
Instalar paquetes y llamar librerias
# install.packages("tidyverse)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Importar la base de datos
df <- read.csv("C:\\Users\\corsa\\OneDrive - CORSA Transportes SA de CV\\Escritorio\\TEC\\walmart.csv")
Entender los datos
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Length:6435 Min. : 209986 Min. :0.00000
## 1st Qu.:12 Class :character 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Mode :character Median : 960746 Median :0.00000
## Mean :23 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :3818687 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : chr "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
df$Date <- as.Date(df$Date,format="%d-%m-%Y")
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
Agregar variables a la base de datos
df$Year <- format(df$Date,"%Y")
df$Year <- as.integer(df$Year)
df$Month <- format(df$Date,"%m")
df$Month <- as.integer(df$Month)
df$WeekYear <- format(df$Date,"%W")
df$WeekYear <- as.integer(df$WeekYear)
df$WeekDay <- format(df$Date,"%u")
df$WeekDay <- as.integer(df$WeekDay)
df$Day <- format(df$Date,"%d")
df$Day <- as.integer(df$Day)
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818687 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
## Year Month WeekYear WeekDay Day
## Min. :2010 Min. : 1.000 Min. : 1.00 Min. :5 Min. : 1.00
## 1st Qu.:2010 1st Qu.: 4.000 1st Qu.:14.00 1st Qu.:5 1st Qu.: 8.00
## Median :2011 Median : 6.000 Median :26.00 Median :5 Median :16.00
## Mean :2011 Mean : 6.448 Mean :25.82 Mean :5 Mean :15.68
## 3rd Qu.:2012 3rd Qu.: 9.000 3rd Qu.:38.00 3rd Qu.:5 3rd Qu.:23.00
## Max. :2012 Max. :12.000 Max. :52.00 Max. :5 Max. :31.00
str(df)
## 'data.frame': 6435 obs. of 13 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ Year : int 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ Month : int 2 2 2 2 3 3 3 3 4 4 ...
## $ WeekYear : int 5 6 7 8 9 10 11 12 13 14 ...
## $ WeekDay : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 5 12 19 26 5 12 19 26 2 9 ...
Generar la regresión
regresion <- lm(Weekly_Sales ~ ., data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Ajustar la regresión
df_ajustada <- df %>% select(-Date,-Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales ~ ., data=df_ajustada)
summary(regresion_ajustada)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1035858 -392195 -40416 371110 2711797
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2031943.1 50654.7 40.114 < 2e-16 ***
## Store -15373.4 521.3 -29.488 < 2e-16 ***
## Holiday_Flag 72218.3 25911.0 2.787 0.00533 **
## Temperature -929.0 369.1 -2.517 0.01186 *
## CPI -2345.9 180.2 -13.019 < 2e-16 ***
## Unemployment -22198.9 3755.9 -5.910 3.59e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 523100 on 6429 degrees of freedom
## Multiple R-squared: 0.1415, Adjusted R-squared: 0.1408
## F-statistic: 211.9 on 5 and 6429 DF, p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJlZ3Jlc2lvbiBMaW5lYWwiDQphdXRob3I6ICJFdWdlbmlvIFZpbGxhcnJlYWwiDQpkYXRlOiAiMjAyNS0wOC0yNSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jX3RydWU6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCg0KIVtdKGh0dHBzOi8vY2RuLmRyaWJiYmxlLmNvbS91c2VydXBsb2FkLzUyNDk5NDgvZmlsZS9vcmlnaW5hbC1hZjZjNzIyZDQ2OWUxNzE3ZDFkMTMwMjk5ZjMzMjc4ZC5naWYpDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlIj4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzIDwvc3Bhbj4NCmBgYHtyfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZSI+IEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZiA8LSByZWFkLmNzdigiQzpcXFVzZXJzXFxjb3JzYVxcT25lRHJpdmUgLSBDT1JTQSBUcmFuc3BvcnRlcyBTQSBkZSBDVlxcRXNjcml0b3Jpb1xcVEVDXFx3YWxtYXJ0LmNzdiIpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWUiPiBFbnRlbmRlciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KZGYkRGF0ZSA8LSBhcy5EYXRlKGRmJERhdGUsZm9ybWF0PSIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWUiPiBBZ3JlZ2FyIHZhcmlhYmxlcyBhIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZiRZZWFyIDwtIGZvcm1hdChkZiREYXRlLCIlWSIpDQpkZiRZZWFyIDwtIGFzLmludGVnZXIoZGYkWWVhcikNCg0KZGYkTW9udGggPC0gZm9ybWF0KGRmJERhdGUsIiVtIikNCmRmJE1vbnRoIDwtIGFzLmludGVnZXIoZGYkTW9udGgpDQoNCmRmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCIlVyIpDQpkZiRXZWVrWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQ0KDQpkZiRXZWVrRGF5IDwtIGZvcm1hdChkZiREYXRlLCIldSIpDQpkZiRXZWVrRGF5IDwtIGFzLmludGVnZXIoZGYkV2Vla0RheSkNCg0KZGYkRGF5IDwtIGZvcm1hdChkZiREYXRlLCIlZCIpDQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpDQoNCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWUiPiBHZW5lcmFyIGxhIHJlZ3Jlc2nDs24gPC9zcGFuPg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0oV2Vla2x5X1NhbGVzIH4gLiwgZGF0YT1kZikNCnN1bW1hcnkocmVncmVzaW9uKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlIj4gQWp1c3RhciBsYSByZWdyZXNpw7NuIDwvc3Bhbj4NCmBgYHtyfQ0KZGZfYWp1c3RhZGEgPC0gZGYgJT4lIHNlbGVjdCgtRGF0ZSwtRnVlbF9QcmljZSwgLVllYXI6LURheSkgDQpyZWdyZXNpb25fYWp1c3RhZGEgPC0gbG0oV2Vla2x5X1NhbGVzIH4gLiwgZGF0YT1kZl9hanVzdGFkYSkNCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQ0KYGBgDQoNCg==