El paquete CARET (Classification And Regression Training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automatico.
#install.packages("ggplot2") # Gráficas
library(ggplot2)
#install.packages("lattice") # Crear gráficos
library(lattice)
#install.packages ("caret") # Algoritmos de aprendizaje automático
library (caret)
#install.packages ("datasets") # Usar bases de datos, en este caso Iris
library(datasets)
#install.packages ("DataExplorer") # Análisis Exploratorio
library (DataExplorer)
#install.packages("kernlab")
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
#install.packages("randomForest")
library(ranger)
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ranger':
##
## importance
## The following object is masked from 'package:ggplot2':
##
## margin
df <- data.frame(iris)
summary(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(df)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
plot_missing(df)
plot_histogram(df)
plot_correlation(df)
# Normalmente 80-20
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Species, p=0.8, list = FALSE)
entrenamiento <- iris[renglones_entrenamiento, ]
prueba <- iris[-renglones_entrenamiento, ]
Los métodos más utilizados para modelar aprendizaje automático:
SVM: Support Vector Machine o Máquina de Vectores de Soporte. Hay varios subtipos: Lineal (svmLinear), Radial (svmRadial), Polinómico (svmPoly), etc.
Árbol de Decisión: rpart
Redes Neuronales: nnet
Random Forest o Bosques Aleatorios: rf
modelo1 <- train(Species ~ ., data=entrenamiento,
method = "svmLinear", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGride = data.frame(C=1) #Cambiar
)
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
mcre1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
# Matriz de confusion del resultado de la prueba
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
mcrp1
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 1
## virginica 0 0 9
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.9000
## Specificity 1.0000 0.9500 1.0000
## Pos Pred Value 1.0000 0.9091 1.0000
## Neg Pred Value 1.0000 1.0000 0.9524
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3000
## Detection Prevalence 0.3333 0.3667 0.3000
## Balanced Accuracy 1.0000 0.9750 0.9500
modelo2 <- train(Species ~ ., data=entrenamiento,
method = "svmRadial", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGride = data.frame(sigma=1, C=1) #Cambiar
)
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
mcre2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 0
## virginica 0 1 40
##
## Overall Statistics
##
## Accuracy : 0.9917
## 95% CI : (0.9544, 0.9998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9875
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 1.0000
## Specificity 1.0000 1.0000 0.9875
## Pos Pred Value 1.0000 1.0000 0.9756
## Neg Pred Value 1.0000 0.9877 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3333
## Detection Prevalence 0.3333 0.3250 0.3417
## Balanced Accuracy 1.0000 0.9875 0.9938
# Matriz de confusion del resultado de la prueba
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
mcrp2
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo3 <- train(Species ~ ., data=entrenamiento,
method = "svmRadial", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGride = data.frame(degree=1, C=1, scale=1) #Cambiar
)
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
mcre3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 38 0
## virginica 0 2 40
##
## Overall Statistics
##
## Accuracy : 0.9833
## 95% CI : (0.9411, 0.998)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.975
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9500 1.0000
## Specificity 1.0000 1.0000 0.9750
## Pos Pred Value 1.0000 1.0000 0.9524
## Neg Pred Value 1.0000 0.9756 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3167 0.3333
## Detection Prevalence 0.3333 0.3167 0.3500
## Balanced Accuracy 1.0000 0.9750 0.9875
# Matriz de confusion del resultado de la prueba
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
mcrp3
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo4 <- train(Species ~ ., data=entrenamiento,
method = "rpart", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneLength = 10
)
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo3, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
mcre4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 39 3
## virginica 0 1 37
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9750 0.9250
## Specificity 1.0000 0.9625 0.9875
## Pos Pred Value 1.0000 0.9286 0.9737
## Neg Pred Value 1.0000 0.9872 0.9634
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3250 0.3083
## Detection Prevalence 0.3333 0.3500 0.3167
## Balanced Accuracy 1.0000 0.9688 0.9563
# Matriz de confusion del resultado de la prueba
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
mcrp4
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
modelo5 <- train(Species ~ ., data=entrenamiento,
method = "nnet", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10)
)
## # weights: 11
## initial value 119.364237
## iter 10 value 50.064888
## iter 20 value 48.670264
## iter 30 value 47.831568
## iter 40 value 47.729855
## iter 50 value 47.630183
## iter 60 value 46.018647
## iter 70 value 44.920599
## iter 80 value 42.797890
## iter 90 value 8.375848
## iter 100 value 2.381837
## final value 2.381837
## stopped after 100 iterations
## # weights: 27
## initial value 123.793414
## iter 10 value 5.868269
## iter 20 value 0.081242
## iter 30 value 0.000303
## final value 0.000076
## converged
## # weights: 43
## initial value 122.731863
## iter 10 value 3.624311
## iter 20 value 0.010911
## final value 0.000055
## converged
## # weights: 11
## initial value 118.612128
## iter 10 value 59.262402
## iter 20 value 44.973063
## iter 30 value 43.405883
## final value 43.399628
## converged
## # weights: 27
## initial value 135.631812
## iter 10 value 26.153324
## iter 20 value 19.519935
## iter 30 value 19.159834
## iter 40 value 19.141040
## final value 19.140707
## converged
## # weights: 43
## initial value 121.810346
## iter 10 value 25.282006
## iter 20 value 18.168535
## iter 30 value 18.106805
## iter 40 value 18.042974
## iter 50 value 17.658982
## iter 60 value 17.547503
## iter 70 value 17.312348
## iter 80 value 17.282247
## iter 90 value 17.277857
## iter 100 value 17.277302
## final value 17.277302
## stopped after 100 iterations
## # weights: 11
## initial value 133.417421
## iter 10 value 50.157026
## iter 20 value 49.977347
## iter 30 value 49.964410
## iter 40 value 48.859866
## iter 50 value 31.567030
## iter 60 value 7.857236
## iter 70 value 2.148236
## iter 80 value 2.065323
## iter 90 value 2.039104
## iter 100 value 1.999937
## final value 1.999937
## stopped after 100 iterations
## # weights: 27
## initial value 110.745240
## iter 10 value 3.752499
## iter 20 value 0.193975
## iter 30 value 0.185500
## iter 40 value 0.176438
## iter 50 value 0.167373
## iter 60 value 0.164644
## iter 70 value 0.162408
## iter 80 value 0.159110
## iter 90 value 0.155530
## iter 100 value 0.152384
## final value 0.152384
## stopped after 100 iterations
## # weights: 43
## initial value 116.918727
## iter 10 value 3.580954
## iter 20 value 0.259672
## iter 30 value 0.237494
## iter 40 value 0.221850
## iter 50 value 0.183126
## iter 60 value 0.174202
## iter 70 value 0.158959
## iter 80 value 0.145791
## iter 90 value 0.141314
## iter 100 value 0.131996
## final value 0.131996
## stopped after 100 iterations
## # weights: 11
## initial value 131.916635
## iter 10 value 52.434019
## iter 20 value 49.536656
## iter 30 value 48.762687
## iter 40 value 48.424392
## iter 50 value 47.459406
## iter 60 value 36.638325
## iter 70 value 7.255328
## iter 80 value 3.432719
## iter 90 value 3.028823
## iter 100 value 2.715820
## final value 2.715820
## stopped after 100 iterations
## # weights: 27
## initial value 116.560224
## iter 10 value 22.377209
## iter 20 value 1.434404
## iter 30 value 0.015301
## final value 0.000063
## converged
## # weights: 43
## initial value 118.392692
## iter 10 value 3.944569
## iter 20 value 0.306409
## iter 30 value 0.004517
## iter 40 value 0.000251
## final value 0.000083
## converged
## # weights: 11
## initial value 118.460051
## iter 10 value 64.880183
## iter 20 value 50.068934
## iter 30 value 43.488436
## final value 43.487537
## converged
## # weights: 27
## initial value 126.586947
## iter 10 value 43.279225
## iter 20 value 21.224741
## iter 30 value 20.749248
## iter 40 value 20.749048
## final value 20.749047
## converged
## # weights: 43
## initial value 151.937613
## iter 10 value 23.734242
## iter 20 value 18.753404
## iter 30 value 18.118863
## iter 40 value 17.940374
## iter 50 value 17.930575
## iter 60 value 17.929988
## iter 70 value 17.929922
## final value 17.929921
## converged
## # weights: 11
## initial value 132.070198
## iter 10 value 52.355646
## iter 20 value 48.275663
## iter 30 value 18.372238
## iter 40 value 3.649689
## iter 50 value 3.406804
## iter 60 value 3.276053
## iter 70 value 3.273048
## iter 80 value 3.268892
## iter 90 value 3.259668
## iter 100 value 3.258851
## final value 3.258851
## stopped after 100 iterations
## # weights: 27
## initial value 113.529901
## iter 10 value 6.241670
## iter 20 value 1.208916
## iter 30 value 0.397811
## iter 40 value 0.386273
## iter 50 value 0.368184
## iter 60 value 0.361141
## iter 70 value 0.359369
## iter 80 value 0.350759
## iter 90 value 0.347615
## iter 100 value 0.342804
## final value 0.342804
## stopped after 100 iterations
## # weights: 43
## initial value 111.717272
## iter 10 value 3.416090
## iter 20 value 0.377952
## iter 30 value 0.317075
## iter 40 value 0.312838
## iter 50 value 0.309274
## iter 60 value 0.303265
## iter 70 value 0.297596
## iter 80 value 0.295684
## iter 90 value 0.294852
## iter 100 value 0.289916
## final value 0.289916
## stopped after 100 iterations
## # weights: 11
## initial value 128.608870
## iter 10 value 27.776794
## iter 20 value 5.087471
## iter 30 value 3.563326
## iter 40 value 3.394366
## iter 50 value 3.217410
## iter 60 value 2.980093
## iter 70 value 2.883858
## iter 80 value 2.838704
## iter 90 value 2.675153
## iter 100 value 2.610229
## final value 2.610229
## stopped after 100 iterations
## # weights: 27
## initial value 118.190633
## iter 10 value 13.123265
## iter 20 value 1.221350
## iter 30 value 0.000379
## final value 0.000081
## converged
## # weights: 43
## initial value 137.653895
## iter 10 value 5.426639
## iter 20 value 0.178492
## iter 30 value 0.000237
## final value 0.000096
## converged
## # weights: 11
## initial value 119.446713
## iter 10 value 64.603563
## iter 20 value 43.882482
## iter 30 value 43.662641
## final value 43.660320
## converged
## # weights: 27
## initial value 121.223486
## iter 10 value 42.509333
## iter 20 value 21.539342
## iter 30 value 20.363180
## iter 40 value 20.229352
## iter 50 value 20.224014
## final value 20.223979
## converged
## # weights: 43
## initial value 148.735730
## iter 10 value 24.147018
## iter 20 value 19.161635
## iter 30 value 19.000060
## iter 40 value 18.956075
## iter 50 value 18.954353
## final value 18.954194
## converged
## # weights: 11
## initial value 122.206168
## iter 10 value 28.418454
## iter 20 value 5.277740
## iter 30 value 4.113257
## iter 40 value 4.004701
## iter 50 value 3.877920
## iter 60 value 3.872033
## iter 70 value 3.871948
## iter 80 value 3.871938
## final value 3.871933
## converged
## # weights: 27
## initial value 119.896820
## iter 10 value 9.755985
## iter 20 value 2.721336
## iter 30 value 0.781265
## iter 40 value 0.654267
## iter 50 value 0.538525
## iter 60 value 0.490774
## iter 70 value 0.486090
## iter 80 value 0.484447
## iter 90 value 0.482461
## iter 100 value 0.479810
## final value 0.479810
## stopped after 100 iterations
## # weights: 43
## initial value 132.364707
## iter 10 value 18.212595
## iter 20 value 2.692662
## iter 30 value 0.488049
## iter 40 value 0.427922
## iter 50 value 0.379209
## iter 60 value 0.335707
## iter 70 value 0.324587
## iter 80 value 0.312451
## iter 90 value 0.296794
## iter 100 value 0.283337
## final value 0.283337
## stopped after 100 iterations
## # weights: 11
## initial value 114.770789
## iter 10 value 50.895915
## iter 20 value 21.594661
## iter 30 value 8.579404
## iter 40 value 4.491888
## iter 50 value 1.888615
## iter 60 value 1.774330
## iter 70 value 1.435249
## iter 80 value 1.417704
## iter 90 value 1.279171
## iter 100 value 1.232213
## final value 1.232213
## stopped after 100 iterations
## # weights: 27
## initial value 121.671018
## iter 10 value 7.637314
## iter 20 value 1.023347
## iter 30 value 0.000176
## iter 30 value 0.000084
## iter 30 value 0.000084
## final value 0.000084
## converged
## # weights: 43
## initial value 125.122579
## iter 10 value 4.878708
## iter 20 value 0.082765
## iter 30 value 0.000501
## final value 0.000065
## converged
## # weights: 11
## initial value 118.540638
## iter 10 value 55.901291
## iter 20 value 44.190846
## iter 30 value 44.122993
## final value 44.122341
## converged
## # weights: 27
## initial value 128.560755
## iter 10 value 31.362040
## iter 20 value 21.703871
## iter 30 value 21.365892
## iter 40 value 21.277271
## final value 21.274727
## converged
## # weights: 43
## initial value 135.332676
## iter 10 value 36.608914
## iter 20 value 20.428722
## iter 30 value 18.841831
## iter 40 value 18.538820
## iter 50 value 18.465358
## iter 60 value 18.457341
## iter 70 value 18.457287
## iter 70 value 18.457287
## iter 70 value 18.457287
## final value 18.457287
## converged
## # weights: 11
## initial value 122.464598
## iter 10 value 48.486860
## iter 20 value 27.244665
## iter 30 value 7.563582
## iter 40 value 4.541484
## iter 50 value 4.194044
## iter 60 value 4.061244
## iter 70 value 3.913031
## iter 80 value 3.888366
## iter 90 value 3.865349
## iter 100 value 3.862664
## final value 3.862664
## stopped after 100 iterations
## # weights: 27
## initial value 109.388538
## iter 10 value 4.747327
## iter 20 value 0.751945
## iter 30 value 0.726463
## iter 40 value 0.654058
## iter 50 value 0.591235
## iter 60 value 0.564247
## iter 70 value 0.544641
## iter 80 value 0.507726
## iter 90 value 0.474908
## iter 100 value 0.453801
## final value 0.453801
## stopped after 100 iterations
## # weights: 43
## initial value 123.169841
## iter 10 value 4.382165
## iter 20 value 1.563711
## iter 30 value 0.479811
## iter 40 value 0.448049
## iter 50 value 0.432482
## iter 60 value 0.398597
## iter 70 value 0.388515
## iter 80 value 0.377880
## iter 90 value 0.370443
## iter 100 value 0.361109
## final value 0.361109
## stopped after 100 iterations
## # weights: 11
## initial value 119.256445
## iter 10 value 56.285210
## iter 20 value 7.469969
## iter 30 value 4.099817
## iter 40 value 3.635803
## iter 50 value 3.208790
## iter 60 value 2.977949
## iter 70 value 2.893926
## iter 80 value 2.838948
## iter 90 value 2.732318
## iter 100 value 2.619618
## final value 2.619618
## stopped after 100 iterations
## # weights: 27
## initial value 114.122617
## iter 10 value 5.558564
## iter 20 value 0.243031
## iter 30 value 0.000334
## final value 0.000072
## converged
## # weights: 43
## initial value 143.357526
## iter 10 value 5.815688
## iter 20 value 1.869046
## iter 30 value 0.005197
## final value 0.000051
## converged
## # weights: 11
## initial value 121.113960
## iter 10 value 74.640372
## iter 20 value 46.951522
## iter 30 value 43.380961
## final value 43.380924
## converged
## # weights: 27
## initial value 121.861199
## iter 10 value 35.206448
## iter 20 value 20.961318
## iter 30 value 19.985500
## iter 40 value 19.932686
## iter 50 value 19.922197
## iter 60 value 19.921722
## final value 19.921712
## converged
## # weights: 43
## initial value 131.939376
## iter 10 value 25.702828
## iter 20 value 18.608282
## iter 30 value 18.122011
## iter 40 value 18.053090
## iter 50 value 18.039842
## iter 60 value 18.038080
## final value 18.038075
## converged
## # weights: 11
## initial value 117.982337
## iter 10 value 51.103593
## iter 20 value 48.035321
## iter 30 value 33.273056
## iter 40 value 8.919168
## iter 50 value 4.838973
## iter 60 value 4.530733
## iter 70 value 4.028449
## iter 80 value 3.905338
## iter 90 value 3.870748
## iter 100 value 3.864652
## final value 3.864652
## stopped after 100 iterations
## # weights: 27
## initial value 144.068507
## iter 10 value 4.404914
## iter 20 value 1.124010
## iter 30 value 0.871467
## iter 40 value 0.719849
## iter 50 value 0.601527
## iter 60 value 0.575084
## iter 70 value 0.560945
## iter 80 value 0.510113
## iter 90 value 0.486598
## iter 100 value 0.474407
## final value 0.474407
## stopped after 100 iterations
## # weights: 43
## initial value 140.508226
## iter 10 value 9.593176
## iter 20 value 0.781330
## iter 30 value 0.461086
## iter 40 value 0.445335
## iter 50 value 0.411271
## iter 60 value 0.390060
## iter 70 value 0.372303
## iter 80 value 0.363494
## iter 90 value 0.357105
## iter 100 value 0.344014
## final value 0.344014
## stopped after 100 iterations
## # weights: 11
## initial value 129.031039
## iter 10 value 61.978707
## iter 20 value 58.008696
## iter 30 value 57.768938
## iter 40 value 55.583867
## iter 50 value 52.889449
## iter 60 value 43.602398
## iter 70 value 39.782882
## iter 80 value 34.850087
## iter 90 value 23.311939
## iter 100 value 3.119741
## final value 3.119741
## stopped after 100 iterations
## # weights: 27
## initial value 126.475926
## iter 10 value 7.096031
## iter 20 value 0.639765
## iter 30 value 0.000106
## iter 30 value 0.000052
## iter 30 value 0.000052
## final value 0.000052
## converged
## # weights: 43
## initial value 134.270158
## iter 10 value 5.930885
## iter 20 value 1.228181
## iter 30 value 0.010612
## final value 0.000084
## converged
## # weights: 11
## initial value 123.227860
## iter 10 value 53.165906
## iter 20 value 43.229062
## final value 43.228624
## converged
## # weights: 27
## initial value 127.334763
## iter 10 value 24.083708
## iter 20 value 19.538749
## iter 30 value 19.295874
## iter 40 value 19.174203
## iter 50 value 19.034503
## final value 19.034362
## converged
## # weights: 43
## initial value 131.621100
## iter 10 value 35.666079
## iter 20 value 19.486685
## iter 30 value 18.420880
## iter 40 value 17.192733
## iter 50 value 17.154065
## iter 60 value 17.148652
## iter 70 value 17.148346
## final value 17.148327
## converged
## # weights: 11
## initial value 128.213413
## iter 10 value 49.978543
## iter 20 value 48.871330
## iter 30 value 48.360713
## iter 40 value 44.556033
## iter 50 value 17.787883
## iter 60 value 4.908744
## iter 70 value 4.013138
## iter 80 value 3.170127
## iter 90 value 3.123838
## iter 100 value 2.985978
## final value 2.985978
## stopped after 100 iterations
## # weights: 27
## initial value 127.197897
## iter 10 value 4.354141
## iter 20 value 1.009145
## iter 30 value 0.462364
## iter 40 value 0.402815
## iter 50 value 0.365000
## iter 60 value 0.341482
## iter 70 value 0.333382
## iter 80 value 0.324477
## iter 90 value 0.314822
## iter 100 value 0.295699
## final value 0.295699
## stopped after 100 iterations
## # weights: 43
## initial value 120.457941
## iter 10 value 4.476405
## iter 20 value 1.443496
## iter 30 value 0.600594
## iter 40 value 0.498873
## iter 50 value 0.401362
## iter 60 value 0.376749
## iter 70 value 0.357924
## iter 80 value 0.348783
## iter 90 value 0.331318
## iter 100 value 0.326491
## final value 0.326491
## stopped after 100 iterations
## # weights: 11
## initial value 135.093527
## iter 10 value 21.860640
## iter 20 value 3.813716
## iter 30 value 2.509928
## iter 40 value 2.384751
## iter 50 value 2.276547
## iter 60 value 2.250532
## iter 70 value 2.153859
## iter 80 value 1.699918
## iter 90 value 0.834569
## iter 100 value 0.573835
## final value 0.573835
## stopped after 100 iterations
## # weights: 27
## initial value 126.256021
## iter 10 value 5.294353
## iter 20 value 0.037650
## final value 0.000071
## converged
## # weights: 43
## initial value 130.459188
## iter 10 value 5.484744
## iter 20 value 0.810428
## iter 30 value 0.002412
## final value 0.000073
## converged
## # weights: 11
## initial value 127.596687
## iter 10 value 53.593172
## iter 20 value 44.128618
## iter 30 value 43.966078
## final value 43.966037
## converged
## # weights: 27
## initial value 155.037982
## iter 10 value 27.774198
## iter 20 value 20.783237
## iter 30 value 19.876683
## iter 40 value 19.868884
## final value 19.868385
## converged
## # weights: 43
## initial value 171.725834
## iter 10 value 23.134324
## iter 20 value 18.599155
## iter 30 value 18.436512
## iter 40 value 18.422714
## iter 50 value 18.422201
## final value 18.422189
## converged
## # weights: 11
## initial value 130.488537
## iter 10 value 85.816017
## iter 20 value 50.748640
## iter 30 value 48.927856
## iter 40 value 47.709677
## iter 50 value 47.582838
## iter 60 value 47.519960
## iter 70 value 47.507163
## iter 80 value 47.501926
## iter 90 value 47.497119
## final value 47.494823
## converged
## # weights: 27
## initial value 122.543665
## iter 10 value 19.518466
## iter 20 value 2.052800
## iter 30 value 0.886034
## iter 40 value 0.804745
## iter 50 value 0.648603
## iter 60 value 0.585834
## iter 70 value 0.553642
## iter 80 value 0.497885
## iter 90 value 0.458749
## iter 100 value 0.449044
## final value 0.449044
## stopped after 100 iterations
## # weights: 43
## initial value 153.095425
## iter 10 value 7.901518
## iter 20 value 0.690893
## iter 30 value 0.636107
## iter 40 value 0.584777
## iter 50 value 0.567513
## iter 60 value 0.534749
## iter 70 value 0.522132
## iter 80 value 0.506614
## iter 90 value 0.501144
## iter 100 value 0.474534
## final value 0.474534
## stopped after 100 iterations
## # weights: 11
## initial value 135.364864
## iter 10 value 59.004600
## iter 20 value 49.914439
## iter 30 value 49.908413
## final value 49.906914
## converged
## # weights: 27
## initial value 128.151297
## iter 10 value 6.337487
## iter 20 value 0.146259
## iter 30 value 0.000104
## iter 30 value 0.000057
## iter 30 value 0.000056
## final value 0.000056
## converged
## # weights: 43
## initial value 139.035430
## iter 10 value 5.342379
## iter 20 value 0.250943
## iter 30 value 0.000708
## final value 0.000094
## converged
## # weights: 11
## initial value 118.420609
## iter 10 value 64.974347
## iter 20 value 56.804050
## iter 30 value 44.067872
## final value 42.994871
## converged
## # weights: 27
## initial value 136.089534
## iter 10 value 27.295517
## iter 20 value 19.795109
## iter 30 value 18.797967
## iter 40 value 18.724373
## iter 50 value 18.718133
## final value 18.718133
## converged
## # weights: 43
## initial value 117.387025
## iter 10 value 26.556247
## iter 20 value 17.899514
## iter 30 value 17.809471
## iter 40 value 17.764813
## iter 50 value 17.756615
## final value 17.756610
## converged
## # weights: 11
## initial value 136.528004
## iter 10 value 23.039236
## iter 20 value 3.818892
## iter 30 value 3.195511
## iter 40 value 3.122077
## iter 50 value 3.106837
## iter 60 value 3.094371
## iter 70 value 3.093128
## iter 80 value 3.092464
## iter 90 value 3.092407
## iter 100 value 3.092292
## final value 3.092292
## stopped after 100 iterations
## # weights: 27
## initial value 123.626570
## iter 10 value 5.162502
## iter 20 value 0.512650
## iter 30 value 0.387310
## iter 40 value 0.363980
## iter 50 value 0.342939
## iter 60 value 0.322494
## iter 70 value 0.309017
## iter 80 value 0.303599
## iter 90 value 0.292640
## iter 100 value 0.274828
## final value 0.274828
## stopped after 100 iterations
## # weights: 43
## initial value 129.709743
## iter 10 value 6.399049
## iter 20 value 1.484154
## iter 30 value 0.424066
## iter 40 value 0.333323
## iter 50 value 0.290299
## iter 60 value 0.271136
## iter 70 value 0.254488
## iter 80 value 0.244931
## iter 90 value 0.241006
## iter 100 value 0.235645
## final value 0.235645
## stopped after 100 iterations
## # weights: 11
## initial value 120.630519
## iter 10 value 59.934734
## iter 20 value 50.061401
## iter 30 value 48.902842
## iter 40 value 40.689201
## iter 50 value 9.246081
## iter 60 value 4.798559
## iter 70 value 4.402083
## iter 80 value 3.747997
## iter 90 value 2.052315
## iter 100 value 1.813680
## final value 1.813680
## stopped after 100 iterations
## # weights: 27
## initial value 115.288383
## iter 10 value 17.230857
## iter 20 value 0.332887
## iter 30 value 0.000452
## final value 0.000047
## converged
## # weights: 43
## initial value 115.350758
## iter 10 value 15.083811
## iter 20 value 1.751399
## iter 30 value 0.182284
## iter 40 value 0.001019
## iter 50 value 0.000302
## final value 0.000086
## converged
## # weights: 11
## initial value 127.529840
## iter 10 value 55.578483
## iter 20 value 44.112002
## final value 44.104970
## converged
## # weights: 27
## initial value 147.959026
## iter 10 value 29.305877
## iter 20 value 20.335408
## iter 30 value 20.112010
## iter 40 value 20.104860
## final value 20.104627
## converged
## # weights: 43
## initial value 131.392852
## iter 10 value 32.272199
## iter 20 value 19.766570
## iter 30 value 18.836523
## iter 40 value 18.443541
## iter 50 value 18.340096
## iter 60 value 18.328809
## iter 70 value 18.327322
## final value 18.327123
## converged
## # weights: 11
## initial value 125.205767
## iter 10 value 48.380736
## iter 20 value 35.618174
## iter 30 value 11.397083
## iter 40 value 4.475791
## iter 50 value 4.074765
## iter 60 value 4.016958
## iter 70 value 3.974500
## iter 80 value 3.912831
## iter 90 value 3.848654
## iter 100 value 3.844326
## final value 3.844326
## stopped after 100 iterations
## # weights: 27
## initial value 128.588080
## iter 10 value 5.384040
## iter 20 value 1.619297
## iter 30 value 0.882242
## iter 40 value 0.851849
## iter 50 value 0.641502
## iter 60 value 0.619737
## iter 70 value 0.595281
## iter 80 value 0.535622
## iter 90 value 0.493317
## iter 100 value 0.486438
## final value 0.486438
## stopped after 100 iterations
## # weights: 43
## initial value 126.933423
## iter 10 value 11.502520
## iter 20 value 2.523881
## iter 30 value 0.724044
## iter 40 value 0.650789
## iter 50 value 0.604091
## iter 60 value 0.567950
## iter 70 value 0.545173
## iter 80 value 0.515780
## iter 90 value 0.502725
## iter 100 value 0.469805
## final value 0.469805
## stopped after 100 iterations
## # weights: 11
## initial value 128.841813
## iter 10 value 49.888557
## iter 20 value 48.854861
## iter 30 value 46.284065
## iter 40 value 45.933053
## iter 50 value 44.949410
## iter 60 value 42.929580
## iter 70 value 8.036085
## iter 80 value 4.112129
## iter 90 value 3.437158
## iter 100 value 1.625705
## final value 1.625705
## stopped after 100 iterations
## # weights: 27
## initial value 155.763709
## iter 10 value 22.044760
## iter 20 value 3.180958
## iter 30 value 0.258484
## iter 40 value 0.001788
## final value 0.000094
## converged
## # weights: 43
## initial value 122.457708
## iter 10 value 3.485470
## iter 20 value 0.019486
## final value 0.000064
## converged
## # weights: 11
## initial value 115.895686
## iter 10 value 59.149623
## iter 20 value 51.309942
## iter 30 value 43.719794
## final value 43.715117
## converged
## # weights: 27
## initial value 114.668249
## iter 10 value 28.092323
## iter 20 value 20.979628
## iter 30 value 20.625230
## iter 40 value 20.624005
## iter 40 value 20.624005
## iter 40 value 20.624005
## final value 20.624005
## converged
## # weights: 43
## initial value 129.863362
## iter 10 value 27.825492
## iter 20 value 19.487986
## iter 30 value 18.594719
## iter 40 value 18.496859
## iter 50 value 18.474010
## iter 60 value 18.420539
## iter 70 value 18.058704
## iter 80 value 17.803440
## iter 90 value 17.708693
## iter 100 value 17.696027
## final value 17.696027
## stopped after 100 iterations
## # weights: 11
## initial value 129.196853
## iter 10 value 49.961302
## iter 20 value 49.655075
## iter 30 value 48.919385
## iter 40 value 16.000700
## iter 50 value 5.571821
## iter 60 value 3.368120
## iter 70 value 3.145819
## iter 80 value 2.971756
## iter 90 value 2.931838
## iter 100 value 2.922727
## final value 2.922727
## stopped after 100 iterations
## # weights: 27
## initial value 136.352067
## iter 10 value 19.746721
## iter 20 value 1.762322
## iter 30 value 0.773155
## iter 40 value 0.739820
## iter 50 value 0.683111
## iter 60 value 0.531832
## iter 70 value 0.499564
## iter 80 value 0.416175
## iter 90 value 0.395498
## iter 100 value 0.327184
## final value 0.327184
## stopped after 100 iterations
## # weights: 43
## initial value 130.762361
## iter 10 value 7.155063
## iter 20 value 0.314087
## iter 30 value 0.295210
## iter 40 value 0.287887
## iter 50 value 0.264294
## iter 60 value 0.251011
## iter 70 value 0.228303
## iter 80 value 0.207026
## iter 90 value 0.200442
## iter 100 value 0.194906
## final value 0.194906
## stopped after 100 iterations
## # weights: 11
## initial value 145.900216
## iter 10 value 64.757220
## iter 20 value 48.348164
## iter 30 value 46.796576
## final value 46.796573
## converged
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 36 0
## virginica 0 4 40
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.9169, 0.9908)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
# Matriz de confusion del resultado de la prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 9 0
## virginica 0 1 10
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
modelo6 <- train(Species ~ ., data=entrenamiento,
method = "rf", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = expand.grid(mtry = c(2,4,6))
)
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
mcre6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 40 0 0
## versicolor 0 40 0
## virginica 0 0 40
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9697, 1)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.3333
## Detection Prevalence 0.3333 0.3333 0.3333
## Balanced Accuracy 1.0000 1.0000 1.0000
# Matriz de confusion del resultado de la prueba
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
mcrp6
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 10 2
## virginica 0 0 8
##
## Overall Statistics
##
## Accuracy : 0.9333
## 95% CI : (0.7793, 0.9918)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 8.747e-12
##
## Kappa : 0.9
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 0.8000
## Specificity 1.0000 0.9000 1.0000
## Pos Pred Value 1.0000 0.8333 1.0000
## Neg Pred Value 1.0000 1.0000 0.9091
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3333 0.2667
## Detection Prevalence 0.3333 0.4000 0.2667
## Balanced Accuracy 1.0000 0.9500 0.9000
resultados <- data.frame(
"svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precisón de entrenamiento", "Precisión de Prueba")
resultados
## svmLinear svmRadial svmPoly rpart nnet
## Precisón de entrenamiento 0.9916667 0.9916667 0.9833333 0.9666667 0.9666667
## Precisión de Prueba 0.9666667 0.9333333 0.9333333 0.9333333 0.9666667
## rf
## Precisón de entrenamiento 1.0000000
## Precisión de Prueba 0.9333333
De acuerdo con la tabla de resultados, se observa que ninguno de los métodos evaluados presenta indicios de sobreajuste, lo cual confirma la consistencia de los modelos. Entre las alternativas probadas, el enfoque basado en redes neuronales destaca por su mejor desempeño global, por lo que se recomienda seleccionarlo como el modelo final para este análisis.