Teoría

Una Red Neuronal Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.

Ejemplos prácticos de aplicación de Redes Neuronales son:

  • La recomendación de contenido de Netflix
  • El feed de Instagram o TikTok
  • Determinar el número o letra escrito a mano

Instalar paquetes y llamar librerías

#install.packages("neuralnet")
library(neuralnet)
#install.packages("ggplot2") #Graficar
library(ggplot2)
#install.packages("lattice") #Crear gráficos
library(lattice)
#install.packages("caret") #Algoritmos de aprendizaje automático
library(caret)
#install.packages("datasets") #Usar bases de datos, iris en este caso
library(datasets)
#install.packages("DataExplorer") #Análisis exploratorio
library(DataExplorer)

Alimentar ejemplos

examen <- c(20,10,30,20,80,30)
proyecto <- c(90,20,40,50,50,80)
estatus <- c(1,0,0,0,0,1)
df <- data.frame(examen,proyecto,estatus)

Generar la Red Neuronal

red_neuronal <- neuralnet(estatus~., data=df)
plot(red_neuronal, rep="best")

# Predecir con la Red Neuronal

prueba_examen <- c(30,40,85)
prueba_proyecto <- c(85,50,40)
prueba <- data.frame(prueba_examen, prueba_proyecto)
prediccion <- compute(red_neuronal, prueba)
prediccion$net.result
##             [,1]
## [1,]  0.93465819
## [2,]  0.12508071
## [3,] -0.06132057
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
##      [,1]
## [1,]    1
## [2,]    0
## [3,]    0

ACTIVIDAD CÁNCER DE MAMA

Alimentar DataFrame

df<-read.csv("C:\\Users\\artur\\Downloads\\cancer_de_mama.csv", stringsAsFactors = FALSE)

Revisar los datos

summary(df)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave_points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave_points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave_points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
str(df)
## 'data.frame':    569 obs. of  31 variables:
##  $ diagnosis              : chr  "M" "M" "M" "M" ...
##  $ radius_mean            : num  18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num  122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num  1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num  0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num  0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave_points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num  1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num  153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave_points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num  25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num  17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num  184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num  2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num  0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num  0.712 0.242 0.45 0.687 0.4 ...
##  $ concave_points_worst   : num  0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...
# Convertir diagnosis a factor (para caret) y a numérico (para neuralnet)
df$diagnosis_num <- ifelse(df$diagnosis == "M", 1, 0)
#Normalmente 80-20
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$diagnosis, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
formula_nn <- as.formula(paste("diagnosis_num ~", 
                               paste(setdiff(names(df), c("diagnosis", "diagnosis_num")), 
                                     collapse = "+")))

# Entrenar red neuronal solo con entrenamiento
red_neuronal <- neuralnet(formula_nn, 
                          data = entrenamiento,
                          hidden = c(5,3),   # capas ocultas (ajustable)
                          linear.output = FALSE)

plot(red_neuronal, rep="best")

# Predecir con la Red Neuronal

datos_prueba <- prueba[, setdiff(names(prueba), c("diagnosis","diagnosis_num"))]
prediccion <- compute(red_neuronal, datos_prueba)
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad > 0.5, 1, 0)
confusion_red <- table(Predicho = resultado, Real = prueba$diagnosis_num)
confusion_red
##         Real
## Predicho  0  1
##        0 65  2
##        1  6 40
LS0tDQp0aXRsZTogIlJlZGVzIE5ldXJvbmFsZXMiDQphdXRob3I6ICJBcnR1cm8gRGl4Ig0KZGF0ZTogIjIwMjUtMDgtMjUiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiB5ZXRpDQotLS0NCjxjZW50ZXI+DQohW10oaHR0cHM6Ly9taXJvLm1lZGl1bS5jb20vdjIvcmVzaXplOmZpdDoxNDAwLzEqLWVMalBZN1VHU29RaFN5VzVxQzZndy5naWYpDQo8L2NlbnRlcj4NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBUZW9yw61hIDwvc3Bhbj4NClVuYSAqKlJlZCBOZXVyb25hbCBBcnRpZmljaWFsIChBTk4pKiogbW9kZWxhIGxhIHJlbGFjacOzbiBlbnRyZSB1biBjb25qdW50byBkZSBlbnRyYWRhcyB5IHVuYSBzYWxpZGEsIHJlc29sdmllbmRvIHVuIHByb2JsZW1hIGRlIGFwcmVuZGl6YWplLg0KDQpFamVtcGxvcyBwcsOhY3RpY29zIGRlIGFwbGljYWNpw7NuIGRlIFJlZGVzIE5ldXJvbmFsZXMgc29uOiANCg0KKiBMYSByZWNvbWVuZGFjacOzbiBkZSBjb250ZW5pZG8gZGUgTmV0ZmxpeA0KKiBFbCBmZWVkIGRlIEluc3RhZ3JhbSBvIFRpa1Rvaw0KKiBEZXRlcm1pbmFyIGVsIG7Dum1lcm8gbyBsZXRyYSBlc2NyaXRvIGEgbWFubyAgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+DQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJuZXVyYWxuZXQiKQ0KbGlicmFyeShuZXVyYWxuZXQpDQojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpICNHcmFmaWNhcg0KbGlicmFyeShnZ3Bsb3QyKQ0KI2luc3RhbGwucGFja2FnZXMoImxhdHRpY2UiKSAjQ3JlYXIgZ3LDoWZpY29zDQpsaWJyYXJ5KGxhdHRpY2UpDQojaW5zdGFsbC5wYWNrYWdlcygiY2FyZXQiKSAjQWxnb3JpdG1vcyBkZSBhcHJlbmRpemFqZSBhdXRvbcOhdGljbw0KbGlicmFyeShjYXJldCkNCiNpbnN0YWxsLnBhY2thZ2VzKCJkYXRhc2V0cyIpICNVc2FyIGJhc2VzIGRlIGRhdG9zLCBpcmlzIGVuIGVzdGUgY2Fzbw0KbGlicmFyeShkYXRhc2V0cykNCiNpbnN0YWxsLnBhY2thZ2VzKCJEYXRhRXhwbG9yZXIiKSAjQW7DoWxpc2lzIGV4cGxvcmF0b3Jpbw0KbGlicmFyeShEYXRhRXhwbG9yZXIpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBBbGltZW50YXIgZWplbXBsb3MgPC9zcGFuPg0KYGBge3J9DQpleGFtZW4gPC0gYygyMCwxMCwzMCwyMCw4MCwzMCkNCnByb3llY3RvIDwtIGMoOTAsMjAsNDAsNTAsNTAsODApDQplc3RhdHVzIDwtIGMoMSwwLDAsMCwwLDEpDQpkZiA8LSBkYXRhLmZyYW1lKGV4YW1lbixwcm95ZWN0byxlc3RhdHVzKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gR2VuZXJhciBsYSBSZWQgTmV1cm9uYWwgPC9zcGFuPg0KYGBge3J9DQpyZWRfbmV1cm9uYWwgPC0gbmV1cmFsbmV0KGVzdGF0dXN+LiwgZGF0YT1kZikNCnBsb3QocmVkX25ldXJvbmFsLCByZXA9ImJlc3QiKQ0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFByZWRlY2lyIGNvbiBsYSBSZWQgTmV1cm9uYWwgPC9zcGFuPg0KYGBge3J9DQpwcnVlYmFfZXhhbWVuIDwtIGMoMzAsNDAsODUpDQpwcnVlYmFfcHJveWVjdG8gPC0gYyg4NSw1MCw0MCkNCnBydWViYSA8LSBkYXRhLmZyYW1lKHBydWViYV9leGFtZW4sIHBydWViYV9wcm95ZWN0bykNCnByZWRpY2Npb24gPC0gY29tcHV0ZShyZWRfbmV1cm9uYWwsIHBydWViYSkNCnByZWRpY2Npb24kbmV0LnJlc3VsdA0KcHJvYmFiaWxpZGFkIDwtIHByZWRpY2Npb24kbmV0LnJlc3VsdA0KcmVzdWx0YWRvIDwtIGlmZWxzZShwcm9iYWJpbGlkYWQ+MC41LDEsMCkNCnJlc3VsdGFkbw0KDQoNCmBgYA0KKipBQ1RJVklEQUQgQ8OBTkNFUiBERSBNQU1BKioNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBBbGltZW50YXIgRGF0YUZyYW1lIDwvc3Bhbj4NCmBgYHtyfQ0KZGY8LXJlYWQuY3N2KCJDOlxcVXNlcnNcXGFydHVyXFxEb3dubG9hZHNcXGNhbmNlcl9kZV9tYW1hLmNzdiIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBSZXZpc2FyIGxvcyBkYXRvcyA8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpgYGANCmBgYHtyfQ0KIyBDb252ZXJ0aXIgZGlhZ25vc2lzIGEgZmFjdG9yIChwYXJhIGNhcmV0KSB5IGEgbnVtw6lyaWNvIChwYXJhIG5ldXJhbG5ldCkNCmRmJGRpYWdub3Npc19udW0gPC0gaWZlbHNlKGRmJGRpYWdub3NpcyA9PSAiTSIsIDEsIDApDQpgYGANCg0KYGBge3J9DQojTm9ybWFsbWVudGUgODAtMjANCnNldC5zZWVkKDEyMykNCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkZGlhZ25vc2lzLCBwPTAuOCwgbGlzdD1GQUxTRSkNCmVudHJlbmFtaWVudG8gPC0gZGZbcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0NCnBydWViYSA8LSBkZlstcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0NCmBgYA0KDQoNCmBgYHtyfQ0KZm9ybXVsYV9ubiA8LSBhcy5mb3JtdWxhKHBhc3RlKCJkaWFnbm9zaXNfbnVtIH4iLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXN0ZShzZXRkaWZmKG5hbWVzKGRmKSwgYygiZGlhZ25vc2lzIiwgImRpYWdub3Npc19udW0iKSksIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbGxhcHNlID0gIisiKSkpDQoNCiMgRW50cmVuYXIgcmVkIG5ldXJvbmFsIHNvbG8gY29uIGVudHJlbmFtaWVudG8NCnJlZF9uZXVyb25hbCA8LSBuZXVyYWxuZXQoZm9ybXVsYV9ubiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSBlbnRyZW5hbWllbnRvLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBoaWRkZW4gPSBjKDUsMyksICAgIyBjYXBhcyBvY3VsdGFzIChhanVzdGFibGUpDQogICAgICAgICAgICAgICAgICAgICAgICAgIGxpbmVhci5vdXRwdXQgPSBGQUxTRSkNCg0KcGxvdChyZWRfbmV1cm9uYWwsIHJlcD0iYmVzdCIpDQpgYGANCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUHJlZGVjaXIgY29uIGxhIFJlZCBOZXVyb25hbCA8L3NwYW4+DQpgYGB7cn0NCmRhdG9zX3BydWViYSA8LSBwcnVlYmFbLCBzZXRkaWZmKG5hbWVzKHBydWViYSksIGMoImRpYWdub3NpcyIsImRpYWdub3Npc19udW0iKSldDQpwcmVkaWNjaW9uIDwtIGNvbXB1dGUocmVkX25ldXJvbmFsLCBkYXRvc19wcnVlYmEpDQpwcm9iYWJpbGlkYWQgPC0gcHJlZGljY2lvbiRuZXQucmVzdWx0DQpyZXN1bHRhZG8gPC0gaWZlbHNlKHByb2JhYmlsaWRhZCA+IDAuNSwgMSwgMCkNCmNvbmZ1c2lvbl9yZWQgPC0gdGFibGUoUHJlZGljaG8gPSByZXN1bHRhZG8sIFJlYWwgPSBwcnVlYmEkZGlhZ25vc2lzX251bSkNCmNvbmZ1c2lvbl9yZWQNCg0KYGBgDQoNCg==