Importar la base de datos

df<-read.csv("C:\\Users\\artur\\Downloads\\titanic.csv")

Instalar paquetes y llamar librerías

#install.packages("rpart")
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)

Revisar los datos

summary(df)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189
str(df)
## 'data.frame':    1310 obs. of  14 variables:
##  $ pclass   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ survived : int  1 1 0 0 0 1 1 0 1 0 ...
##  $ name     : chr  "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
##  $ sex      : chr  "female" "male" "female" "male" ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ ticket   : chr  "24160" "113781" "113781" "113781" ...
##  $ fare     : num  211 152 152 152 152 ...
##  $ cabin    : chr  "B5" "C22 C26" "C22 C26" "C22 C26" ...
##  $ embarked : chr  "S" "S" "S" "S" ...
##  $ boat     : chr  "2" "11" "" "" ...
##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...
##  $ home.dest: chr  "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...
head(df)
##   pclass survived                                            name    sex
## 1      1        1                   Allen, Miss. Elisabeth Walton female
## 2      1        1                  Allison, Master. Hudson Trevor   male
## 3      1        0                    Allison, Miss. Helen Loraine female
## 4      1        0            Allison, Mr. Hudson Joshua Creighton   male
## 5      1        0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female
## 6      1        1                             Anderson, Mr. Harry   male
##       age sibsp parch ticket     fare   cabin embarked boat body
## 1 29.0000     0     0  24160 211.3375      B5        S    2   NA
## 2  0.9167     1     2 113781 151.5500 C22 C26        S   11   NA
## 3  2.0000     1     2 113781 151.5500 C22 C26        S        NA
## 4 30.0000     1     2 113781 151.5500 C22 C26        S       135
## 5 25.0000     1     2 113781 151.5500 C22 C26        S        NA
## 6 48.0000     0     0  19952  26.5500     E12        S    3   NA
##                         home.dest
## 1                    St Louis, MO
## 2 Montreal, PQ / Chesterville, ON
## 3 Montreal, PQ / Chesterville, ON
## 4 Montreal, PQ / Chesterville, ON
## 5 Montreal, PQ / Chesterville, ON
## 6                    New York, NY

Crear árbol de decisión

df <- df[,c("pclass", "age", "sex", "survived")]
df$survived <- as.factor(df$survived)
df$pclass <- as.factor(df$pclass)
df$sex <- as.factor(df$sex)
str(df)
## 'data.frame':    1310 obs. of  4 variables:
##  $ pclass  : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ age     : num  29 0.917 2 30 25 ...
##  $ sex     : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
##  $ survived: Factor w/ 2 levels "0","1": 2 2 1 1 1 2 2 1 2 1 ...
arbol_titanic <- rpart(survived~., data=df)
rpart.plot(arbol_titanic)

prp(arbol_titanic, extra=7, prefix="fracción\n")

# Conclusión En conclusión, las más altas probabilidades de sobrevivir en el naufragio del titanic son: * 100% si eres niño varón menor de 9.5 años de 1° o 2° clase. * 73% si eres mujer.

Y, por el contrario, las más bajas probabilidades de sobrevivir son: * 17% si eres hombre mayor a 9.5 años. * 38% si eres niño varón menor a 9.5 años de 3° clase

LS0tDQp0aXRsZTogIlRpdGFuaWMiDQphdXRob3I6ICJBcnR1cm8gRGl4Ig0KZGF0ZTogIjIwMjUtMDgtMjAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiBjb3Ntbw0KLS0tDQo8Y2VudGVyPg0KIVtdKGh0dHBzOi8vbWVkaWExLnRlbm9yLmNvbS9tL3FZQmJFakE2X2NJQUFBQUMvYS1uaWdodC10by1yZW1lbWJlci1tb3ZpZS1hLW5pZ2h0LXRvLXJlbWVtYmVyLmdpZikNCjwvY2VudGVyPg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmxhY2siPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGY8LXJlYWQuY3N2KCJDOlxcVXNlcnNcXGFydHVyXFxEb3dubG9hZHNcXHRpdGFuaWMuY3N2IikNCg0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPg0KDQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJycGFydCIpDQpsaWJyYXJ5KHJwYXJ0KQ0KI2luc3RhbGwucGFja2FnZXMoInJwYXJ0LnBsb3QiKQ0KbGlicmFyeShycGFydC5wbG90KQ0KDQpgYGANCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrOyI+IFJldmlzYXIgbG9zIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCmhlYWQoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6YmxhY2s7Ij4gQ3JlYXIgw6FyYm9sIGRlIGRlY2lzacOzbiA8L3NwYW4+DQoNCmBgYHtyfQ0KZGYgPC0gZGZbLGMoInBjbGFzcyIsICJhZ2UiLCAic2V4IiwgInN1cnZpdmVkIildDQpkZiRzdXJ2aXZlZCA8LSBhcy5mYWN0b3IoZGYkc3Vydml2ZWQpDQpkZiRwY2xhc3MgPC0gYXMuZmFjdG9yKGRmJHBjbGFzcykNCmRmJHNleCA8LSBhcy5mYWN0b3IoZGYkc2V4KQ0Kc3RyKGRmKQ0KYXJib2xfdGl0YW5pYyA8LSBycGFydChzdXJ2aXZlZH4uLCBkYXRhPWRmKQ0KcnBhcnQucGxvdChhcmJvbF90aXRhbmljKQ0KcHJwKGFyYm9sX3RpdGFuaWMsIGV4dHJhPTcsIHByZWZpeD0iZnJhY2Npw7NuXG4iKQ0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibGFjazsiPiBDb25jbHVzacOzbiA8L3NwYW4+DQpFbiBjb25jbHVzacOzbiwgbGFzIG3DoXMgYWx0YXMgcHJvYmFiaWxpZGFkZXMgZGUgc29icmV2aXZpciBlbiBlbCBuYXVmcmFnaW8gZGVsIHRpdGFuaWMgc29uOg0KKiAxMDAlIHNpIGVyZXMgbmnDsW8gdmFyw7NuIG1lbm9yIGRlIDkuNSBhw7FvcyBkZSAxwrAgbyAywrAgY2xhc2UuDQoqIDczJSBzaSBlcmVzIG11amVyLiANCg0KWSwgcG9yIGVsIGNvbnRyYXJpbywgbGFzIG3DoXMgYmFqYXMgcHJvYmFiaWxpZGFkZXMgZGUgc29icmV2aXZpciBzb246IA0KKiAxNyUgc2kgZXJlcyBob21icmUgbWF5b3IgYSA5LjUgYcOxb3MuDQoqIDM4JSBzaSBlcmVzIG5pw7FvIHZhcsOzbiBtZW5vciBhIDkuNSBhw7FvcyBkZSAzwrAgY2xhc2UNCg==