El bosque aleatorio es un algoritmo de aprendizaje automático que combina el resultado de múltiples árboles de decisión para llegar a un resultado óptimo.
En esta base de datos tenemos los precios de algunas casas de la ciudad de Melbourne:
En esta Base de datos tenemos los precios de mas de 13,000 casas de la ciudad de Melbourne
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#install.packages("rpart")
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)
#install.packages("randomForest")
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:dplyr':
##
## combine
##
## The following object is masked from 'package:ggplot2':
##
## margin
#install.packags("modelr") #calcular Errores
library(modelr)
#install.packags("caret")
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
df<- read.csv("/Users/karlalopez/Downloads/melbourne.csv")
summary(df)
## Suburb Address Rooms Type
## Length:13580 Length:13580 Min. : 1.000 Length:13580
## Class :character Class :character 1st Qu.: 2.000 Class :character
## Mode :character Mode :character Median : 3.000 Mode :character
## Mean : 2.938
## 3rd Qu.: 3.000
## Max. :10.000
##
## Price Method SellerG Date
## Min. : 85000 Length:13580 Length:13580 Length:13580
## 1st Qu.: 650000 Class :character Class :character Class :character
## Median : 903000 Mode :character Mode :character Mode :character
## Mean :1075684
## 3rd Qu.:1330000
## Max. :9000000
##
## Distance Postcode Bedroom2 Bathroom
## Min. : 0.00 Min. :3000 Min. : 0.000 Min. :0.000
## 1st Qu.: 6.10 1st Qu.:3044 1st Qu.: 2.000 1st Qu.:1.000
## Median : 9.20 Median :3084 Median : 3.000 Median :1.000
## Mean :10.14 Mean :3105 Mean : 2.915 Mean :1.534
## 3rd Qu.:13.00 3rd Qu.:3148 3rd Qu.: 3.000 3rd Qu.:2.000
## Max. :48.10 Max. :3977 Max. :20.000 Max. :8.000
##
## Car Landsize BuildingArea YearBuilt
## Min. : 0.00 Min. : 0.0 Min. : 0 Min. :1196
## 1st Qu.: 1.00 1st Qu.: 177.0 1st Qu.: 93 1st Qu.:1940
## Median : 2.00 Median : 440.0 Median : 126 Median :1970
## Mean : 1.61 Mean : 558.4 Mean : 152 Mean :1965
## 3rd Qu.: 2.00 3rd Qu.: 651.0 3rd Qu.: 174 3rd Qu.:1999
## Max. :10.00 Max. :433014.0 Max. :44515 Max. :2018
## NA's :62 NA's :6450 NA's :5375
## CouncilArea Lattitude Longtitude Regionname
## Length:13580 Min. :-38.18 Min. :144.4 Length:13580
## Class :character 1st Qu.:-37.86 1st Qu.:144.9 Class :character
## Mode :character Median :-37.80 Median :145.0 Mode :character
## Mean :-37.81 Mean :145.0
## 3rd Qu.:-37.76 3rd Qu.:145.1
## Max. :-37.41 Max. :145.5
##
## Propertycount
## Min. : 249
## 1st Qu.: 4380
## Median : 6555
## Mean : 7454
## 3rd Qu.:10331
## Max. :21650
##
str(df)
## 'data.frame': 13580 obs. of 21 variables:
## $ Suburb : chr "Abbotsford" "Abbotsford" "Abbotsford" "Abbotsford" ...
## $ Address : chr "85 Turner St" "25 Bloomburg St" "5 Charles St" "40 Federation La" ...
## $ Rooms : int 2 2 3 3 4 2 3 2 1 2 ...
## $ Type : chr "h" "h" "h" "h" ...
## $ Price : num 1480000 1035000 1465000 850000 1600000 ...
## $ Method : chr "S" "S" "SP" "PI" ...
## $ SellerG : chr "Biggin" "Biggin" "Biggin" "Biggin" ...
## $ Date : chr "3/12/2016" "4/02/2016" "4/03/2017" "4/03/2017" ...
## $ Distance : num 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ...
## $ Postcode : num 3067 3067 3067 3067 3067 ...
## $ Bedroom2 : num 2 2 3 3 3 2 4 2 1 3 ...
## $ Bathroom : num 1 1 2 2 1 1 2 1 1 1 ...
## $ Car : num 1 0 0 1 2 0 0 2 1 2 ...
## $ Landsize : num 202 156 134 94 120 181 245 256 0 220 ...
## $ BuildingArea : num NA 79 150 NA 142 NA 210 107 NA 75 ...
## $ YearBuilt : num NA 1900 1900 NA 2014 ...
## $ CouncilArea : chr "Yarra" "Yarra" "Yarra" "Yarra" ...
## $ Lattitude : num -37.8 -37.8 -37.8 -37.8 -37.8 ...
## $ Longtitude : num 145 145 145 145 145 ...
## $ Regionname : chr "Northern Metropolitan" "Northern Metropolitan" "Northern Metropolitan" "Northern Metropolitan" ...
## $ Propertycount: num 4019 4019 4019 4019 4019 ...
df<- na.omit(df)
#En este caso la variable es continua
arbol<-rpart(Price~Rooms + Distance + Bedroom2 + Bathroom + Car + Landsize + BuildingArea + Propertycount + YearBuilt, df)
plot(arbol, uniform=TRUE)
text(arbol, cex=.5)
predict(arbol,head(df))
## 2 3 5 7 8 10
## 1095996 1562641 1070605 2422140 1095996 1095996
head(df$Price)
## [1] 1035000 1465000 1600000 1876000 1636000 1097000
prueba_arbol<- head(df)
#MAE: Error Cuadrado promedio(Ventaja: Mismas Unidades)
mae_arbol<- mae(arbol,prueba_arbol)
set.seed(123)
renglones_entrenamiento<- createDataPartition(df$Price, p=.8, list=FALSE)
entrenamiento<- df[renglones_entrenamiento,]
prueba<- df[-renglones_entrenamiento,]
# Nuestra df se dividio en 2, en entrenamiento y en prueba
rf<- randomForest(Price~Rooms + Distance + Bedroom2 + Bathroom + Car + Landsize + BuildingArea + Propertycount + YearBuilt, entrenamiento, ntree=500, mtry=3, importance=TRUE )
resultado_entrenamiento<-predict(rf,entrenamiento)
resultado_prueba<-predict (rf,prueba)
mae_rf<- mae(rf, prueba)
resultados<-tibble(Modelo=c("Arbol de decisión", "Bosque aleatorio"), MAE=c(mae_arbol,mae_rf))
resultados
## # A tibble: 2 × 2
## Modelo MAE
## <chr> <dbl>
## 1 Arbol de decisión 295863.
## 2 Bosque aleatorio 213172.
df2<-mtcars
summary(df2)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
str(df2)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
df<- na.omit(df2)
arbol2 <- rpart(mpg ~ cyl + disp + hp + drat + wt + qsec + gear,
data = df2)
rpart.plot(arbol2, type= 2, extra=101)
text(arbol2, cex=.8)
predict(arbol2,head(df2))
## Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
## 18.26429 18.26429 26.66364 18.26429
## Hornet Sportabout Valiant
## 18.26429 18.26429
head(df2$mpg)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
prueba_arbol2<- head(df2)
mae_arbol2<- mae(arbol2,prueba_arbol2)
set.seed(123)
renglones_entrenamiento2<- createDataPartition(df2$mpg, p=.8, list=FALSE)
entrenamiento2<- df[renglones_entrenamiento2,]
prueba2 <- df2[-renglones_entrenamiento2,]
rf2<- randomForest(mpg ~ cyl + disp + hp + drat + wt + qsec + gear, entrenamiento2, ntree=500, mtry=3, importance=TRUE )
resultado_entrenamiento2<-predict(rf2,entrenamiento2)
resultado_prueba2<-predict (rf2,prueba2)
mae_rf2<- mae(rf2, prueba2)
resultados2<-tibble(Modelo=c("Arbol de decisión", "Bosque aleatorio"), MAE=c(mae_arbol,mae_rf))
resultados2
## # A tibble: 2 × 2
## Modelo MAE
## <chr> <dbl>
## 1 Arbol de decisión 295863.
## 2 Bosque aleatorio 213172.