Instalar paquetes y llamar librerias

#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Importar la base de datos

df <- read.csv("C:\\Users\\artur\\Downloads\\walmart.csv")

Entender la base de datos

summary(df)
##      Store        Date            Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Length:6435        Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   Class :character   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Mode  :character   Median : 960746   Median :0.00000  
##  Mean   :23                      Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34                      3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45                      Max.   :3818687   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
df$Date <- as.Date(df$Date, format="%d-%m-%Y")
str(df)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Agregar variables a la base de datos

df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)

df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)

df$WeekYear <- format(df$Date, "%W")
df$WeekYear <- as.integer(df$WeekYear)

df$WeekDay <- format(df$Date, "%u")
df$WeekDay <- as.integer(df$WeekDay)

df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)

Generar la regresión

regresion <- lm(Weekly_Sales~., data=df)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16

Ajustar la regresión

df_ajustada <- df %>% select (-Date, -Year:-Day, -Fuel_Price)
regresion_ajustada <- lm(Weekly_Sales~., data=df)
summary(regresion_ajustada)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1094800  -382464   -42860   375406  2587123 
## 
## Coefficients: (2 not defined because of singularities)
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.384e+09  9.127e+09  -0.261   0.7940    
## Store        -1.538e+04  5.202e+02 -29.576  < 2e-16 ***
## Date         -3.399e+03  1.266e+04  -0.268   0.7883    
## Holiday_Flag  4.773e+04  2.706e+04   1.763   0.0779 .  
## Temperature  -1.817e+03  4.053e+02  -4.484 7.47e-06 ***
## Fuel_Price    6.124e+04  2.876e+04   2.130   0.0332 *  
## CPI          -2.109e+03  1.928e+02 -10.941  < 2e-16 ***
## Unemployment -2.209e+04  3.967e+03  -5.569 2.67e-08 ***
## Year          1.212e+06  4.633e+06   0.262   0.7937    
## Month         1.177e+05  3.858e+05   0.305   0.7604    
## WeekYear             NA         NA      NA       NA    
## WeekDay              NA         NA      NA       NA    
## Day           2.171e+03  1.269e+04   0.171   0.8642    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared:  0.1495, Adjusted R-squared:  0.1482 
## F-statistic:   113 on 10 and 6424 DF,  p-value: < 2.2e-16
LS0tDQp0aXRsZTogIlJFR1JFU0nDk04gTElORUFMIg0KYXV0aG9yOiAiQXJ0dXJvIERpeCINCmRhdGU6ICIyMDI1LTA4LTI1Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY29zbW8NCi0tLQ0KPGNlbnRlcj4NCiFbXShodHRwczovLzEwMDBtYXJjYXMubmV0L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDIwLzAyL1dhbG1hcnQtTG9nby5wbmcpDQo8L2NlbnRlcj4NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzIDwvc3Bhbj4NCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYgPC0gcmVhZC5jc3YoIkM6XFxVc2Vyc1xcYXJ0dXJcXERvd25sb2Fkc1xcd2FsbWFydC5jc3YiKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPg0KDQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpkZiREYXRlIDwtIGFzLkRhdGUoZGYkRGF0ZSwgZm9ybWF0PSIlZC0lbS0lWSIpDQpzdHIoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gQWdyZWdhciB2YXJpYWJsZXMgYSBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYkWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVZIikNCmRmJFllYXIgPC0gYXMuaW50ZWdlcihkZiRZZWFyKQ0KDQpkZiRNb250aCA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVtIikNCmRmJE1vbnRoIDwtIGFzLmludGVnZXIoZGYkTW9udGgpDQoNCmRmJFdlZWtZZWFyIDwtIGZvcm1hdChkZiREYXRlLCAiJVciKQ0KZGYkV2Vla1llYXIgPC0gYXMuaW50ZWdlcihkZiRXZWVrWWVhcikNCg0KZGYkV2Vla0RheSA8LSBmb3JtYXQoZGYkRGF0ZSwgIiV1IikNCmRmJFdlZWtEYXkgPC0gYXMuaW50ZWdlcihkZiRXZWVrRGF5KQ0KDQpkZiREYXkgPC0gZm9ybWF0KGRmJERhdGUsICIlZCIpDQpkZiREYXkgPC0gYXMuaW50ZWdlcihkZiREYXkpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gR2VuZXJhciBsYSByZWdyZXNpw7NuIDwvc3Bhbj4NCmBgYHtyfQ0KcmVncmVzaW9uIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhPWRmKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEFqdXN0YXIgbGEgcmVncmVzacOzbiA8L3NwYW4+DQoNCmBgYHtyfQ0KZGZfYWp1c3RhZGEgPC0gZGYgJT4lIHNlbGVjdCAoLURhdGUsIC1ZZWFyOi1EYXksIC1GdWVsX1ByaWNlKQ0KcmVncmVzaW9uX2FqdXN0YWRhIDwtIGxtKFdlZWtseV9TYWxlc34uLCBkYXRhPWRmKQ0Kc3VtbWFyeShyZWdyZXNpb25fYWp1c3RhZGEpDQpgYGANCg0K