Instalar Paquetes

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar base de datos

df<- read.csv("/Users/miguel/Desktop/walmart.csv")

Entender la base de datos

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr  "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
df$Date<- as.Date(df$Date, format="%d-%m-%Y")
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Agregar variables a la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)

df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$WeekYear <- format(df$Date, "%u")
df$WeekYear <- as.integer(df$WeekYear)

df$Weekday <- format(df$Date, "%w")
df$Weekday <- as.integer(df$Weekday)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)

summary(df)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313  
##       Year          Month           WeekYear    Weekday       Day       
##  Min.   :2010   Min.   : 1.000   Min.   :5   Min.   :5   Min.   : 1.00  
##  1st Qu.:2010   1st Qu.: 4.000   1st Qu.:5   1st Qu.:5   1st Qu.: 8.00  
##  Median :2011   Median : 6.000   Median :5   Median :5   Median :16.00  
##  Mean   :2011   Mean   : 6.448   Mean   :5   Mean   :5   Mean   :15.68  
##  3rd Qu.:2012   3rd Qu.: 9.000   3rd Qu.:5   3rd Qu.:5   3rd Qu.:23.00  
##  Max.   :2012   Max.   :12.000   Max.   :5   Max.   :5   Max.   :31.00
head(df)
##   Store       Date Weekly_Sales Holiday_Flag Temperature Fuel_Price      CPI
## 1     1 2010-02-05      1643691            0       42.31      2.572 211.0964
## 2     1 2010-02-12      1641957            1       38.51      2.548 211.2422
## 3     1 2010-02-19      1611968            0       39.93      2.514 211.2891
## 4     1 2010-02-26      1409728            0       46.63      2.561 211.3196
## 5     1 2010-03-05      1554807            0       46.50      2.625 211.3501
## 6     1 2010-03-12      1439542            0       57.79      2.667 211.3806
##   Unemployment Year Month WeekYear Weekday Day
## 1        8.106 2010     2        5       5   5
## 2        8.106 2010     2        5       5  12
## 3        8.106 2010     2        5       5  19
## 4        8.106 2010     2        5       5  26
## 5        8.106 2010     3        5       5   5
## 6        8.106 2010     3        5       5  12

Generar la regresión

regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## Weekday              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Ajustar la regresion

df_ajustada <- df %>% select(-Date,-Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales~., data=df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1035858  -392195   -40416   371110  2711797 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2031943.1    50654.7  40.114  < 2e-16 ***
## Store         -15373.4      521.3 -29.488  < 2e-16 ***
## Holiday_Flag   72218.3    25911.0   2.787  0.00533 ** 
## Temperature     -929.0      369.1  -2.517  0.01186 *  
## CPI            -2345.9      180.2 -13.019  < 2e-16 ***
## Unemployment  -22198.9     3755.9  -5.910 3.59e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 523100 on 6429 degrees of freedom
## Multiple R-squared:  0.1415, Adjusted R-squared:  0.1408 
## F-statistic: 211.9 on 5 and 6429 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzaW9uIExpbmVhbCIKYXV0aG9yOiAiIE1pZ3VlbCBBbmdlbCBMb3BleiIKZGF0ZTogIjIwMjUtMDgtMjAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY29zbW8KLS0tCiFbXSgvVXNlcnMvbWlndWVsL0Rlc2t0b3AvMjAwdy5naWYpCiFbXSgvVXNlcnMvbWlndWVsL0Rlc2t0b3AvSU1HMDA2MC5qcGVnKQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEluc3RhbGFyIFBhcXVldGVzIDwvc3Bhbj4gCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmBgYAojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEltcG9ydGFyIGJhc2UgZGUgZGF0b3MgPC9zcGFuPiAKYGBge3J9CmRmPC0gcmVhZC5jc3YoIi9Vc2Vycy9taWd1ZWwvRGVza3RvcC93YWxtYXJ0LmNzdiIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPiAKYGBge3J9CnN1bW1hcnkoZGYpCnN0cihkZikKZGYkRGF0ZTwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0PSIlZC0lbS0lWSIpCnN0cihkZikKYGBgCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPiAKYGBge3J9CmRmJFllYXIgPC0gZm9ybWF0KGRmJERhdGUsICIlWSIpCmRmJFllYXIgPC0gYXMuaW50ZWdlcihkZiRZZWFyKQoKZGYkTW9udGggPC0gZm9ybWF0KGRmJERhdGUsICIlbSIpCmRmJE1vbnRoIDwtIGFzLmludGVnZXIoZGYkTW9udGgpCgpkZiRXZWVrWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiV1IikKZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikKCmRmJFdlZWtkYXkgPC0gZm9ybWF0KGRmJERhdGUsICIldyIpCmRmJFdlZWtkYXkgPC0gYXMuaW50ZWdlcihkZiRXZWVrZGF5KQoKZGYkRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJWQiKQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpCgpzdW1tYXJ5KGRmKQpoZWFkKGRmKQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBHZW5lcmFyIGxhIHJlZ3Jlc2nDs248L3NwYW4+CmBgYHtyfQpyZWdyZXNpb24gPC0gbG0oV2Vla2x5X1NhbGVzfi4sIGRhdGE9ZGYpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBBanVzdGFyIGxhIHJlZ3Jlc2lvbiA8L3NwYW4+CmBgYHtyfQpkZl9hanVzdGFkYSA8LSBkZiAlPiUgc2VsZWN0KC1EYXRlLC1GdWVsX1ByaWNlLCAtWWVhcjotRGF5KQpyZWdyZXNpb25fYWp1c3RhZGEgPC0gbG0oV2Vla2x5X1NhbGVzfi4sIGRhdGE9ZGZfYWp1c3RhZGEpCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQpgYGAKCgoKCgoKCgoKCgoKCgoKCgoK