Calidad del Suelo:
Calidad del Agua:
Salud del Ecosistema
library(tidyverse)
library(gplots)
library(plm)
library(forecast)
library(lavaan)
library(lavaanPlot)
library(DataExplorer)
library(readxl)
#install.packages("devtools")
#devtools::install_github("diegovalle/mxmaps")
#1
library(mxmaps)
library(remotes)
#install.packages("sf")
library(sf)
dfeco <- read.csv("C:\\Users\\aleja\\Documents\\00_Carrera_y_formación\\00_TEC_Por semestre_LIT\\SEMESTRE_8\\Bases_de_Datos\\ecosistema.csv")
head(dfeco)
## SD BM EP SPH NC OM WPH DO
## 1 39.14369 228.1324 376.7045 7.070328 97.57666 4.251173 7.333511 8.987428
## 2 59.97345 176.0758 273.5043 6.105917 59.82829 5.567595 7.054287 8.277449
## 3 52.82978 288.0281 275.4514 6.632617 81.58707 5.718151 7.399840 8.761089
## 4 34.93705 227.5319 234.5417 6.313864 103.36469 4.000619 7.296678 8.443330
## 5 44.21400 199.7477 299.5670 7.087300 73.60217 5.474898 6.814909 8.645304
## 6 66.51437 191.7335 348.8406 6.650423 125.32859 3.131500 6.643934 7.957347
## CL
## 1 1.725791
## 2 2.532691
## 3 1.738039
## 4 2.272994
## 5 1.717060
## 6 2.171582
dfhog <- read_excel("C:\\Users\\aleja\\Documents\\00_Carrera_y_formación\\00_TEC_Por semestre_LIT\\SEMESTRE_8\\Bases_de_Datos\\hogares.xlsx")
head(dfhog)
## # A tibble: 6 × 7
## HogarID Año Miembros Ingreso Gasto Ahorro Satisfacción
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 2010 2 41373. 23949. 17424. 5.54
## 2 1 2011 2 49362. 25511. 23851. 6.46
## 3 1 2012 2 34228. 24558. 9669. 5.48
## 4 1 2013 2 39475. 26494. 12981. 6.42
## 5 1 2014 2 45966. 30411. 15555. 4.12
## 6 1 2015 2 41671. 25042. 16629. 6.50
dfpop <- read.csv("C:\\Users\\aleja\\Documents\\00_Carrera_y_formación\\00_TEC_Por semestre_LIT\\SEMESTRE_8\\Bases_de_Datos\\population.csv")
head(dfpop)
## state year population
## 1 AK 1950 135000
## 2 AK 1951 158000
## 3 AK 1952 189000
## 4 AK 1953 205000
## 5 AK 1954 215000
## 6 AK 1955 222000
dfmaps <- df_mxstate_2020
df_mxstate_2020$value <-dfmaps$pop #Reemplazar aquí con tus valores
mxstate_choropleth(df_mxstate_2020)
panel_1 <- pdata.frame(dfhog, index = c("HogarID", "Año"))
plotmeans(Ingreso ~ HogarID, main= "Prueba de Heterogeneidad entre hogares para el Ingreso", data = panel_1)
pooled <- plm(Ingreso ~ Satisfacción, data= panel_1, model = "pooling")
summary(pooled)
## Pooling Model
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel_1, model = "pooling")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -20196.53 -5106.46 -575.98 5095.02 23468.66
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 10597.75 976.80 10.850 < 2.2e-16 ***
## Satisfacción 2890.77 166.68 17.343 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 6.8145e+10
## Residual Sum of Squares: 5.2364e+10
## R-Squared: 0.23158
## Adj. R-Squared: 0.23081
## F-statistic: 300.772 on 1 and 998 DF, p-value: < 2.22e-16
within <- plm(Ingreso ~ Satisfacción, data=panel_1, model = "within")
summary(within)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel_1, model = "within")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -15591.951 -3123.123 -74.284 3010.168 13134.979
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Satisfacción 1698.14 132.73 12.794 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.3013e+10
## Residual Sum of Squares: 1.9469e+10
## R-Squared: 0.15403
## Adj. R-Squared: 0.05993
## F-statistic: 163.687 on 1 and 899 DF, p-value: < 2.22e-16
{r}+ pFtest(within, pooled)
walhus <- plm(Ingreso ~ Satisfacción, data=panel_1, model = "random", random.method = "walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model
## (Wallace-Hussain's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel_1, model = "random",
## random.method = "walhus")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 23574420 4855 0.45
## individual 28789336 5366 0.55
## theta: 0.7249
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16507.33 -3220.23 -147.96 3184.91 15215.46
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16632.69 925.15 17.978 < 2.2e-16 ***
## Satisfacción 1831.41 131.69 13.907 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.6429e+10
## Residual Sum of Squares: 2.2139e+10
## R-Squared: 0.16233
## Adj. R-Squared: 0.16149
## Chisq: 193.404 on 1 DF, p-value: < 2.22e-16
amemiya <- plm(Ingreso ~ Satisfacción, data=panel_1, model = "random", random.method = "amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model
## (Amemiya's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel_1, model = "random",
## random.method = "amemiya")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 21631698 4651 0.393
## individual 33418160 5781 0.607
## theta: 0.7534
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16370.54 -3188.47 -210.78 3188.52 14905.18
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16777.35 953.98 17.587 < 2.2e-16 ***
## Satisfacción 1806.01 130.63 13.825 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.5757e+10
## Residual Sum of Squares: 2.1617e+10
## R-Squared: 0.16074
## Adj. R-Squared: 0.1599
## Chisq: 191.14 on 1 DF, p-value: < 2.22e-16
nerlove <- plm(Ingreso ~ Satisfacción, data=panel_1, model = "random", random.method = "nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model
## (Nerlove's transformation)
##
## Call:
## plm(formula = Ingreso ~ Satisfacción, data = panel_1, model = "random",
## random.method = "nerlove")
##
## Balanced Panel: n = 100, T = 10, N = 1000
##
## Effects:
## var std.dev share
## idiosyncratic 19468528 4412 0.351
## individual 35940737 5995 0.649
## theta: 0.7733
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -16275.51 -3113.76 -212.49 3188.29 14690.19
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16869.92 981.37 17.190 < 2.2e-16 ***
## Satisfacción 1789.76 129.95 13.773 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 2.5332e+10
## Residual Sum of Squares: 2.1286e+10
## R-Squared: 0.15972
## Adj. R-Squared: 0.15888
## Chisq: 189.701 on 1 DF, p-value: < 2.22e-16
phtest(walhus,within)
##
## Hausman Test
##
## data: Ingreso ~ Satisfacción
## chisq = 64.632, df = 1, p-value = 9.03e-16
## alternative hypothesis: one model is inconsistent
# Si el p-value es < 0.05, usamos Efectos Fijos (Within)
#Por lo tanto, nos quedamos con el Modelo de Efectos Fijos
df4 <- dfpop %>% filter(state == "TX")
ts <- ts(df4$population, start = 1900, frequency = 1) #Serie de Tiempo Anual
arima <- auto.arima(ts)
arima
## Series: ts
## ARIMA(0,2,2)
##
## Coefficients:
## ma1 ma2
## -0.5950 -0.1798
## s.e. 0.0913 0.0951
##
## sigma^2 = 1.031e+10: log likelihood = -1527.14
## AIC=3060.28 AICc=3060.5 BIC=3068.6
pronostico <- forecast(arima, level = c(95), h=31)
pronostico
## Point Forecast Lo 95 Hi 95
## 2020 29398472 29199487 29597457
## 2021 29806827 29463665 30149990
## 2022 30215183 29742956 30687410
## 2023 30623538 30024100 31222977
## 2024 31031894 30303359 31760429
## 2025 31440249 30579246 32301253
## 2026 31848605 30851090 32846119
## 2027 32256960 31118581 33395339
## 2028 32665316 31381587 33949044
## 2029 33073671 31640070 34507272
## 2030 33482027 31894047 35070007
## 2031 33890382 32143561 35637204
## 2032 34298738 32388674 36208801
## 2033 34707093 32629456 36784730
## 2034 35115449 32865983 37364914
## 2035 35523804 33098330 37949278
## 2036 35932160 33326573 38537746
## 2037 36340515 33550788 39130242
## 2038 36748871 33771046 39726695
## 2039 37157226 33987418 40327034
## 2040 37565581 34199972 40931191
## 2041 37973937 34408774 41539100
## 2042 38382292 34613887 42150698
## 2043 38790648 34815371 42765925
## 2044 39199003 35013284 43384723
## 2045 39607359 35207682 44007036
## 2046 40015714 35398618 44632810
## 2047 40424070 35586145 45261995
## 2048 40832425 35770311 45894540
## 2049 41240781 35951163 46530399
## 2050 41649136 36128748 47169524
plot(pronostico, main= "Población en Texas desde 1900 a 2050")
modelo <- ' # Regresiones
#Variables Latentes
Suelo =~ SPH + NC + OM
Agua =~ CL + DO + WPH
Eco =~ SD + BM + EP
#Varianzas y covarianzas
#Intercepto
'
dfeco1 <- scale(dfeco)
dfeco2 <- cfa(modelo, dfeco1)
## Warning: lavaan->lav_object_post_check():
## covariance matrix of latent variables is not positive definite ; use
## lavInspect(fit, "cov.lv") to investigate.
summary(dfeco2)
## lavaan 0.6-19 ended normally after 97 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 200
##
## Model Test User Model:
##
## Test statistic 17.149
## Degrees of freedom 24
## P-value (Chi-square) 0.842
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Suelo =~
## SPH 1.000
## NC 2.217 1.332 1.664 0.096
## OM 0.167 0.402 0.414 0.679
## Agua =~
## CL 1.000
## DO -0.827 0.427 -1.936 0.053
## WPH 0.404 0.359 1.124 0.261
## Eco =~
## SD 1.000
## BM -1.899 3.995 -0.475 0.634
## EP -4.224 8.093 -0.522 0.602
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## Suelo ~~
## Agua -0.079 0.051 -1.558 0.119
## Eco -0.010 0.020 -0.497 0.619
## Agua ~~
## Eco -0.018 0.034 -0.513 0.608
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .SPH 0.926 0.103 9.016 0.000
## .NC 0.657 0.226 2.906 0.004
## .OM 0.993 0.100 9.978 0.000
## .CL 0.953 0.118 8.086 0.000
## .DO 0.966 0.108 8.977 0.000
## .WPH 0.988 0.099 9.938 0.000
## .SD 0.992 0.100 9.954 0.000
## .BM 0.985 0.102 9.618 0.000
## .EP 0.948 0.166 5.720 0.000
## Suelo 0.069 0.057 1.197 0.231
## Agua 0.042 0.075 0.558 0.577
## Eco 0.003 0.012 0.221 0.825
lavaanPlot(dfeco2, coef=TRUE, cov=TRUE)