#Each outcome measure will have a series of tables/graphs #1. Starts
with basic descriptives, mean/sd by timepoint by drug group #2. Plots
with means by timepoint by drug group #3. outcome from Wilcoxon #4.
Outcome from the glm - showing the estimate, CI, and p value #5. Table
with model diagnostics. You want to see high R2, adjsuted R2, Shapiro
wilk looks for evidence of non-normal residuals, p value below 0.05
flags for warning, Cooks D looks for influential points, generally
anything 0.5 and above should be flagged. #6 Residual plots - these
should be a random scatter - any coning, or clear pattern needs to be
looked into #7 qq plots - points should be on diagonal, deviations on
tails are not good
SAND
sand_total
| A |
Baseline |
37.00000 |
10.67708 |
29 |
| A |
Week_12 |
35.06897 |
10.58277 |
29 |
| B |
Baseline |
36.62069 |
11.73339 |
29 |
| B |
Week_12 |
32.51724 |
11.45993 |
29 |
sand_hyperreactivity
| A |
Baseline |
3.448276 |
4.289407 |
29 |
| A |
Week_12 |
2.620690 |
3.288658 |
29 |
| B |
Baseline |
3.448276 |
3.679928 |
29 |
| B |
Week_12 |
2.517241 |
3.019232 |
29 |
sand_hyporeactivity
| A |
Baseline |
16.51724 |
8.279151 |
29 |
| A |
Week_12 |
15.17241 |
6.990141 |
29 |
| B |
Baseline |
15.62069 |
7.153490 |
29 |
| B |
Week_12 |
13.34483 |
7.719529 |
29 |
sand_seeking
| A |
Baseline |
17.03448 |
5.615557 |
29 |
| A |
Week_12 |
17.27586 |
6.250123 |
29 |
| B |
Baseline |
17.55172 |
7.174290 |
29 |
| B |
Week_12 |
16.65517 |
6.096110 |
29 |

## # A tibble: 7 × 6
## outcome W_statistic p_value median_A median_B n
## <chr> <dbl> <dbl> <dbl> <dbl> <int>
## 1 sand_total 230. 0.0730 -1 -4 28
## 2 sand_hyperreactivity 91 0.503 0 0 28
## 3 sand_hyporeactivity 176 0.253 -1 -2 28
## 4 sand_seeking 226. 0.207 0 -1 28
## 5 sand_totalvisual 196. 0.865 -1 -1 28
## 6 sand_totaltactile 155 0.613 -1 -1 28
## 7 sand_totalauditory 226 0.00761 0 -1 28

## # A tibble: 7 × 6
## outcome estimate std.error conf.low conf.high p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 sand_total -2.04 0.939 -3.98 -0.111 0.0390
## 2 sand_hyperreactivity -0.0588 0.389 -0.860 0.743 0.881
## 3 sand_hyporeactivity -1.34 0.905 -3.21 0.524 0.151
## 4 sand_seeking -0.531 0.757 -2.09 1.03 0.489
## 5 sand_totalvisual 0.0867 0.519 -0.981 1.15 0.869
## 6 sand_totaltactile 0.0273 0.476 -0.952 1.01 0.955
## 7 sand_totalauditory -2.09 0.533 -3.19 -0.993 0.000608
## # A tibble: 7 × 13
## outcome r.squared adj.r.squared AIC BIC shapiro_p shapiro_flag max_cooks
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl>
## 1 sand_tot… 0.956 0.900 329. 399. 0.659 FALSE 0.362
## 2 sand_hyp… 0.906 0.785 227. 297. 0.0662 FALSE 0.389
## 3 sand_hyp… 0.908 0.789 325. 395. 0.594 FALSE 0.176
## 4 sand_see… 0.911 0.797 302. 372. 0.684 FALSE 0.228
## 5 sand_tot… 0.916 0.809 260. 330. 0.998 FALSE 0.220
## 6 sand_tot… 0.899 0.769 250. 320. 0.991 FALSE 0.236
## 7 sand_tot… 0.919 0.814 264. 334. 0.848 FALSE 0.168
## # ℹ 5 more variables: cooks_cutoff <dbl>, cooks_flag <lgl>, max_hat <dbl>,
## # leverage_cutoff <dbl>, leverage_flag <lgl>


VEP Long
AMP
| A |
Baseline |
4.157586 |
3.487043 |
29 |
| A |
Week_12 |
4.316207 |
4.076654 |
29 |
| B |
Baseline |
3.729231 |
2.768107 |
26 |
| B |
Week_12 |
4.730385 |
4.665066 |
26 |


vep_long_msc_band_1
| A |
Baseline |
0.3869310 |
0.1595297 |
29 |
| A |
Week_12 |
0.3899655 |
0.1751706 |
29 |
| B |
Baseline |
0.3750000 |
0.1495586 |
26 |
| B |
Week_12 |
0.3893846 |
0.1576759 |
26 |


vep_long_msc_band_2
| A |
Baseline |
0.3574828 |
0.1866616 |
29 |
| A |
Week_12 |
0.3755517 |
0.2064568 |
29 |
| B |
Baseline |
0.3456154 |
0.1851177 |
26 |
| B |
Week_12 |
0.3769231 |
0.1633859 |
26 |


vep_long_msc_band_3
| A |
Baseline |
0.2172414 |
0.1538758 |
29 |
| A |
Week_12 |
0.1824138 |
0.1555469 |
29 |
| B |
Baseline |
0.1960385 |
0.1397242 |
26 |
| B |
Week_12 |
0.2070000 |
0.1302097 |
26 |


vep_long_msc_band_4
| A |
Baseline |
0.1196552 |
0.0504446 |
29 |
| A |
Week_12 |
0.1465517 |
0.0765980 |
29 |
| B |
Baseline |
0.1279231 |
0.0711303 |
26 |
| B |
Week_12 |
0.1526154 |
0.0735011 |
26 |


## # A tibble: 5 × 6
## outcome estimate std.error conf.low conf.high p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMP 0.220 0.471 -0.757 1.20 0.645
## 2 vep_long_msc_band_1 -0.0187 0.0351 -0.0915 0.0540 0.599
## 3 vep_long_msc_band_2 -0.0224 0.0317 -0.0881 0.0433 0.487
## 4 vep_long_msc_band_3 0.0248 0.0253 -0.0277 0.0772 0.338
## 5 vep_long_msc_band_4 -0.0112 0.0187 -0.0501 0.0277 0.557
## # A tibble: 5 × 13
## outcome r.squared adj.r.squared AIC BIC shapiro_p shapiro_flag max_cooks
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl>
## 1 AMP 0.943 0.859 227. 295. 0.755 FALSE 0.168
## 2 vep_lo… 0.788 0.478 -59.9 8.33 0.125 FALSE 0.155
## 3 vep_lo… 0.861 0.659 -70.8 -2.52 0.935 FALSE 0.202
## 4 vep_lo… 0.869 0.679 -102. -34.2 0.938 FALSE 0.197
## 5 vep_lo… 0.681 0.218 -125. -57.2 0.215 FALSE 0.242
## # ℹ 5 more variables: cooks_cutoff <dbl>, cooks_flag <lgl>, max_hat <dbl>,
## # leverage_cutoff <dbl>, leverage_flag <lgl>


VEP Short
AMP_Short
| A |
Baseline |
7.040000 |
5.342126 |
26 |
| A |
Week_12 |
7.619615 |
6.473463 |
26 |
| B |
Baseline |
6.510800 |
3.575760 |
25 |
| B |
Week_12 |
8.346400 |
7.352989 |
25 |


vep_short_msc_band_1
| A |
Baseline |
0.3081538 |
0.1128478 |
26 |
| A |
Week_12 |
0.3017308 |
0.1279195 |
26 |
| B |
Baseline |
0.2432400 |
0.1321238 |
25 |
| B |
Week_12 |
0.3006800 |
0.1269313 |
25 |


vep_short_msc_band_2
| A |
Baseline |
0.3165385 |
0.1215984 |
26 |
| A |
Week_12 |
0.3054615 |
0.1531201 |
26 |
| B |
Baseline |
0.2904000 |
0.1067891 |
25 |
| B |
Week_12 |
0.3198800 |
0.1437594 |
25 |


vep_short_msc_band_3
| A |
Baseline |
0.2107692 |
0.1112968 |
26 |
| A |
Week_12 |
0.2227692 |
0.1450455 |
26 |
| B |
Baseline |
0.2009200 |
0.1007724 |
25 |
| B |
Week_12 |
0.2150400 |
0.1502951 |
25 |


vep_short_msc_band_4
| A |
Baseline |
0.1206154 |
0.0580586 |
26 |
| A |
Week_12 |
0.1328846 |
0.0682040 |
26 |
| B |
Baseline |
0.1456800 |
0.0617938 |
25 |
| B |
Week_12 |
0.1492000 |
0.0856456 |
25 |


## # A tibble: 5 × 6
## outcome estimate std.error conf.low conf.high p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMP_Short 1.14 0.805 -0.542 2.82 0.173
## 2 vep_short_msc_band_1 0.0274 0.0316 -0.0385 0.0933 0.396
## 3 vep_short_msc_band_2 0.0259 0.0210 -0.0179 0.0697 0.231
## 4 vep_short_msc_band_3 -0.00143 0.0284 -0.0607 0.0579 0.960
## 5 vep_short_msc_band_4 0.0345 0.0154 0.00241 0.0665 0.0364
## # A tibble: 5 × 13
## outcome r.squared adj.r.squared AIC BIC shapiro_p shapiro_flag max_cooks
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl>
## 1 AMP_Sho… 0.937 0.842 263. 325. 0.782 FALSE 0.207
## 2 vep_sho… 0.795 0.487 -84.2 -22.4 0.787 FALSE 0.250
## 3 vep_sho… 0.909 0.772 -110. -48.0 0.112 FALSE 0.141
## 4 vep_sho… 0.828 0.570 -78.2 -16.3 0.00563 TRUE 0.595
## 5 vep_sho… 0.836 0.590 -146. -84.3 0.992 FALSE 0.544
## # ℹ 5 more variables: cooks_cutoff <dbl>, cooks_flag <lgl>, max_hat <dbl>,
## # leverage_cutoff <dbl>, leverage_flag <lgl>


ABC
abc_subscale1_irritability
| A |
Baseline |
10.758621 |
9.660875 |
29 |
| A |
Week_12 |
8.344828 |
7.162780 |
29 |
| A |
Week_4 |
9.068965 |
8.280489 |
29 |
| A |
Week_8 |
9.000000 |
7.101308 |
29 |
| B |
Baseline |
10.896552 |
9.347822 |
29 |
| B |
Week_12 |
7.793103 |
7.451650 |
29 |
| B |
Week_4 |
8.344828 |
8.844998 |
29 |
| B |
Week_8 |
7.827586 |
7.755500 |
29 |
abc_subscale2_lethargy
| A |
Baseline |
13.65517 |
8.469592 |
29 |
| A |
Week_12 |
10.65517 |
7.560593 |
29 |
| A |
Week_4 |
12.37931 |
7.997383 |
29 |
| A |
Week_8 |
11.17241 |
7.942062 |
29 |
| B |
Baseline |
14.68966 |
10.295989 |
29 |
| B |
Week_12 |
10.31034 |
7.714103 |
29 |
| B |
Week_4 |
11.44828 |
8.862385 |
29 |
| B |
Week_8 |
10.24138 |
7.404898 |
29 |
abc_subscale3_stereotypy
| A |
Baseline |
7.172414 |
5.251319 |
29 |
| A |
Week_12 |
5.413793 |
5.348680 |
29 |
| A |
Week_4 |
5.551724 |
4.428691 |
29 |
| A |
Week_8 |
5.724138 |
4.207956 |
29 |
| B |
Baseline |
6.965517 |
5.421404 |
29 |
| B |
Week_12 |
5.000000 |
4.590363 |
29 |
| B |
Week_4 |
5.620690 |
4.828589 |
29 |
| B |
Week_8 |
4.793103 |
4.091623 |
29 |
abc_subscale4_hyperact
| A |
Baseline |
23.44828 |
11.296606 |
29 |
| A |
Week_12 |
18.82759 |
9.914164 |
29 |
| A |
Week_4 |
20.20690 |
10.366082 |
29 |
| A |
Week_8 |
18.89655 |
9.828329 |
29 |
| B |
Baseline |
24.96552 |
9.578558 |
29 |
| B |
Week_12 |
18.68966 |
10.423543 |
29 |
| B |
Week_4 |
18.96552 |
9.469812 |
29 |
| B |
Week_8 |
18.89655 |
9.611544 |
29 |
abc_subscale5_in_speech
| A |
Baseline |
3.034483 |
3.877432 |
29 |
| A |
Week_12 |
2.172414 |
2.633154 |
29 |
| A |
Week_4 |
2.379310 |
3.004922 |
29 |
| A |
Week_8 |
2.379310 |
2.704676 |
29 |
| B |
Baseline |
2.793103 |
3.233522 |
29 |
| B |
Week_12 |
1.931034 |
3.161499 |
29 |
| B |
Week_4 |
2.103448 |
2.743106 |
29 |
| B |
Week_8 |
2.103448 |
2.730055 |
29 |

## # A tibble: 5 × 6
## outcome estimate std.error conf.low conf.high p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 abc_subscale1_irritability -0.0632 1.14 -2.41 2.28 0.956
## 2 abc_subscale2_lethargy -0.0213 0.929 -1.94 1.89 0.982
## 3 abc_subscale3_stereotypy -0.357 0.412 -1.20 0.490 0.394
## 4 abc_subscale4_hyperact -0.832 1.19 -3.28 1.61 0.490
## 5 abc_subscale5_in_speech -0.428 0.506 -1.47 0.614 0.406
## # A tibble: 5 × 13
## outcome r.squared adj.r.squared AIC BIC shapiro_p shapiro_flag max_cooks
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl>
## 1 abc_subs… 0.856 0.672 349. 419. 0.0312 TRUE 0.327
## 2 abc_subs… 0.916 0.808 323. 393. 0.0252 TRUE 0.155
## 3 abc_subs… 0.957 0.903 234. 304. 0.00157 TRUE 0.404
## 4 abc_subs… 0.924 0.826 350. 421. 0.947 FALSE 0.265
## 5 abc_subs… 0.820 0.590 255. 325. 0.0000217 TRUE 0.546
## # ℹ 5 more variables: cooks_cutoff <dbl>, cooks_flag <lgl>, max_hat <dbl>,
## # leverage_cutoff <dbl>, leverage_flag <lgl>

