This is a Architect Themes YAML from prettydoc Package

Type your name here

2025-08-27

uji 1 populasi

set.seed(195) #untuk hasil yang acak agar mengunci data agar tidak berubah

waktu_belajar = rnorm(30, mean = 6.2, sd=0.8)

uji one-sample t-test

t.test(waktu_belajar, mu=6)
## 
##  One Sample t-test
## 
## data:  waktu_belajar
## t = 1.0752, df = 29, p-value = 0.2912
## alternative hypothesis: true mean is not equal to 6
## 95 percent confidence interval:
##  5.872761 6.409290
## sample estimates:
## mean of x 
##  6.141025

uji k populasi

set.seed(123)

bangkitkan nilai dari tiga jurusan

statistika= rnorm(15,82,4)
matematika = rnorm(15,88,4)
aktuaria = rnorm(15,75,4)

Gabungkan data

nilai= c(statistika,matematika,aktuaria)
jurusan= factor(rep(c("statistika","matematika", "aktuaria"), each=15))

model anova

anova_model = aov(nilai~jurusan)
summary(anova_model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## jurusan      2  890.3   445.2   31.38 4.62e-09 ***
## Residuals   42  595.8    14.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ujii lanjut ataupun untuk melihat perbedaan

TukeyHSD(anova_model)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nilai ~ jurusan)
## 
## $jurusan
##                            diff       lwr       upr     p adj
## matematika-aktuaria   10.832474  7.491162 14.173787 0.0000000
## statistika-aktuaria    6.428379  3.087067  9.769692 0.0000889
## statistika-matematika -4.404095 -7.745408 -1.062783 0.0071877

uji proporsi one sample proportion test

#bangkitkan data binomial

set.seed(123)
jumlah_sarapan1= rbinom(1, size=40, prob=0.65)
total_mahasiswa1= 40 
jumlah_sarapan1
## [1] 28

uji proporsi

prop.test (jumlah_sarapan1,total_mahasiswa1, p=0.5,
          alternative="greater", correct=FALSE)
## 
##  1-sample proportions test without continuity correction
## 
## data:  jumlah_sarapan1 out of total_mahasiswa1, null probability 0.5
## X-squared = 6.4, df = 1, p-value = 0.005706
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
##  0.5712915 1.0000000
## sample estimates:
##   p 
## 0.7
prop.test(jumlah_sarapan1, total_mahasiswa1, p = 0.5, alternative = "greater",correct = FALSE)
## 
##  1-sample proportions test without continuity correction
## 
## data:  jumlah_sarapan1 out of total_mahasiswa1, null probability 0.5
## X-squared = 6.4, df = 1, p-value = 0.005706
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
##  0.5712915 1.0000000
## sample estimates:
##   p 
## 0.7