)

Instalar paquetes y llamar librerías

#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar la base de datos

df <- read.csv("/Users/brisnaordaz/Downloads/walmart.csv")

Entender la base de datos

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr  "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
df$fecha <- as.Date(df$Date, format= "%d-%m-%Y")

Entender la base de datos

df$Year     <- as.integer(format(df$fecha, "%Y"))
df$Month    <- as.integer(format(df$fecha, "%m"))
df$WeekYear <- as.integer(format(df$fecha, "%W")) # semana del año
df$WeekDay  <- as.integer(format(df$fecha, "%u")) # día de la semana (1=lunes)
df$Day      <- as.integer(format(df$fecha, "%d"))

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313  
##      fecha                 Year          Month           WeekYear    
##  Min.   :2010-02-05   Min.   :2010   Min.   : 1.000   Min.   : 1.00  
##  1st Qu.:2010-10-08   1st Qu.:2010   1st Qu.: 4.000   1st Qu.:14.00  
##  Median :2011-06-17   Median :2011   Median : 6.000   Median :26.00  
##  Mean   :2011-06-17   Mean   :2011   Mean   : 6.448   Mean   :25.82  
##  3rd Qu.:2012-02-24   3rd Qu.:2012   3rd Qu.: 9.000   3rd Qu.:38.00  
##  Max.   :2012-10-26   Max.   :2012   Max.   :12.000   Max.   :52.00  
##     WeekDay       Day       
##  Min.   :5   Min.   : 1.00  
##  1st Qu.:5   1st Qu.: 8.00  
##  Median :5   Median :16.00  
##  Mean   :5   Mean   :15.68  
##  3rd Qu.:5   3rd Qu.:23.00  
##  Max.   :5   Max.   :31.00
str(df)
## 'data.frame':    6435 obs. of  14 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr  "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ fecha       : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ WeekYear    : int  5 6 7 8 9 10 11 12 13 14 ...
##  $ WeekDay     : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day         : int  5 12 19 26 5 12 19 26 2 9 ...

Hacer regresión

regression <- lm(Weekly_Sales~., data=df)
summary(regression)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1535955  -374908   -32975   360767  1915428 
## 
## Coefficients: (7 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    975487.1   222042.4   4.393 1.14e-05 ***
## Store          -15328.8      514.2 -29.812  < 2e-16 ***
## Date01-06-2012  75296.6   110146.7   0.684 0.494251    
## Date01-07-2011  94893.2   110402.9   0.860 0.390088    
## Date01-10-2010 213582.2   119303.7   1.790 0.073463 .  
## Date02-03-2012  38530.4   108673.5   0.355 0.722938    
## Date02-04-2010 359086.7   116350.0   3.086 0.002036 ** 
## Date02-07-2010 350395.5   118923.6   2.946 0.003227 ** 
## Date02-09-2011  53703.6   110440.5   0.486 0.626795    
## Date02-12-2011 177489.5   108941.7   1.629 0.103317    
## Date03-02-2012  81889.5   108692.9   0.753 0.451236    
## Date03-06-2011  77967.0   110318.8   0.707 0.479753    
## Date03-08-2012 105049.4   110833.0   0.948 0.343259    
## Date03-09-2010 324889.4   119861.6   2.711 0.006736 ** 
## Date03-12-2010 324000.1   115070.6   2.816 0.004883 ** 
## Date04-02-2011 166214.6   111834.7   1.486 0.137263    
## Date04-03-2011 130594.2   109046.5   1.198 0.231117    
## Date04-05-2012   3915.2   110389.4   0.035 0.971708    
## Date04-06-2010 373857.5   118191.2   3.163 0.001568 ** 
## Date04-11-2011 130515.2   108517.7   1.203 0.229134    
## Date05-02-2010 361044.1   118702.0   3.042 0.002363 ** 
## Date05-03-2010 300660.3   118196.2   2.544 0.010991 *  
## Date05-08-2011  86650.4   110922.4   0.781 0.434726    
## Date05-10-2012  18606.8   110235.2   0.169 0.865966    
## Date05-11-2010 252458.5   115991.8   2.177 0.029554 *  
## Date06-01-2012  91989.2   109534.8   0.840 0.401043    
## Date06-04-2012 124820.9   110541.1   1.129 0.258865    
## Date06-05-2011 -12079.0   110404.6  -0.109 0.912883    
## Date06-07-2012 214939.0   111022.0   1.936 0.052912 .  
## Date06-08-2010 341131.3   119621.8   2.852 0.004362 ** 
## Date07-01-2011 105014.2   112137.9   0.936 0.349065    
## Date07-05-2010 297704.3   115066.5   2.587 0.009697 ** 
## Date07-09-2012  52448.2   111271.9   0.471 0.637406    
## Date07-10-2011 108580.0   109017.0   0.996 0.319293    
## Date08-04-2011  35785.1   108649.2   0.329 0.741892    
## Date08-06-2012 120564.3   109855.4   1.097 0.272473    
## Date08-07-2011 114437.7   110524.9   1.035 0.300521    
## Date08-10-2010 265032.4   118105.8   2.244 0.024865 *  
## Date09-03-2012  39825.9   108870.8   0.366 0.714520    
## Date09-04-2010 288410.6   116096.6   2.484 0.013009 *  
## Date09-07-2010 331508.5   119355.2   2.777 0.005494 ** 
## Date09-09-2011  72545.5   109797.8   0.661 0.508817    
## Date09-12-2011 317290.3   109279.1   2.903 0.003703 ** 
## Date10-02-2012 153098.1   108672.8   1.409 0.158944    
## Date10-06-2011  63356.7   110289.5   0.574 0.565679    
## Date10-08-2012  87017.7   111007.3   0.784 0.433133    
## Date10-09-2010 292667.1   119845.0   2.442 0.014632 *  
## Date10-12-2010 427929.5   113679.7   3.764 0.000169 ***
## Date11-02-2011 187141.3   111416.2   1.680 0.093073 .  
## Date11-03-2011  44380.6   108517.4   0.409 0.682574    
## Date11-05-2012   9076.2   110118.3   0.082 0.934314    
## Date11-06-2010 327505.6   118713.2   2.759 0.005818 ** 
## Date11-11-2011 134999.4   108589.1   1.243 0.213836    
## Date12-02-2010 335905.9   119198.9   2.818 0.004847 ** 
## Date12-03-2010 272112.0   117312.5   2.320 0.020397 *  
## Date12-08-2011  55380.6   110705.4   0.500 0.616915    
## Date12-10-2012 -31839.3   110180.8  -0.289 0.772611    
## Date12-11-2010 250869.5   115378.0   2.174 0.029718 *  
## Date13-01-2012   7926.9   109135.4   0.073 0.942100    
## Date13-04-2012 -35054.8   110914.4  -0.316 0.751973    
## Date13-05-2011 -40830.1   110811.8  -0.368 0.712540    
## Date13-07-2012  94837.2   110806.0   0.856 0.392094    
## Date13-08-2010 294551.4   118943.9   2.476 0.013298 *  
## Date14-01-2011  51037.1   112188.8   0.455 0.649182    
## Date14-05-2010 220721.6   114570.2   1.927 0.054085 .  
## Date14-09-2012 -46784.8   110500.8  -0.423 0.672026    
## Date14-10-2011  53713.4   109092.9   0.492 0.622479    
## Date15-04-2011  -8328.6   109035.8  -0.076 0.939116    
## Date15-06-2012 106569.6   110105.3   0.968 0.333138    
## Date15-07-2011  50691.2   110553.6   0.459 0.646594    
## Date15-10-2010 201634.6   116525.2   1.730 0.083609 .  
## Date16-03-2012  13453.0   109345.1   0.123 0.902086    
## Date16-04-2010 230439.8   115421.3   1.997 0.045921 *  
## Date16-07-2010 301232.6   119993.8   2.510 0.012084 *  
## Date16-09-2011   5313.3   109559.0   0.048 0.961321    
## Date16-12-2011 427288.6   109355.3   3.907 9.43e-05 ***
## Date17-02-2012 142092.0   108598.0   1.308 0.190778    
## Date17-06-2011  66338.0   110170.6   0.602 0.547103    
## Date17-08-2012  62239.0   110882.5   0.561 0.574609    
## Date17-09-2010 231529.5   119415.5   1.939 0.052563 .  
## Date17-12-2010 558210.6   113207.0   4.931 8.40e-07 ***
## Date18-02-2011 223238.8   110758.1   2.016 0.043889 *  
## Date18-03-2011  43985.9   108496.9   0.405 0.685188    
## Date18-05-2012  17826.8   110086.3   0.162 0.871363    
## Date18-06-2010 328722.4   119120.2   2.760 0.005804 ** 
## Date18-11-2011  92568.8   108630.8   0.852 0.394168    
## Date19-02-2010 342874.5   119555.7   2.868 0.004146 ** 
## Date19-03-2010 242273.1   116509.2   2.079 0.037618 *  
## Date19-08-2011  83785.4   110436.9   0.759 0.448077    
## Date19-10-2012 -48174.1   110156.5  -0.437 0.661891    
## Date19-11-2010 217175.7   114666.7   1.894 0.058274 .  
## Date20-01-2012   4030.5   109029.3   0.037 0.970512    
## Date20-04-2012 -63902.2   110904.3  -0.576 0.564505    
## Date20-05-2011 -72410.6   110611.2  -0.655 0.512723    
## Date20-07-2012  88384.4   110725.4   0.798 0.424767    
## Date20-08-2010 313664.4   119403.2   2.627 0.008637 ** 
## Date21-01-2011  50522.8   111575.2   0.453 0.650698    
## Date21-05-2010 226271.9   115365.4   1.961 0.049882 *  
## Date21-09-2012 -59567.5   110719.7  -0.538 0.590594    
## Date21-10-2011  70009.2   108839.9   0.643 0.520098    
## Date22-04-2011  60062.2   109459.6   0.549 0.583220    
## Date22-06-2012 105844.3   110409.5   0.959 0.337771    
## Date22-07-2011  34516.8   110939.2   0.311 0.755710    
## Date22-10-2010 194691.0   116127.5   1.677 0.093685 .  
## Date23-03-2012 -37392.0   109691.3  -0.341 0.733202    
## Date23-04-2010 221544.1   115507.1   1.918 0.055155 .  
## Date23-07-2010 271506.5   120069.7   2.261 0.023778 *  
## Date23-09-2011  -8791.6   109299.7  -0.080 0.935893    
## Date23-12-2011 812809.2   109678.9   7.411 1.42e-13 ***
## Date24-02-2012  32950.0   108515.8   0.304 0.761410    
## Date24-06-2011  43464.6   110187.8   0.394 0.693255    
## Date24-08-2012  50952.6   110436.1   0.461 0.644545    
## Date24-09-2010 192374.1   119324.9   1.612 0.106971    
## Date24-12-2010 979574.2   112953.2   8.672  < 2e-16 ***
## Date25-02-2011 112027.2   110473.7   1.014 0.310592    
## Date25-03-2011   -450.2   108478.3  -0.004 0.996689    
## Date25-05-2012  56303.4   110197.4   0.511 0.609417    
## Date25-06-2010 302928.0   119197.0   2.541 0.011065 *  
## Date25-11-2011 552182.2   108770.8   5.077 3.95e-07 ***
## Date26-02-2010 245325.7   119258.8   2.057 0.039719 *  
## Date26-03-2010 220269.0   116353.1   1.893 0.058389 .  
## Date26-08-2011 103349.1   110547.0   0.935 0.349882    
## Date26-10-2012 -16132.6   109582.2  -0.147 0.882964    
## Date26-11-2010 675089.3   114553.1   5.893 3.98e-09 ***
## Date27-01-2012 -48529.9   108870.5  -0.446 0.655788    
## Date27-04-2012 -84460.2   110656.8  -0.763 0.445335    
## Date27-05-2011 -18527.2   110383.3  -0.168 0.866711    
## Date27-07-2012  26042.1   110755.9   0.235 0.814115    
## Date27-08-2010 291374.4   119472.8   2.439 0.014762 *  
## Date28-01-2011  22910.6   111630.2   0.205 0.837394    
## Date28-05-2010 302829.4   116780.6   2.593 0.009532 ** 
## Date28-09-2012 -58980.5   110390.3  -0.534 0.593159    
## Date28-10-2011  68759.9   108641.6   0.633 0.526818    
## Date29-04-2011 -63232.2   109895.5  -0.575 0.565052    
## Date29-06-2012 101225.7   110831.7   0.913 0.361105    
## Date29-07-2011  -6502.8   110860.4  -0.059 0.953227    
## Date29-10-2010 205316.7   116023.8   1.770 0.076841 .  
## Date30-03-2012 -47259.8   110230.3  -0.429 0.668129    
## Date30-04-2010 196695.5   115370.8   1.705 0.088263 .  
## Date30-07-2010 263622.5   119726.1   2.202 0.027710 *  
## Date30-09-2011  -2719.4   109695.0  -0.025 0.980223    
## Date30-12-2011 129165.5   109892.5   1.175 0.239887    
## Date31-08-2012  44711.4   110852.9   0.403 0.686712    
## Date31-12-2010  69615.4   112698.7   0.618 0.536787    
## Holiday_Flag         NA         NA      NA       NA    
## Temperature      -743.4      683.8  -1.087 0.277041    
## Fuel_Price     253287.8    52973.5   4.781 1.78e-06 ***
## CPI             -1761.4      229.7  -7.670 1.99e-14 ***
## Unemployment   -28545.7     4190.0  -6.813 1.05e-11 ***
## fecha                NA         NA      NA       NA    
## Year                 NA         NA      NA       NA    
## Month                NA         NA      NA       NA    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day                  NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 514400 on 6287 degrees of freedom
## Multiple R-squared:  0.1881, Adjusted R-squared:  0.1692 
## F-statistic: 9.912 on 147 and 6287 DF,  p-value: < 2.2e-16

Hacer regresión

df_ajustada <- df %>% select(-Date,-Fuel_Price,-Year:-Day)
regresion_ajustada <- lm(Weekly_Sales~.,data = df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1033045  -392197   -38179   371833  2712887 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1829724.13  367412.35   4.980 6.52e-07 ***
## Store         -15391.78     522.42 -29.463  < 2e-16 ***
## Holiday_Flag   71943.20   25917.09   2.776  0.00552 ** 
## Temperature     -967.11     375.41  -2.576  0.01001 *  
## CPI            -2343.03     180.28 -12.997  < 2e-16 ***
## Unemployment  -21609.39    3903.11  -5.536 3.21e-08 ***
## fecha             13.19      23.74   0.556  0.57844    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 523100 on 6428 degrees of freedom
## Multiple R-squared:  0.1415, Adjusted R-squared:  0.1407 
## F-statistic: 176.6 on 6 and 6428 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUkVHUkVTSU9OIExJTkVBTCIKYXV0aG9yOiAiQTAxMjc2MDQ1IC0gQlJJU05BIEYuIE9SREFaIE1PTlJPWSIKZGF0ZTogIjIwMjUtMDgtMjUiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY29zbW8KLS0tCgohW10oaHR0cHM6Ly9tZWRpYS50ZW5vci5jb20vZHNfX2pjTzduVTBBQUFBTS93YWxtYXJ0LXN0b3JlLmdpZikpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzIDwvc3Bhbj4KYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiL1VzZXJzL2JyaXNuYW9yZGF6L0Rvd25sb2Fkcy93YWxtYXJ0LmNzdiIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGRmKQpzdHIoZGYpCmRmJGZlY2hhIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0PSAiJWQtJW0tJVkiKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0KZGYkWWVhciAgICAgPC0gYXMuaW50ZWdlcihmb3JtYXQoZGYkZmVjaGEsICIlWSIpKQpkZiRNb250aCAgICA8LSBhcy5pbnRlZ2VyKGZvcm1hdChkZiRmZWNoYSwgIiVtIikpCmRmJFdlZWtZZWFyIDwtIGFzLmludGVnZXIoZm9ybWF0KGRmJGZlY2hhLCAiJVciKSkgIyBzZW1hbmEgZGVsIGHDsW8KZGYkV2Vla0RheSAgPC0gYXMuaW50ZWdlcihmb3JtYXQoZGYkZmVjaGEsICIldSIpKSAjIGTDrWEgZGUgbGEgc2VtYW5hICgxPWx1bmVzKQpkZiREYXkgICAgICA8LSBhcy5pbnRlZ2VyKGZvcm1hdChkZiRmZWNoYSwgIiVkIikpCgpzdW1tYXJ5KGRmKQpzdHIoZGYpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gSGFjZXIgcmVncmVzacOzbiA8L3NwYW4+CgpgYGB7cn0KcmVncmVzc2lvbiA8LSBsbShXZWVrbHlfU2FsZXN+LiwgZGF0YT1kZikKc3VtbWFyeShyZWdyZXNzaW9uKQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gSGFjZXIgcmVncmVzacOzbiA8L3NwYW4+CmBgYHtyfQpkZl9hanVzdGFkYSA8LSBkZiAlPiUgc2VsZWN0KC1EYXRlLC1GdWVsX1ByaWNlLC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbl9hanVzdGFkYSA8LSBsbShXZWVrbHlfU2FsZXN+LixkYXRhID0gZGZfYWp1c3RhZGEpCnN1bW1hcnkocmVncmVzaW9uX2FqdXN0YWRhKQoKYGBgCgoK