580      
##  Class :character   1st Qu.:-37.86   1st Qu.:144.9   Class :character  
##  Mode  :character   Median :-37.80   Median :145.0   Mode  :character  
##                     Mean   :-37.81   Mean   :145.0                     
##                     3rd Qu.:-37.76   3rd Qu.:145.1                     
##                     Max.   :-37.41   Max.   :145.5                     
##                                                                        
##  Propertycount  
##  Min.   :  249  
##  1st Qu.: 4380  
##  Median : 6555  
##  Mean   : 7454  
##  3rd Qu.:10331  
##  Max.   :21650  
## 
str(df)
## 'data.frame':    13580 obs. of  21 variables:
##  $ Suburb       : chr  "Abbotsford" "Abbotsford" "Abbotsford" "Abbotsford" ...
##  $ Address      : chr  "85 Turner St" "25 Bloomburg St" "5 Charles St" "40 Federation La" ...
##  $ Rooms        : int  2 2 3 3 4 2 3 2 1 2 ...
##  $ Type         : chr  "h" "h" "h" "h" ...
##  $ Price        : num  1480000 1035000 1465000 850000 1600000 ...
##  $ Method       : chr  "S" "S" "SP" "PI" ...
##  $ SellerG      : chr  "Biggin" "Biggin" "Biggin" "Biggin" ...
##  $ Date         : chr  "3/12/2016" "4/02/2016" "4/03/2017" "4/03/2017" ...
##  $ Distance     : num  2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ...
##  $ Postcode     : num  3067 3067 3067 3067 3067 ...
##  $ Bedroom2     : num  2 2 3 3 3 2 4 2 1 3 ...
##  $ Bathroom     : num  1 1 2 2 1 1 2 1 1 1 ...
##  $ Car          : num  1 0 0 1 2 0 0 2 1 2 ...
##  $ Landsize     : num  202 156 134 94 120 181 245 256 0 220 ...
##  $ BuildingArea : num  NA 79 150 NA 142 NA 210 107 NA 75 ...
##  $ YearBuilt    : num  NA 1900 1900 NA 2014 ...
##  $ CouncilArea  : chr  "Yarra" "Yarra" "Yarra" "Yarra" ...
##  $ Lattitude    : num  -37.8 -37.8 -37.8 -37.8 -37.8 ...
##  $ Longtitude   : num  145 145 145 145 145 ...
##  $ Regionname   : chr  "Northern Metropolitan" "Northern Metropolitan" "Northern Metropolitan" "Northern Metropolitan" ...
##  $ Propertycount: num  4019 4019 4019 4019 4019 ...
df<- na.omit(df)

Árbol de Decision

#En este caso la variable es continua

arbol<-rpart(Price~Rooms + Distance + Bedroom2 + Bathroom + Car + Landsize + BuildingArea + Propertycount + YearBuilt, df)

plot(arbol, uniform=TRUE)
text(arbol, cex=.5)

predict(arbol,head(df))
##       2       3       5       7       8      10 
## 1095996 1562641 1070605 2422140 1095996 1095996
head(df$Price)
## [1] 1035000 1465000 1600000 1876000 1636000 1097000
prueba_arbol<- head(df)

#MAE: Error Cuadrado promedio(Ventaja: Mismas Unidades)
mae_arbol<- mae(arbol,prueba_arbol)

Bosque Aleatorio

set.seed(123)
renglones_entrenamiento<- createDataPartition(df$Price, p=.8, list=FALSE)
entrenamiento<- df[renglones_entrenamiento,]
prueba<- df[-renglones_entrenamiento,]
# Nuestra df se dividio en 2, en entrenamiento y en prueba

rf<- randomForest(Price~Rooms + Distance + Bedroom2 + Bathroom + Car + Landsize + BuildingArea + Propertycount + YearBuilt, entrenamiento, ntree=500, mtry=3, importance=TRUE )

resultado_entrenamiento<-predict(rf,entrenamiento)
resultado_prueba<-predict (rf,prueba)

mae_rf<- mae(rf, prueba)
resultados<-tibble(Modelo=c("Arbol de decisión", "Bosque aleatorio"), MAE=c(mae_arbol,mae_rf))
resultados
## # A tibble: 2 × 2
##   Modelo                MAE
##   <chr>               <dbl>
## 1 Arbol de decisión 295863.
## 2 Bosque aleatorio  213172.

Ejercicio 1. Rendimiento Automotriz

df2<-mtcars
summary(df2)
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
str(df2)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
df<- na.omit(df2)
arbol2 <- rpart(mpg ~ cyl + disp + hp + drat + wt + qsec + gear,
                data = df2)
                
rpart.plot(arbol2, type= 2, extra=101)
text(arbol2, cex=.8)

predict(arbol2,head(df2))
##         Mazda RX4     Mazda RX4 Wag        Datsun 710    Hornet 4 Drive 
##          18.26429          18.26429          26.66364          18.26429 
## Hornet Sportabout           Valiant 
##          18.26429          18.26429
head(df2$mpg)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
prueba_arbol2<- head(df2)
mae_arbol2<- mae(arbol2,prueba_arbol2)
set.seed(123)
renglones_entrenamiento2<- createDataPartition(df2$mpg, p=.8, list=FALSE)
entrenamiento2<- df[renglones_entrenamiento2,]
prueba2 <- df2[-renglones_entrenamiento2,]

rf2<- randomForest(mpg ~ cyl + disp + hp + drat + wt + qsec + gear, entrenamiento2, ntree=500, mtry=3, importance=TRUE )
resultado_entrenamiento2<-predict(rf2,entrenamiento2)
resultado_prueba2<-predict (rf2,prueba2)
mae_rf2<- mae(rf2, prueba2)
resultados2<-tibble(Modelo=c("Arbol de decisión", "Bosque aleatorio"), MAE=c(mae_arbol,mae_rf))
resultados2
## # A tibble: 2 × 2
##   Modelo                MAE
##   <chr>               <dbl>
## 1 Arbol de decisión 295863.
## 2 Bosque aleatorio  213172.
LS0tCnRpdGxlOiAiQm9zcXVlIGFsZWF0b3JpbyIKYXV0aG9yOiAiS2FybGEgTWlyZXlhIFZlbGRlcnJhaW4gQTAwMjI3NDExIgpkYXRlOiAiMjAyNS0wOC0yNyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIHRoZW1lOiBqb3VybmFsCi0tLQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6YnJvd24iPiBUZW9yw61hIDwvc3Bhbj4KRWwgYm9zcXVlIGFsZWF0b3JpbyBlcyB1biBhbGdvcml0bW8gZGUgYXByZW5kaXphamUgYXV0b23DoXRpY28gcXVlIGNvbWJpbmEgZWwgcmVzdWx0YWRvIGRlIG3Dumx0aXBsZXMgw6FyYm9sZXMgZGUgZGVjaXNpw7NuIHBhcmEgbGxlZ2FyIGEgdW4gcmVzdWx0YWRvIMOzcHRpbW8uCgpFbiBlc3RhIGJhc2UgZGUgZGF0b3MgdGVuZW1vcyBsb3MgcHJlY2lvcyBkZSBhbGd1bmFzIGNhc2FzIGRlIGxhIGNpdWRhZCBkZSBNZWxib3VybmU6IAoKCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpicm93biI+IEVqZW1wbG8gMS4gTWVsYm91cm5lIDwvc3Bhbj4KRW4gZXN0YSBCYXNlIGRlIGRhdG9zIHRlbmVtb3MgbG9zIHByZWNpb3MgZGUgbWFzIGRlIDEzLDAwMCBjYXNhcyBkZSBsYSBjaXVkYWQgZGUgTWVsYm91cm5lCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpicm93biI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCmxpYnJhcnkodGlkeXZlcnNlKQojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQiKQpsaWJyYXJ5KHJwYXJ0KQojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQucGxvdCIpCmxpYnJhcnkocnBhcnQucGxvdCkKI2luc3RhbGwucGFja2FnZXMoInJhbmRvbUZvcmVzdCIpCmxpYnJhcnkocmFuZG9tRm9yZXN0KQojaW5zdGFsbC5wYWNrYWdzKCJtb2RlbHIiKSAjY2FsY3VsYXIgRXJyb3JlcwpsaWJyYXJ5KG1vZGVscikKI2luc3RhbGwucGFja2FncygiY2FyZXQiKSAKbGlicmFyeShjYXJldCkKYGBgCgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6YnJvd24iPiBJbXByb3RhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CmRmPC0gcmVhZC5jc3YoIi9Vc2Vycy9rYXJsYWxvcGV6L0Rvd25sb2Fkcy9tZWxib3VybmUuY3N2IikKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpicm93biI+IEVudGVuZGVyIGxhIEJhc2UgZGUgRGF0b3MgPC9zcGFuPgoKYGBge3J9CnN1bW1hcnkoZGYpCnN0cihkZikKZGY8LSBuYS5vbWl0KGRmKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJyb3duIj4gw4FyYm9sIGRlIERlY2lzaW9uICA8L3NwYW4+CiNFbiBlc3RlIGNhc28gbGEgdmFyaWFibGUgZXMgY29udGludWEKYGBge3J9CmFyYm9sPC1ycGFydChQcmljZX5Sb29tcyArIERpc3RhbmNlICsgQmVkcm9vbTIgKyBCYXRocm9vbSArIENhciArIExhbmRzaXplICsgQnVpbGRpbmdBcmVhICsgUHJvcGVydHljb3VudCArIFllYXJCdWlsdCwgZGYpCgpwbG90KGFyYm9sLCB1bmlmb3JtPVRSVUUpCnRleHQoYXJib2wsIGNleD0uNSkKCnByZWRpY3QoYXJib2wsaGVhZChkZikpCmhlYWQoZGYkUHJpY2UpCgpwcnVlYmFfYXJib2w8LSBoZWFkKGRmKQoKI01BRTogRXJyb3IgQ3VhZHJhZG8gcHJvbWVkaW8oVmVudGFqYTogTWlzbWFzIFVuaWRhZGVzKQptYWVfYXJib2w8LSBtYWUoYXJib2wscHJ1ZWJhX2FyYm9sKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJyb3duIj4gQm9zcXVlIEFsZWF0b3JpbyA8L3NwYW4+CgpgYGB7cn0Kc2V0LnNlZWQoMTIzKQpyZW5nbG9uZXNfZW50cmVuYW1pZW50bzwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkUHJpY2UsIHA9LjgsIGxpc3Q9RkFMU0UpCmVudHJlbmFtaWVudG88LSBkZltyZW5nbG9uZXNfZW50cmVuYW1pZW50byxdCnBydWViYTwtIGRmWy1yZW5nbG9uZXNfZW50cmVuYW1pZW50byxdCiMgTnVlc3RyYSBkZiBzZSBkaXZpZGlvIGVuIDIsIGVuIGVudHJlbmFtaWVudG8geSBlbiBwcnVlYmEKCnJmPC0gcmFuZG9tRm9yZXN0KFByaWNlflJvb21zICsgRGlzdGFuY2UgKyBCZWRyb29tMiArIEJhdGhyb29tICsgQ2FyICsgTGFuZHNpemUgKyBCdWlsZGluZ0FyZWEgKyBQcm9wZXJ0eWNvdW50ICsgWWVhckJ1aWx0LCBlbnRyZW5hbWllbnRvLCBudHJlZT01MDAsIG10cnk9MywgaW1wb3J0YW5jZT1UUlVFICkKCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvPC1wcmVkaWN0KHJmLGVudHJlbmFtaWVudG8pCnJlc3VsdGFkb19wcnVlYmE8LXByZWRpY3QgKHJmLHBydWViYSkKCm1hZV9yZjwtIG1hZShyZiwgcHJ1ZWJhKQpyZXN1bHRhZG9zPC10aWJibGUoTW9kZWxvPWMoIkFyYm9sIGRlIGRlY2lzacOzbiIsICJCb3NxdWUgYWxlYXRvcmlvIiksIE1BRT1jKG1hZV9hcmJvbCxtYWVfcmYpKQpyZXN1bHRhZG9zCgpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJyb3duIj4gRWplcmNpY2lvIDEuIFJlbmRpbWllbnRvIEF1dG9tb3RyaXogPC9zcGFuPgoKYGBge3J9CmRmMjwtbXRjYXJzCmBgYAoKYGBge3J9CnN1bW1hcnkoZGYyKQpzdHIoZGYyKQpkZjwtIG5hLm9taXQoZGYyKQpgYGAKCmBgYHtyfQphcmJvbDIgPC0gcnBhcnQobXBnIH4gY3lsICsgZGlzcCArIGhwICsgZHJhdCArIHd0ICsgcXNlYyArIGdlYXIsCiAgICAgICAgICAgICAgICBkYXRhID0gZGYyKQogICAgICAgICAgICAgICAgCnJwYXJ0LnBsb3QoYXJib2wyLCB0eXBlPSAyLCBleHRyYT0xMDEpCnRleHQoYXJib2wyLCBjZXg9LjgpCnByZWRpY3QoYXJib2wyLGhlYWQoZGYyKSkKaGVhZChkZjIkbXBnKQpwcnVlYmFfYXJib2wyPC0gaGVhZChkZjIpCm1hZV9hcmJvbDI8LSBtYWUoYXJib2wyLHBydWViYV9hcmJvbDIpCmBgYApgYGB7cn0Kc2V0LnNlZWQoMTIzKQpyZW5nbG9uZXNfZW50cmVuYW1pZW50bzI8LSBjcmVhdGVEYXRhUGFydGl0aW9uKGRmMiRtcGcsIHA9LjgsIGxpc3Q9RkFMU0UpCmVudHJlbmFtaWVudG8yPC0gZGZbcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8yLF0KcHJ1ZWJhMiA8LSBkZjJbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvMixdCgpyZjI8LSByYW5kb21Gb3Jlc3QobXBnIH4gY3lsICsgZGlzcCArIGhwICsgZHJhdCArIHd0ICsgcXNlYyArIGdlYXIsIGVudHJlbmFtaWVudG8yLCBudHJlZT01MDAsIG10cnk9MywgaW1wb3J0YW5jZT1UUlVFICkKcmVzdWx0YWRvX2VudHJlbmFtaWVudG8yPC1wcmVkaWN0KHJmMixlbnRyZW5hbWllbnRvMikKcmVzdWx0YWRvX3BydWViYTI8LXByZWRpY3QgKHJmMixwcnVlYmEyKQptYWVfcmYyPC0gbWFlKHJmMiwgcHJ1ZWJhMikKcmVzdWx0YWRvczI8LXRpYmJsZShNb2RlbG89YygiQXJib2wgZGUgZGVjaXNpw7NuIiwgIkJvc3F1ZSBhbGVhdG9yaW8iKSwgTUFFPWMobWFlX2FyYm9sLG1hZV9yZikpCnJlc3VsdGFkb3MyCgoKYGBgCgoKCgoKCgoKCgo=