library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(gplots)
##
## Attaching package: 'gplots'
##
## The following object is masked from 'package:stats':
##
## lowess
library(plm)
##
## Attaching package: 'plm'
##
## The following objects are masked from 'package:dplyr':
##
## between, lag, lead
library(DataExplorer)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
library(dplyr)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(readxl)
# Base de datos de hogares
db1 <- read_excel("/Users/sebastianespi/Downloads/hogares.xlsx")
ddf1 <- pdata.frame (db1, index=c('HogarID','Año'))
#Base de datos de ecosistema
db2<- read.csv("/Users/sebastianespi/Downloads/ecosistema.csv")
plotmeans(Ingreso ~ HogarID, main = "Heterogenidad entre casas", data=db1)
# Modelo 1
pooled <- plm (Ingreso~ Satisfacción, data = ddf1, model="pooling")
summary(pooled)
## Pooling Model
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = ddf1, model = "pooling")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -20196.53 -5106.46 -575.98 5095.02 23468.66
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 10597.75 976.80 10.850 < 2.2e-16 ***
## Satisfacción 2890.77 166.68 17.343 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 6.8145e+10
## Residual Sum of Squares: 5.2364e+10
## R-Squared: 0.23158
## Adj. R-Squared: 0.23081
## F-statistic: 300.772 on 1 and 998 DF, p-value: < 2.22e-16
# Modelo 2
within <- plm(Ingreso ~ Satisfacción, data = ddf1, model="within")
summary(within)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = ddf1, model = "within")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -15591.951 -3123.123 -74.284 3010.168 13134.979
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Satisfacción 1698.14 132.73 12.794 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.3013e+10
## Residual Sum of Squares: 1.9469e+10
## R-Squared: 0.15403
## Adj. R-Squared: 0.05993
## F-statistic: 163.687 on 1 and 899 DF, p-value: < 2.22e-16
# Prueba F
pFtest(within,pooled)
##
## F test for individual effects
##
## data: Ingreso ~ Satisfacción
## F = 15.343, df1 = 99, df2 = 899, p-value < 2.2e-16
## alternative hypothesis: significant effects
# Modelo 3
walhus <- plm (Ingreso ~ Satisfacción, data = ddf1, model="random", random.method = "walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model
## (Wallace-Hussain's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = ddf1, model = "random",
## random.method = "walhus")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 23574420 4855 0.45
## individual 28789336 5366 0.55
## theta: 0.7249
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16507.33 -3220.23 -147.96 3184.91 15215.46
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16632.69 925.15 17.978 < 2.2e-16 ***
## Satisfacción 1831.41 131.69 13.907 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.6429e+10
## Residual Sum of Squares: 2.2139e+10
## R-Squared: 0.16233
## Adj. R-Squared: 0.16149
## Chisq: 193.404 on 1 DF, p-value: < 2.22e-16
# Metodo Ameniya
amemiya <- plm (Ingreso ~ Satisfacción, data = ddf1, model= "random", random.method="amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model
## (Amemiya's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = ddf1, model = "random",
## random.method = "amemiya")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 21631698 4651 0.393
## individual 33418160 5781 0.607
## theta: 0.7534
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16370.54 -3188.47 -210.78 3188.52 14905.18
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16777.35 953.98 17.587 < 2.2e-16 ***
## Satisfacción 1806.01 130.63 13.825 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.5757e+10
## Residual Sum of Squares: 2.1617e+10
## R-Squared: 0.16074
## Adj. R-Squared: 0.1599
## Chisq: 191.14 on 1 DF, p-value: < 2.22e-16
# Metodo nearlove
nerlove <- plm(Ingreso~ Satisfacción, data = ddf1, model="random", random.method = "nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model
## (Nerlove's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = ddf1, model = "random",
## random.method = "nerlove")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 19468528 4412 0.351
## individual 35940737 5995 0.649
## theta: 0.7733
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16275.51 -3113.76 -212.49 3188.29 14690.19
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16869.92 981.37 17.190 < 2.2e-16 ***
## Satisfacción 1789.76 129.95 13.773 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.5332e+10
## Residual Sum of Squares: 2.1286e+10
## R-Squared: 0.15972
## Adj. R-Squared: 0.15888
## Chisq: 189.701 on 1 DF, p-value: < 2.22e-16
# Comparar r2 ajustada de los 3 modelos y eligir el mayor
phtest(walhus,within)
##
## Hausman Test
##
## data: Ingreso ~ Satisfacción
## chisq = 64.632, df = 1, p-value = 9.03e-16
## alternative hypothesis: one model is inconsistent
# Si el P-value es <0.05 usamos efectos fijos (within)
# Por lo tanto nos quedamos con el modelo de efectos fijos
#install.packages("remotes")
#library(remotes)
# install.packages("devtools")
# devtools::install_github("diegovalle/mxmaps")
# 1
library(mxmaps)
library(forecast) # para el arima
ddf2 <-df_mxstate_2020
df_mxstate_2020$value <-ddf2$pop # remplazar aqui con tus valores
mxstate_choropleth(df_mxstate_2020)
df3 <- read_excel("/Users/sebastianespi/Downloads/population.xlsx")
df4 <- df3 %>% filter(state== "TX")
ts <- ts(df4$population, start=1900, frequency = 1) # serie de tiempo anual
arima <-auto.arima(ts)
pronostico <-forecast(arima, level=c(95), h=31)
pronostico
## Point Forecast Lo 95 Hi 95
## 2020 29398472 29199487 29597457
## 2021 29806827 29463665 30149990
## 2022 30215183 29742956 30687410
## 2023 30623538 30024100 31222977
## 2024 31031894 30303359 31760429
## 2025 31440249 30579246 32301253
## 2026 31848605 30851090 32846119
## 2027 32256960 31118581 33395339
## 2028 32665316 31381587 33949044
## 2029 33073671 31640070 34507272
## 2030 33482027 31894047 35070007
## 2031 33890382 32143561 35637204
## 2032 34298738 32388674 36208801
## 2033 34707093 32629456 36784730
## 2034 35115449 32865983 37364914
## 2035 35523804 33098330 37949278
## 2036 35932160 33326573 38537746
## 2037 36340515 33550788 39130242
## 2038 36748871 33771046 39726695
## 2039 37157226 33987418 40327034
## 2040 37565581 34199972 40931191
## 2041 37973937 34408774 41539100
## 2042 38382292 34613887 42150698
## 2043 38790648 34815371 42765925
## 2044 39199003 35013284 43384723
## 2045 39607359 35207682 44007036
## 2046 40015714 35398618 44632810
## 2047 40424070 35586145 45261995
## 2048 40832425 35770311 45894540
## 2049 41240781 35951163 46530399
## 2050 41649136 36128748 47169524
plot(pronostico, main="Poblacion en Texas")
modelo2 <-
'#Regresiones
# Variables latentes
Calidad.Suelo =~ SPH + NC + OM
Calidad.Agua =~ CL + DO + WPH
Salud.Ecosistema =~ SD + BM + EP
# Varianza y covarianza
Calidad.Suelo ~~ Calidad.Agua
Salud.Ecosistema ~~ Calidad.Suelo + Calidad.Agua
# Intercepto
'
db3 <- scale(db2)
db4 <- cfa(modelo2, db3)
## Warning: lavaan->lav_object_post_check():
## covariance matrix of latent variables is not positive definite ; use
## lavInspect(fit, "cov.lv") to investigate.
summary(df4)
## state year population
## Length:120 Min. :1900 Min. : 3055000
## Class :character 1st Qu.:1930 1st Qu.: 5823500
## Mode :character Median :1960 Median : 9514500
## Mean :1960 Mean :11825205
## 3rd Qu.:1989 3rd Qu.:16866230
## Max. :2019 Max. :28995881
lavaanPlot(db4, coef=TRUE, cov=TRUE)