Instalar Paquetes

library(readxl)
library(tidyverse)
library(lmtest)
library(plm)
library(gplots)
library(lavaan)
library(lavaanPlot)

Paso 1.Generar Conjunto de datos de panel

df1 <- read_excel("C:\\Users\\Chema\\Downloads\\hogares.xlsx")

panel1 <- pdata.frame(df1, index = c("HogarID", "Año"))

Paso 2. Prueba de Heterogeneidad

plotmeans(Ingreso ~ HogarID, main="Prueba de Heterogeneidad entre Hogares para el Ingreso", data = panel1)

Paso 3. Pruebas de Efectos Fijos y Aleatorios

# Modelo 1. Regresion Agrupada (pooled)

pooled <- plm(Ingreso ~ Satisfacción, data=panel1, model='pooling')
summary(pooled)
## Pooling Model
## 
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel1, model = "pooling")
## 
## Balanced Panel: n = 100, T = 10, N = 1000
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -20196.53  -5106.46   -575.98   5095.02  23468.66 
## 
## Coefficients:
##              Estimate Std. Error t-value  Pr(>|t|)    
## (Intercept)  10597.75     976.80  10.850 < 2.2e-16 ***
## Satisfacción  2890.77     166.68  17.343 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    6.8145e+10
## Residual Sum of Squares: 5.2364e+10
## R-Squared:      0.23158
## Adj. R-Squared: 0.23081
## F-statistic: 300.772 on 1 and 998 DF, p-value: < 2.22e-16
# Modelo 2. Efectos Fijos (within)
within <- plm(Ingreso ~ Satisfacción, data=panel1, model='within')
summary(within)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel1, model = "within")
## 
## Balanced Panel: n = 100, T = 10, N = 1000
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -15591.951  -3123.123    -74.284   3010.168  13134.979 
## 
## Coefficients:
##              Estimate Std. Error t-value  Pr(>|t|)    
## Satisfacción  1698.14     132.73  12.794 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    2.3013e+10
## Residual Sum of Squares: 1.9469e+10
## R-Squared:      0.15403
## Adj. R-Squared: 0.05993
## F-statistic: 163.687 on 1 and 899 DF, p-value: < 2.22e-16
# Prueba F
pFtest(within, pooled)
## 
##  F test for individual effects
## 
## data:  Ingreso ~ Satisfacción
## F = 15.343, df1 = 99, df2 = 899, p-value < 2.2e-16
## alternative hypothesis: significant effects
# Modelo 3. Efectos Aleatorios

# Metodo Walhus
walhus <- plm(Ingreso ~ Satisfacción, data=panel1, model='random', random.method = "walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel1, model = "random", 
##     random.method = "walhus")
## 
## Balanced Panel: n = 100, T = 10, N = 1000
## 
## Effects:
##                    var  std.dev share
## idiosyncratic 23574420     4855  0.45
## individual    28789336     5366  0.55
## theta: 0.7249
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -16507.33  -3220.23   -147.96   3184.91  15215.46 
## 
## Coefficients:
##              Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)  16632.69     925.15  17.978 < 2.2e-16 ***
## Satisfacción  1831.41     131.69  13.907 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    2.6429e+10
## Residual Sum of Squares: 2.2139e+10
## R-Squared:      0.16233
## Adj. R-Squared: 0.16149
## Chisq: 193.404 on 1 DF, p-value: < 2.22e-16
# Metodo Amemiya
amemiya <- plm(Ingreso ~ Satisfacción, data=panel1, model='random', random.method = "amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel1, model = "random", 
##     random.method = "amemiya")
## 
## Balanced Panel: n = 100, T = 10, N = 1000
## 
## Effects:
##                    var  std.dev share
## idiosyncratic 21631698     4651 0.393
## individual    33418160     5781 0.607
## theta: 0.7534
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -16370.54  -3188.47   -210.78   3188.52  14905.18 
## 
## Coefficients:
##              Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)  16777.35     953.98  17.587 < 2.2e-16 ***
## Satisfacción  1806.01     130.63  13.825 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    2.5757e+10
## Residual Sum of Squares: 2.1617e+10
## R-Squared:      0.16074
## Adj. R-Squared: 0.1599
## Chisq: 191.14 on 1 DF, p-value: < 2.22e-16
# Metodo Nerlove
nerlove <- plm(Ingreso ~ Satisfacción, data=panel1, model='random', random.method = "nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel1, model = "random", 
##     random.method = "nerlove")
## 
## Balanced Panel: n = 100, T = 10, N = 1000
## 
## Effects:
##                    var  std.dev share
## idiosyncratic 19468528     4412 0.351
## individual    35940737     5995 0.649
## theta: 0.7733
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -16275.51  -3113.76   -212.49   3188.29  14690.19 
## 
## Coefficients:
##              Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)  16869.92     981.37  17.190 < 2.2e-16 ***
## Satisfacción  1789.76     129.95  13.773 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    2.5332e+10
## Residual Sum of Squares: 2.1286e+10
## R-Squared:      0.15972
## Adj. R-Squared: 0.15888
## Chisq: 189.701 on 1 DF, p-value: < 2.22e-16
# Comparar r2 ajustada de los 3 metodos y elegir el que tenga el mayor
phtest(walhus, within)
## 
##  Hausman Test
## 
## data:  Ingreso ~ Satisfacción
## chisq = 64.632, df = 1, p-value = 9.03e-16
## alternative hypothesis: one model is inconsistent
# Por lo tanto nos quedamos con el Modelo de Efectos Fijos 

Tema 2. Series de Tiempo: Mapas

Paquetes

#install.packages("devtools")
#devtools::install_github("diegovalle/mxmaps")

library(mxmaps)
#install.packages("sf")
library(sf)
## Linking to GEOS 3.13.1, GDAL 3.11.0, PROJ 9.6.0; sf_use_s2() is TRUE
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
df2 <- df_mxstate_2020

df_mxstate_2020$value <- df2$pop

mxstate_choropleth(df_mxstate_2020)

1. Importar base de datos Population

df3 <- read.csv("C:\\Users\\Chema\\Downloads\\population.csv")

2. Serie de Tiempo TX

df4 <- df3 %>% filter(state == 'TX')

ts <- ts(df4$population, start=1900, frequency=1) # serie de tiempo anual
arima <- auto.arima(ts)
arima 
## Series: ts 
## ARIMA(0,2,2) 
## 
## Coefficients:
##           ma1      ma2
##       -0.5950  -0.1798
## s.e.   0.0913   0.0951
## 
## sigma^2 = 1.031e+10:  log likelihood = -1527.14
## AIC=3060.28   AICc=3060.5   BIC=3068.6
pronostico <- forecast(arima, level=c(95), h=31)
pronostico
##      Point Forecast    Lo 95    Hi 95
## 2020       29398472 29199487 29597457
## 2021       29806827 29463665 30149990
## 2022       30215183 29742956 30687410
## 2023       30623538 30024100 31222977
## 2024       31031894 30303359 31760429
## 2025       31440249 30579246 32301253
## 2026       31848605 30851090 32846119
## 2027       32256960 31118581 33395339
## 2028       32665316 31381587 33949044
## 2029       33073671 31640070 34507272
## 2030       33482027 31894047 35070007
## 2031       33890382 32143561 35637204
## 2032       34298738 32388674 36208801
## 2033       34707093 32629456 36784730
## 2034       35115449 32865983 37364914
## 2035       35523804 33098330 37949278
## 2036       35932160 33326573 38537746
## 2037       36340515 33550788 39130242
## 2038       36748871 33771046 39726695
## 2039       37157226 33987418 40327034
## 2040       37565581 34199972 40931191
## 2041       37973937 34408774 41539100
## 2042       38382292 34613887 42150698
## 2043       38790648 34815371 42765925
## 2044       39199003 35013284 43384723
## 2045       39607359 35207682 44007036
## 2046       40015714 35398618 44632810
## 2047       40424070 35586145 45261995
## 2048       40832425 35770311 45894540
## 2049       41240781 35951163 46530399
## 2050       41649136 36128748 47169524
plot(pronostico, main="Poblacion TX")

Tema 3. Modelo de Ecuaciones Estructurales

df_ecosistema <- read.csv("C:\\Users\\Chema\\Downloads\\ecosistema.csv")
modelo_ecosistema <- ' # Regresiones
                       # Variables Latentes
                       suelo =~ SPH + NC + OM
                       agua =~ WPH + DO + CL
                       ecosistema =~ SD + BM + EP
                       # Varianzas y covarianzas
                       # Intercepto
                       '

sem <- sem(modelo_ecosistema, data=df_ecosistema)
## Warning: lavaan->lav_data_full():  
##    some observed variances are (at least) a factor 1000 times larger than 
##    others; use varTable(fit) to investigate
## Warning: lavaan->lav_object_post_check():  
##    covariance matrix of latent variables is not positive definite ; use 
##    lavInspect(fit, "cov.lv") to investigate.
summary(sem)
## lavaan 0.6-19 ended normally after 271 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                17.149
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.842
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   suelo =~                                            
##     SPH               1.000                           
##     NC               82.643   49.671    1.664    0.096
##     OM                0.315    0.759    0.414    0.679
##   agua =~                                             
##     WPH               1.000                           
##     DO               -7.567    6.951   -1.089    0.276
##     CL                5.031    4.477    1.124    0.261
##   ecosistema =~                                       
##     SD                1.000                           
##     BM               -6.684   14.058   -0.475    0.634
##     EP              -20.398   39.077   -0.522    0.602
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   suelo ~~                                            
##     agua             -0.004    0.004   -1.006    0.315
##     ecosistema       -0.053    0.107   -0.497    0.619
##   agua ~~                                             
##     ecosistema       -0.019    0.040   -0.478    0.633
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .SPH               0.247    0.027    9.016    0.000
##    .NC              243.864   83.908    2.906    0.004
##    .OM                0.946    0.095    9.978    0.000
##    .WPH               0.066    0.007    9.938    0.000
##    .DO                0.876    0.098    8.977    0.000
##    .CL                0.261    0.032    8.086    0.000
##    .SD              110.456   11.097    9.954    0.000
##    .BM             1358.345  141.231    9.618    0.000
##    .EP             2459.363  429.999    5.719    0.000
##     suelo             0.018    0.015    1.197    0.231
##     agua              0.000    0.001    0.425    0.671
##     ecosistema        0.295    1.337    0.221    0.825
lavaanPlot(sem, coef = TRUE, cov = TRUE)