Instalar paquetes y llamar librerias
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Importar la base de datos
df <- read.csv("C:\\Users\\artur\\Downloads\\walmart.csv")
Entender la base de datos
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Length:6435 Min. : 209986 Min. :0.00000
## 1st Qu.:12 Class :character 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Mode :character Median : 960746 Median :0.00000
## Mean :23 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :3818687 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
df$Date <- as.Date(df$Date, format="%d-%m-%Y")
str(df)
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
Agregar variables a la base de datos
df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)
df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)
df$WeekYear <- format(df$Date, "%W")
df$WeekYear <- as.integer(df$WeekYear)
df$WeekDay <- format(df$Date, "%u")
df$WeekDay <- as.integer(df$WeekDay)
df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
Generar la regresión
regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Ajustar la regresión
df_ajustada <- df %>% select (-Date, -Year:-Day, -Fuel_Price)
regresion_ajustada <- lm(Weekly_Sales~., data=df)
summary(regresion_ajustada)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## WeekYear NA NA NA NA
## WeekDay NA NA NA NA
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJFR1JFU0nDk04gTElORUFMIg0KYXV0aG9yOiAiQXJ0dXJvIERpeCINCmRhdGU6ICIyMDI1LTA4LTI1Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY29zbW8NCi0tLQ0KPGNlbnRlcj4NCiFbXShodHRwczovLzEwMDBtYXJjYXMubmV0L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDIwLzAyL1dhbG1hcnQtTG9nby5wbmcpDQo8L2NlbnRlcj4NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzIDwvc3Bhbj4NCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYgPC0gcmVhZC5jc3YoIkM6XFxVc2Vyc1xcYXJ0dXJcXERvd25sb2Fkc1xcd2FsbWFydC5jc3YiKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KDQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpkZiREYXRlIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0PSIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYkWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVZIikNCmRmJFllYXIgPC0gYXMuaW50ZWdlcihkZiRZZWFyKQ0KDQpkZiRNb250aCA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVtIikNCmRmJE1vbnRoIDwtIGFzLmludGVnZXIoZGYkTW9udGgpDQoNCmRmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVciKQ0KZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikNCg0KZGYkV2Vla0RheSA8LSBmb3JtYXQoZGYkRGF0ZSwgIiV1IikNCmRmJFdlZWtEYXkgPC0gYXMuaW50ZWdlcihkZiRXZWVrRGF5KQ0KDQpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpDQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gR2VuZXJhciBsYSByZWdyZXNpw7NuIDwvc3Bhbj4NCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhPWRmKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEFqdXN0YXIgbGEgcmVncmVzacOzbiA8L3NwYW4+DQoNCmBgYHtyfQ0KZGZfYWp1c3RhZGEgPC0gZGYgJT4lIHNlbGVjdCAoLURhdGUsIC1ZZWFyOi1EYXksIC1GdWVsX1ByaWNlKQ0KcmVncmVzaW9uX2FqdXN0YWRhIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhPWRmKQ0Kc3VtbWFyeShyZWdyZXNpb25fYWp1c3RhZGEpDQpgYGANCg0K