Estos datos son el resultado de un análisis químico de vinos cultivados en la misma región de Italia, pero derivados de tres cultivares diferentes.
El análisis determinó las cantidades de 13 componentes que se encuentran en cada uno de los tres cultivares.
#install.packeges("cluster") #Análisis de Agrupamiento
library(cluster)
#install.packeges("ggplot2") #Graficar
library(ggplot2)
#install.packeges("data.table") #Manejo de muchos datos
library(data.table)
#install.packages("factoextra") #Grafica optimización de número de clusters
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
df1 <- read.csv("/Users/antoniodiaz/Desktop/MODULO2/wine.csv")
summary(df1)
## Alcohol Malic_Acid Ash Ash_Alcanity
## Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60
## 1st Qu.:12.36 1st Qu.:1.603 1st Qu.:2.210 1st Qu.:17.20
## Median :13.05 Median :1.865 Median :2.360 Median :19.50
## Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49
## 3rd Qu.:13.68 3rd Qu.:3.083 3rd Qu.:2.558 3rd Qu.:21.50
## Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00
## Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols
## Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300
## 1st Qu.: 88.00 1st Qu.:1.742 1st Qu.:1.205 1st Qu.:0.2700
## Median : 98.00 Median :2.355 Median :2.135 Median :0.3400
## Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619
## 3rd Qu.:107.00 3rd Qu.:2.800 3rd Qu.:2.875 3rd Qu.:0.4375
## Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600
## Proanthocyanins Color_Intensity Hue OD280
## Min. :0.410 Min. : 1.280 Min. :0.4800 Min. :1.270
## 1st Qu.:1.250 1st Qu.: 3.220 1st Qu.:0.7825 1st Qu.:1.938
## Median :1.555 Median : 4.690 Median :0.9650 Median :2.780
## Mean :1.591 Mean : 5.058 Mean :0.9574 Mean :2.612
## 3rd Qu.:1.950 3rd Qu.: 6.200 3rd Qu.:1.1200 3rd Qu.:3.170
## Max. :3.580 Max. :13.000 Max. :1.7100 Max. :4.000
## Proline
## Min. : 278.0
## 1st Qu.: 500.5
## Median : 673.5
## Mean : 746.9
## 3rd Qu.: 985.0
## Max. :1680.0
str(df1)
## 'data.frame': 178 obs. of 13 variables:
## $ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...
## $ Malic_Acid : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
## $ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
## $ Ash_Alcanity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
## $ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...
## $ Total_Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
## $ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
## $ Nonflavanoid_Phenols: num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
## $ Proanthocyanins : num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
## $ Color_Intensity : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
## $ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
## $ OD280 : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
## $ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...
num_vars <- df1[ , sapply(df1, is.numeric)] # solo columnas numéricas
X <- scale(num_vars) # estandariza (media=0, sd=1)
dim(X) # debería ser 178 x 13
## [1] 178 13
set.seed(123)
# Codo (WSS)
fviz_nbclust(X, kmeans, method = "wss") + ggtitle("Codo (WSS)")
# Silhouette medio
fviz_nbclust(X, kmeans, method = "silhouette") + ggtitle("Silhouette")
# Gap Statistic (con regla 1-SE para k)
gap <- clusGap(
X,
FUNcluster = function(x, k) kmeans(x, centers = k, nstart = 25),
K.max = 10,
B = 50
)
plot(gap, xlab = "k", ylab = "Gap", main = "Gap Statistic")
fviz_gap_stat(gap)
# k óptimo: menor k dentro de 1 SE del máximo (regla 1-SE)
k_opt <- cluster::maxSE(gap$Tab[,"gap"], gap$Tab[,"SE.sim"], method = "firstSEmax")
k_opt
## [1] 3
set.seed(123)
km3 <- kmeans(X, centers = 3, nstart = 50, algorithm = "Hartigan-Wong")
km3$size # cuántos vinos en cada cluster
## [1] 51 62 65
km3$centers # centroides (en escala estandarizada)
## Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols
## 1 0.1644436 0.8690954 0.1863726 0.5228924 -0.07526047 -0.97657548
## 2 0.8328826 -0.3029551 0.3636801 -0.6084749 0.57596208 0.88274724
## 3 -0.9234669 -0.3929331 -0.4931257 0.1701220 -0.49032869 -0.07576891
## Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
## 1 -1.21182921 0.72402116 -0.77751312 0.9388902 -1.1615122
## 2 0.97506900 -0.56050853 0.57865427 0.1705823 0.4726504
## 3 0.02075402 -0.03343924 0.05810161 -0.8993770 0.4605046
## OD280 Proline
## 1 -1.2887761 -0.4059428
## 2 0.7770551 1.1220202
## 3 0.2700025 -0.7517257
fviz_cluster(km3, data = X) + ggtitle("Clusters k-means (k=3)")
wine <- df1
# Agregar la columna de clusters
wine$cluster <- km3$cluster
# Guardar dataset con clusters en un CSV
write.csv(wine, "wine_clusters.csv", row.names = FALSE)
# (Opcional) Revisar distribución y medias de cada cluster
table(wine$cluster)
##
## 1 2 3
## 51 62 65
aggregate(. ~ cluster, data = wine, mean)
## cluster Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols
## 1 1 13.13412 3.307255 2.417647 21.24118 98.66667 1.683922
## 2 2 13.67677 1.997903 2.466290 17.46290 107.96774 2.847581
## 3 3 12.25092 1.897385 2.231231 20.06308 92.73846 2.247692
## Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
## 1 0.8188235 0.4519608 1.145882 7.234706 0.6919608
## 2 3.0032258 0.2920968 1.922097 5.453548 1.0654839
## 3 2.0500000 0.3576923 1.624154 2.973077 1.0627077
## OD280 Proline
## 1 1.696667 619.0588
## 2 3.163387 1100.2258
## 3 2.803385 510.1692
centros_original <- sweep(km3$centers, 2, attr(X, "scaled:scale"), "*")
centros_original <- sweep(centros_original, 2, attr(X, "scaled:center"), "+")
round(centros_original, 3)
## Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids
## 1 13.134 3.307 2.418 21.241 98.667 1.684 0.819
## 2 13.677 1.998 2.466 17.463 107.968 2.848 3.003
## 3 12.251 1.897 2.231 20.063 92.738 2.248 2.050
## Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue OD280 Proline
## 1 0.452 1.146 7.235 0.692 1.697 619.059
## 2 0.292 1.922 5.454 1.065 3.163 1100.226
## 3 0.358 1.624 2.973 1.063 2.803 510.169
La técnico de clustering permite identificar patrones o grupos naturales en los datos sin necesidade de etiquetas previas.