Instalar paquetes y llamar librerías

#install.packages("tidyverse")
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar la base de datos

df <- read.csv("C:\\Users\\Ib Ara\\Downloads\\R Raul\\walmart.csv")

Entender la base de datos

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818687   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : chr  "05-02-2010" "12-02-2010" "19-02-2010" "26-02-2010" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
df$Date <- as.Date(df$Date, format = "%d-%m-%Y")
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Agregar variables a la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)

df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$WeekYear <- format(df$Date, "%W")
df$WeekYear <- as.integer(df$WeekYear)

df$WeekDay <- format(df$Date, "%u") # 1: Lunes
df$WeekDay <- as.integer(df$WeekDay)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)

summary(df)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818687   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313  
##       Year          Month           WeekYear        WeekDay       Day       
##  Min.   :2010   Min.   : 1.000   Min.   : 1.00   Min.   :5   Min.   : 1.00  
##  1st Qu.:2010   1st Qu.: 4.000   1st Qu.:14.00   1st Qu.:5   1st Qu.: 8.00  
##  Median :2011   Median : 6.000   Median :26.00   Median :5   Median :16.00  
##  Mean   :2011   Mean   : 6.448   Mean   :25.82   Mean   :5   Mean   :15.68  
##  3rd Qu.:2012   3rd Qu.: 9.000   3rd Qu.:38.00   3rd Qu.:5   3rd Qu.:23.00  
##  Max.   :2012   Max.   :12.000   Max.   :52.00   Max.   :5   Max.   :31.00
str(df)
## 'data.frame':    6435 obs. of  13 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ WeekYear    : int  5 6 7 8 9 10 11 12 13 14 ...
##  $ WeekDay     : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day         : int  5 12 19 26 5 12 19 26 2 9 ...

Generar la regresión

regresion <- lm(Weekly_Sales~., data = df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Ajustar la regresión

df_ajustada <- df %>% select(-Date, -Fuel_Price, -Year:-Day)
regresion_ajustada <- lm(Weekly_Sales~., data = df_ajustada)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_ajustada)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1035858  -392195   -40416   371110  2711797 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2031943.1    50654.7  40.114  < 2e-16 ***
## Store         -15373.4      521.3 -29.488  < 2e-16 ***
## Holiday_Flag   72218.3    25911.0   2.787  0.00533 ** 
## Temperature     -929.0      369.1  -2.517  0.01186 *  
## CPI            -2345.9      180.2 -13.019  < 2e-16 ***
## Unemployment  -22198.9     3755.9  -5.910 3.59e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 523100 on 6429 degrees of freedom
## Multiple R-squared:  0.1415, Adjusted R-squared:  0.1408 
## F-statistic: 211.9 on 5 and 6429 DF,  p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJlZ3Jlc2nDs24gTGluZWFsIg0KYXV0aG9yOiAiS2FyaW5hIEl2ZXRoIEFycmFzIEFyYWdvbiAtIEEwMTU2NzAwOSINCmRhdGU6ICIyMDI1LTA4LTIyIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY29zbW8NCi0tLQ0KDQohW10oZGF0YTppbWFnZS93ZWJwO2Jhc2U2NCxVa2xHUnRBUEFBQlhSVUpRVmxBNElNUVBBQUNRVVFDZEFTclpBWWNBUHAxS29VcWxwS09pSjVSS2FMQVRpV0p1M1Y5YnFqK1E3RGpKdnMvN3g2WEZpZnp2bEg3d1l0M2J0bjMvc1A3Qys3ajgrZXdOL1ZPZ2g1bGYzUDlVai9mZXhMK3pla2wxWS85UjlZYitBZFZKa0JYb2pzOS8zMzlwOUU3S0FKTjNSK2N2YjcvVytCdkFDeW83QjBBSGRUL1crYnYyQjEwaWdCL0cvOEQ2eXYrajVxV3FBaG1Reklaa015R1pETWhsYktJWFZFR2VIdmtXTXJUSnp4cmcxd2E0TmNHdUROQzZRY2lXdE03dGdwUEN1d2RnWDcyS2xSaXV3TzdjelBnaWlOSVdSOE02blNoVTBvZlVFQ0daRE1adlA0REpmRndYNHhlMmxCSU5mWUhJZ29heEVWSTNVVlIrUGd4cG0rdFlOV3RFem5jRXA5RDd3Tnc2RUNUTk9xSXA4cFV6N3dmMjQvVGhRM2NjYUNXWDIvd3JIeFIwNHNnVUwrV3dLWndOZDBneklHZGljZFVnRmNzd29rN3lqc3dOMzA3ajV1dEEyS1JyQXVEbnBseVJJdmFGK3FPY1VIVVdQUE9wdFdrK0owZGE1RXI4WUF0bi9WWmY0Y003TWVkNzZWdmQyQUthaG5vZkNuUktmbkJrdlYwdlRhS0JqbjFlWTFIODdSYlVqK3VlQ1VackZ0SUxyUUkyRjd2S0Q2RFd3K09RT1ZYck04eklmK1AvVFNqWmF2eDVDMkd4Nm1MVDIzS3pkZ3d6TmNELy9ZN3oxd2JKaUxhVjZONERMK2NnRjlLL2c3UHJ2UGkvcmM1WkV5MWhrcHFvcHVPalRHUGxWZGpYQmFZZVo4R04zTVdGbzNUbmdGbWtqVWRSemx6UGhZTExXd250RTRoZ2JZVTk4OFY3ak5qeW1MQk1qK0wwN2lreWRIUndHb0I5S29ySytuMllqcnZFVitZV3M0a3RZYVRRZzRZWDJqcFo3amZqbWZOZThmTW0rNW1PMEsxNE5kKzY0bGduRTRQUStMYkN2QlJHemd6OTBZVi8vckJORkxTVVl3dEdJLytha2kvODc1bnBrYlN4S2F0TldtclVFQkh3Y3d3SmtYOUpuQktwTjhqWEJyZzF3YTROcE9vWldtVG5qWDRSTytTQUFQNzVXRUFBQUNWcFRKYlNHWTVZZXpxMU44YTYycFFpQjZySGV2TVRTWjhKenZWWTNCaUFBQUNPN0NnRnFORUhGZll3bGtJWWtjdTdUMExmVFF1dHA3SWtVU1NTOVd1dDBHSmVaQkRxUUZ4TTBjNkVRc2NWRGc1VXh2dlg0TTBEZStVanZrWVEvcXo1cE9hQUlBcWJpOFB2MXRTM0tLd2JCNnBMd3A5L3VPdGQwK3psaDVqa2dsdUZqNkRkOFFJRTJvSG1yM2dVNUw5SVVuUk9Nb2NOdTh2d3crcFBmTGJpRFRYWTlpbElTUEIwVmkrS1N5NGZjbThsTlRBMUFPSUYwRzdRcUpCVTFJd1B1VGllNzdMSWdHaFBkVnZiWjVOUHE3RnFaUFVlYzZ6RUhMZHdhTzJHc3VYZ3BVZS9zRDdLVjBoZ2g2YjRuVWtWWkZYRUZzdDBvMXRyTzZLV2srNXFIRkNJZHV0Qi80aXZrQVZvdDBvY2ZXWm96RnFYQ21SaXRWNUhvWGQwb1B0T2xrb1JCYnZMcnovQXFXbDhicC9GUCtNc08vbExUNlZDOVN0R1dJZlFIQjdrT0tiendEdkMySmxjR3dUdTRqSUZNSC9JazN5TElVenNMc3J3Qmo3aHBwM1NlMXBLYityLzJmTDlQVmZIejBKRUdzSVZZejZyTUNUQkJtMVh5K1c5amllRGIwUTd3cWVtWXVyUnFENjFXcVhnYVNSYmR3TTBSc1ZWdjhiUittNG9LV1BWdEpiNDhkWU1EdnlxZHBHdnFuM01hZEhER0t0M3F5dmdubU92UWdveTFkN1VGRnJJMW03QWJHdVZCVTRSTUVlcERWS2xwQ2kvNjdEVGNWREpKSzRRSWc1RkZqSER0akJ1Nk1CQkhXZ1RnUVNHWTlwUTNjZnBnY1JUak9DM0VqWmpIcXUvbmwrT3F6WU1sell2WXRIK3R3R3JQVFUzK1NLUVExYjBZanR6cWc5UVlLVjFmOEZZUWU1dWYrT3l2akRMUHlhSW1nR092aFNPTFc2eFVQeGVjWkpnaXFjT0tLMjMyL3NUdzk0UGJ5Y2RLeFZ0dVNvK1ZMOGVhelR1QTc3ZWJTTTRCc3RLa0tiNUIxMWtiSGplUHA4aUNCeGNJT21Ed3pnOHpzWTVhV3lCRnVZai9NMEM3UFQ1d3p6aVZyVDJ2UHRwRWtqT2F0bWthVWNjdlh2N0ZBNE1uZWRsYjdmaHNHY2R4NTJneXNnR0w4dWllajdDendnTlpncG1EY2hJU2YwSGgwY3RuZmJ4TkFNM0N4UjRGdFdlTS9abXI5OFJmUnBxVXplTnBYWjF3ZStMVmJkSEdkSmplejcxUTVhczM4MFQvRTFyTEZYblBtYmlDL08wWmtpY2hBUTNWQkR6ekN2V0oyei9VOVJTY3RuKzVyb1o0eUVCTzJxVDllQWg5enV2Yk9NSzREbk9UTzVEWHhXNWFOR3NoMDgrS0lwaDROOFpFSU1kY0VGaDhNbDl3dHRSUTE1NVVwdDRKQmlhUTFRbXovMmVtQlhsSDBsa2lWTEJCclBJdnQ3S0twMzhhb0RESWRRbEVCVXY5TGVXODdtNCsrN09LQlk5c0Z6OTZ0M0VXMnQ1aW96ZVQxd01rU3ZDN2QzMTNnSjBrNWpBRFZ4eGxOOGZrdDA1RGlmZVU4a0VOaGtzekhGZitjdWduZGZ3YnZvejFqSjVGUkU2bFlpNW5hZThlQ2VCalBBUEdVOVZSNVpHTWZSaStVajcrTFFSUC9PYzlicTVQemJ4akVWMExJS3lkVzN5Q2N3ei9UY2tJVm9oVFBEVEd0OWpsRjgxcFVnVjVKNjRMaStVaVp6V3J5VGdoVE9IejY1RVUvNUZUcDM5RHVnVFhUcncyOVlUL2RvNG83UnE1OURSWU03aXNjVTZvN1RKVXE0cVRGdmEvc1dPSTdWVHU0c1lrZnJ1NXFoanpIMThQTE9wZUlVQm1rNGlxdXZnWEd3Y3dYSWRRa0JHdndlQ1ZKUk0ycUJQN3Z3aXk3M1NFY2ZpeDZ6b3BNT0owd3UwS0hZQitETHUxYmQ2dzY0U0x1S1UzUFBDYWxoUDRWOVZCT3pqaTFtVzJXL292YmFBbE10V091UEdFdVNlbXdOdi9odTQ5ZW9pOFM5SVk2V1IyaFdLbG9YTlEyekxQTFcxU1drWHRnTS9hTEZsankwZTJQSDFKT2VTV2t2TW1EK045eGJqd1hwUlpacFlmS3l0YmxKN29oZ3JVZ1c3TmE0N0RRVnVzaW54WWtJZDVvcCsyMHIzYU9RMHphUFpqVW1tUTRmWks5clZOS2xQOFNmWDVkMndINWZPaWhMaVRRSjBiWnV2NHhqTGtYZ2FvelJycUpDV2RQaG02WitIN0pjNEpSc2dtakxoSWdPTlhkS0U2dE5tdDF1MHc0REdrWmVYYWtYb3lxRW8xaGlFZG4yRjFFUHRvVGdTQmJwWU44b0hVZnBmVFRJR3V4T2RXUEZ3aXZVODcxckJ3VjZWUkFUWjg5YUE1anh5OTVHQk1IQ1BuTEE3Qy9sNTAwYkIwYzQxNis4VXNEbmlHMVdSa0l0aC93RkNWVFVuR3FyTkk1S2FINk5uZzhZWDU0b0ZSVmRVRTFRWHZmVDNoUk8zYktad2pWcmJXbkcxZGhrTlVsL0lDMXRNTkN3aWJ3VzN6TzNqeUErRFZremxyR2hEeHJVc05lbHc5TElWWlc3MmVmL2NSSmZzYVJEYmlhbWRTaVJ2dmFTeWtYaVlDbnJJZmRUZUtoTm1iUWtRMXM4eDExNi9OUFFRNkMwMEllbVpqeDMweWhOZkM2NjVHY2VsZEJOcS8yK3lvVVpOMzZubzFYUnJNZyt4LzNhUEljME1tREY0ZVJNaVcvVFIzK1J2VGl6akFCamlGc3hrWU14bkFFY1g1dkJOZHZVR2RoUm5qYmxieTRHR2xXMCtMT0kzNGE1Z2FDK1ZrY092UHV1aytnNFZpOTJDQ2RxZTJSMVI0TWZjTUc5UVpVbEEwdEIvNi9oUTUzcmw4Ukg2NzR5RnBWRlBtNUZvSzZIZ0dJVWpUb2Z4aW5KUERaWlJXdWJHL2I0cG0xcGRnejdQV3lnSlF2NE5sd09wVXNOQUVTMzVaL01mWENWejdnN05CVWJvZWFqMFNwQ3NWd0NpQzlrMjJJUm91NUkvVVR0S3VKSTMrSVlGNXIrZzN5Yi9OYjVsL1dKUVExY1V0TVcxUnhDTmYwNDFjQVJlelNxY05XbWVWajM2eHE1UGJVUTRZTTN5eHFPY1JjL20xd2RXS3FZaWVzZXRLcjJWVGNvL01OYjc2MEdvSkNYc0JORzhTOVFGTWZCYnVXbExZWWZnaVlUb0E5cWN6UVVZaU5Fd3RoRUcrVldOaFpMU09PMmJmUmFkckVqS2k3ajg4dFQvK2ExQ1JzelNWM3cvbEdkWWRlYTcvcHg3WXBxbXY4WW5hdkVLaEdQZ055Vm9VSkFuUVpiUnNRNFFmQXlQK1FCd1ByNjFOZzBSemJ3Slpsb2hUOTdhVDd2VjVpNmw3eC9KRDVmWWx4L202dnJGaXRzN2s1bXBLWE54M2hrVjV2Vis0Ym1LMTMwa2U4Y2VVdHorWG9GbEFnWlgrRHI0V3Bya3dmazBXUjUyVm52YkVFTEJ5NVM5YUNBL0VSa1FaNGVLTTJ0VTc2eXRKM0V3b3hyMVFLRnBERGVQTHQvbjNlQjM2aGNuRG5rdCtYVnh6MEdTZitlTXNBTEt0MFR2UUZXTVZBSE5rV05QY1pZTnhWVHFtUVZqUTlWcXR3akRoREpYNklOaHFxa28veldYclNna2hleHpFRkFYLytiSFVCMThORTNLZy9rVmlGM1ZIMzRraUZ5NmNLRm9talNUaE9vTmpTemdmUGNMaU1ScGJML2NldzhEb2xuVUFmeElPdkwycGZiSUZaNlVpQ1E0S1o2Z0JyTU42bUZuV25jWFVFQ3VGQWlBNlRjQnVRVC8zRzg5bzNCQU9GU2wxSmEvZVFza2c2eUFIUlBpN0U1ait1d1F2UUM3aW12NGZLeGdoL3F6N0dHOGpCa2ExMFBKK3VGWnpzMlZoTVVsU2hwZ1BiejBKbW5UcVl4cDI1Rm44QnpiYkZldy9KTmozdys2Yjc0R2ZvUkVqRExuWVVDdkxMWUNBWVQ3dGttQ29iUFR3TmJQRUxUQklLeFFBTisxb3pQV1k4bE9Ldmo1OVRaaW5ncHNUZUZPRlRCZ1ptNHdqSHZsd2pmQnhQbDhWbjRYTVZvTkxCWGVUc2NNM2hDOFl4dWpBcUdZS1FvdFQxZVRRcld4WjU2dzlMekFPYjVhcmFFR3o1aFdSQ3hoRlBINGRScUQ2RWwveElXYnVxeGI0bW00WXhsdngrUS9OMVEvc1kzd0ZZWG1tVmNtU3JHUUgvb3JUMlJYcmVSVWE5TnJhNVBzQWlRakZjdGxVTmx5OWJvQjlLSGdNeU9uZXQzUGkwcjZJRFZtMXkrczJjTjhhc1Z3cFI3eFZzRmhjL3pVN0hkamdkNDdMUDcxcHpnZEwvWC9pdCtTaUNQbHVSQXNUd0lUM2graG1oNXpmZlB0RjFQU1NhY3ZLZjdaK21LcXZIRzhCNkNoQ2RuRGJZN2I1QTEva2hOOWxtdUxKUkF2WSszOHZ4dFFpemhFcEE4TnlETTY2TGc3YkRlQmx3SlR2QlpwMTJobG5oMXdubStVVG1SbjBRYjVXZC8zYlJWMUx0Vm45SHN0UFVEMndNVkpOZHhvWnJqZnhWRjZ6Y1FEMlRzRU43dHpwb1YvMEdLNHNJdk9WamVvMW5qYi92dHBTY2RKZklaZzJ4T2tjcnI4TW9VU2YxeGcrSHZGbkxYdlA2RGN0VXhHdndRRjF5UzN5a0lBNVBLRFFLalNDbTdua3FlWU1HNVU0MjQ5RzBHV2twVDlDWVl0cWJtSEMrMWsvSzlyWTVFQVNuVCsvUnlmN2xqVEdHN3hsSEtnSHV2TXJrU2JxTFpNMm0zemtTektPYVN4TFBCaEt3MXZoSXlQQWRuVHdWOE03U0J2QkpWc0w5cEVqQkFkaU5LTW9pMHVORjBBZi9nOUNuYXd4clJleUQ0RzczaUs5UlEzMVp0VjF3WlVhdHRBQTN5ZmcyR3pUenp4anUrREdGbk9UYUJKVzZzYVVCL1V6b3h6K1NLczBKdjZGdFJTTGdwb3BvM2JIU05SSnU0TWNRbm8xUlNQNnZZWFI3QVROU0hodGRDL0h0SWcwcXlkQzQxN056SFZQSTA3TFF0TmNhdkI1Y1BLTXd1SVlpTHJ1dFZuWGhMU2x1Z2J4L3IzZjJvc0pwM3Y4OE5ITXo1SmViTjduR3BiampBNy9tYnd2RkZSWVpmQ1ZwMXZnWkJ3UkpGZXRKWUMyRU1Mb0pPQmhDRHRjdjl5VExvUlR0VVBQcmpRV0lBeGN5eTQrL1dWd3drK3YxUlpwelpBcmNyQmVVa042NDc2OHlQWVI0S1lBNXdTWkk2KzJ5b0tweVdDMW0vb2JOamM3UkUxckkvS0VBcEJJZGo0UytYNGJFMy9vUElZTmw5YUlLck1JSDNlL2xRTEFwRmtaaktXTmZucDNteGUzeS96Q05RbEt2QUpJRUY2V3NSUXAvbG04K0FLZkhBZkIrK21aS2RTTDR1clhzbllPdzhFU2xkbndvZjh6d3NWRmdYd1RoY2VFcDlCeE1QM0xrdlB0dlozcFpHUFlwL2RJN1BOM01MRWNjbHFhMkVKb1pSV2FRckQvOTJjSUFMK0NmbE10d2hyUUQ5eS90ZDBCZzlkQy9oUmhqVXhmQmRWSUExbGtZOWlxaVc4MWFBQUFBSFNrand3MEJJNEJqVWlaYnVXazBDYmhQdDhac2hKOEtqc29UUGxXeGV0eU1qNXZHa1pISDBYbHVRNERjb0FCRlkxL2FqQ1pEOVN5dTZWaDltenVpcFhUaDhEQm02Yktnd3NTaFlBQUFBQSkNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4NCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCmRmIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXEliIEFyYVxcRG93bmxvYWRzXFxSIFJhdWxcXHdhbG1hcnQuY3N2IikNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlIj5FbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KZGYkRGF0ZSA8LSBhcy5EYXRlKGRmJERhdGUsIGZvcm1hdCA9ICIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+QWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KYGBge3J9DQpkZiRZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVkiKQ0KZGYkWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFllYXIpDQoNCmRmJE1vbnRoIDwtIGZvcm1hdChkZiREYXRlLCAiJW0iKQ0KZGYkTW9udGggPC0gYXMuaW50ZWdlcihkZiRNb250aCkNCg0KZGYkV2Vla1llYXIgPC0gZm9ybWF0KGRmJERhdGUsICIlVyIpDQpkZiRXZWVrWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQ0KDQpkZiRXZWVrRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJXUiKSAjIDE6IEx1bmVzDQpkZiRXZWVrRGF5IDwtIGFzLmludGVnZXIoZGYkV2Vla0RheSkNCg0KZGYkRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJWQiKQ0KZGYkRGF5IDwtIGFzLmludGVnZXIoZGYkRGF5KQ0KDQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPkdlbmVyYXIgbGEgcmVncmVzacOzbjwvc3Bhbj4NCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhID0gZGYpDQpzdW1tYXJ5KHJlZ3Jlc2lvbikNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlIj5BanVzdGFyIGxhIHJlZ3Jlc2nDs248L3NwYW4+DQpgYGB7cn0NCmRmX2FqdXN0YWRhIDwtIGRmICU+JSBzZWxlY3QoLURhdGUsIC1GdWVsX1ByaWNlLCAtWWVhcjotRGF5KQ0KcmVncmVzaW9uX2FqdXN0YWRhIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhID0gZGZfYWp1c3RhZGEpDQpzdW1tYXJ5KHJlZ3Jlc2lvbl9hanVzdGFkYSkNCmBgYA0K