Los Modelos de Ecuaciones estructurales (SEM) es una técnica de análisis de estadistica multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validad modelos teóricos y empiricos,
Holdzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grandw-White)
La base de datos esta incluida como paquete en R, e incluye las siguientes columnas:
Se busca identificar las relaciones entre las habilidades visual (x1,x2, x3), textual (x4, x5 y x6) y velocidad (x7, x8 y x9) de lso adolescentes.
Práctica: * verbigracia: ejemplo * ex libris: sello para libros * aquelarre: reunión de brujas * beodo: borracho * carpe diem: Aprovecha el día
#install.packages("lavaan")
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
# Lavaan: Análisis de variables latentes
#install.packages("lavaanPlot")
library(lavaanPlot)
library(readxl)
1.Regresión (~) variable que depende de otras. 2. Variables Latentes (=~) No se observa, se infiere. 3. Varianzas y covarianzas (~~)Relaciones entre variables latentes y observadas (Varianzas entre si misma, covarianza entre otras.) 4. Intercepto (~1) valor esperado cuando las demás variables son cero modelo1 <- # Regresiones # variables Latentes # Varianzas y Covarianzas # Intercepto
df1 <- HolzingerSwineford1939
summary(df1)
## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##
str(df1)
## 'data.frame': 301 obs. of 15 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 11 ...
## $ sex : int 1 2 2 1 2 2 1 2 2 2 ...
## $ ageyr : int 13 13 13 13 12 14 12 12 13 12 ...
## $ agemo : int 1 7 1 2 2 1 1 2 0 5 ...
## $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ grade : int 7 7 7 7 7 7 7 7 7 7 ...
## $ x1 : num 3.33 5.33 4.5 5.33 4.83 ...
## $ x2 : num 7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
## $ x3 : num 0.375 2.125 1.875 3 0.875 ...
## $ x4 : num 2.33 1.67 1 2.67 2.67 ...
## $ x5 : num 5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
## $ x6 : num 1.286 1.286 0.429 2.429 2.571 ...
## $ x7 : num 3.39 3.78 3.26 3 3.7 ...
## $ x8 : num 5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
## $ x9 : num 6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- ' # Regresiones
# variables Latentes
visual =~ x1 + x2 +x3
textual =~ x4 + x5 +x6
velocidad =~ x7 + x8 +x9
# Varianzas y Covarianzas
visual ~~ textual
textual ~~ velocidad
velocidad ~~ visual
# Intercepto '
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
## visual ~~
## velocidad 0.262 0.056 4.660 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
lavaanPlot(sem1, coef=TRUE, cov=TRUE)
En conclusión, la inteligencia de los adolescentes está compuesta por un grupo de factores que no se reducen a un sólo numero.
La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965.
La tabla incluye los siguientes datos:
y1: Calificaciones sobr libertad de prensa en 1960 y2: Libertad de la oposición politica en 1960 y3: Imparcialidad de elecciones en 1960 y4: Eficacia de la legislatura electa en 1960 y5: calificaciones sobre la libertad de prensa en 1965 y6: Libertad de la oposición politica en 1965 y7: Imparcialidad de elcciones en 1965 y8: Eficacia de la legislatura electa en 1965 x1: PIB per cápita eb 1960 x2:Consumo de energía inanimada per cápita en 1960 *x3: Porcentaje de la fuerza laboral en la industria en 1960
df2 <- PoliticalDemocracy
summary(df2)
## y1 y2 y3 y4
## Min. : 1.250 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 2.900 1st Qu.: 0.000 1st Qu.: 3.767 1st Qu.: 1.581
## Median : 5.400 Median : 3.333 Median : 6.667 Median : 3.333
## Mean : 5.465 Mean : 4.256 Mean : 6.563 Mean : 4.453
## 3rd Qu.: 7.500 3rd Qu.: 8.283 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## y5 y6 y7 y8
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 3.692 1st Qu.: 0.000 1st Qu.: 3.478 1st Qu.: 1.301
## Median : 5.000 Median : 2.233 Median : 6.667 Median : 3.333
## Mean : 5.136 Mean : 2.978 Mean : 6.196 Mean : 4.043
## 3rd Qu.: 7.500 3rd Qu.: 4.207 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## x1 x2 x3
## Min. :3.784 Min. :1.386 Min. :1.002
## 1st Qu.:4.477 1st Qu.:3.663 1st Qu.:2.300
## Median :5.075 Median :4.963 Median :3.568
## Mean :5.054 Mean :4.792 Mean :3.558
## 3rd Qu.:5.515 3rd Qu.:5.830 3rd Qu.:4.523
## Max. :6.737 Max. :7.872 Max. :6.425
str(df2)
## 'data.frame': 75 obs. of 11 variables:
## $ y1: num 2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
## $ y2: num 0 0 8.8 8.8 3.33 ...
## $ y3: num 3.33 3.33 10 10 10 ...
## $ y4: num 0 0 9.2 9.2 6.67 ...
## $ y5: num 1.25 6.25 8.75 8.91 7.5 ...
## $ y6: num 0 1.1 8.09 8.13 3.33 ...
## $ y7: num 3.73 6.67 10 10 10 ...
## $ y8: num 3.333 0.737 8.212 4.615 6.667 ...
## $ x1: num 4.44 5.38 5.96 6.29 5.86 ...
## $ x2: num 3.64 5.06 6.26 7.57 6.82 ...
## $ x3: num 2.56 3.57 5.22 6.27 4.57 ...
modelo2 <- '
# Variables Latentes
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
ind60 =~ x1 + x2 + x3
# Varianzas
dem65 ~~ dem60
dem60 ~~ ind60
dem65 ~~ ind60
#Intercepto
'
sem2 <- sem(modelo2, data = df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 25
##
## Number of observations 75
##
## Model Test User Model:
##
## Test statistic 72.462
## Degrees of freedom 41
## P-value (Chi-square) 0.002
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## dem60 =~
## y1 1.000
## y2 1.354 0.175 7.755 0.000
## y3 1.044 0.150 6.961 0.000
## y4 1.300 0.138 9.412 0.000
## dem65 =~
## y5 1.000
## y6 1.258 0.164 7.651 0.000
## y7 1.282 0.158 8.137 0.000
## y8 1.310 0.154 8.529 0.000
## ind60 =~
## x1 1.000
## x2 2.182 0.139 15.714 0.000
## x3 1.819 0.152 11.956 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## dem60 ~~
## dem65 4.487 0.911 4.924 0.000
## ind60 0.660 0.206 3.202 0.001
## dem65 ~~
## ind60 0.774 0.208 3.715 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .y1 1.942 0.395 4.910 0.000
## .y2 6.490 1.185 5.479 0.000
## .y3 5.340 0.943 5.662 0.000
## .y4 2.887 0.610 4.731 0.000
## .y5 2.390 0.447 5.351 0.000
## .y6 4.343 0.796 5.456 0.000
## .y7 3.510 0.668 5.252 0.000
## .y8 2.940 0.586 5.019 0.000
## .x1 0.082 0.020 4.180 0.000
## .x2 0.118 0.070 1.689 0.091
## .x3 0.467 0.090 5.174 0.000
## dem60 4.845 1.088 4.453 0.000
## dem65 4.345 1.051 4.134 0.000
## ind60 0.448 0.087 5.169 0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)
En conclusión, la industrialización impulsa la democracia, y una democracia estable, tiende a seguir estandolo.
df3 <- read_excel("/Users/sebastianfajardo/Downloads/Datos_SEM_Eng.xlsx")
modelo3 <- '
# Variables Latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
'
sem3 <- sem(modelo3, data = df3)
summary(sem3, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 58
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 769.246
## Degrees of freedom 293
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 5985.683
## Degrees of freedom 325
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.916
## Tucker-Lewis Index (TLI) 0.907
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -8774.100
## Loglikelihood unrestricted model (H1) -8389.477
##
## Akaike (AIC) 17664.199
## Bayesian (BIC) 17861.815
## Sample-size adjusted Bayesian (SABIC) 17678.006
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.085
## 90 Percent confidence interval - lower 0.078
## 90 Percent confidence interval - upper 0.093
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.888
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.074
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego =~
## RPD01 1.000 1.439 0.818
## RPD02 1.181 0.076 15.594 0.000 1.700 0.873
## RPD03 1.156 0.079 14.682 0.000 1.664 0.837
## RPD05 1.295 0.080 16.261 0.000 1.863 0.899
## relajacion =~
## RRE02 1.000 1.274 0.850
## RRE03 1.119 0.065 17.231 0.000 1.427 0.870
## RRE04 1.025 0.058 17.727 0.000 1.306 0.884
## RRE05 1.055 0.056 18.774 0.000 1.345 0.910
## RRE06 1.245 0.074 16.871 0.000 1.586 0.860
## RRE07 1.116 0.071 15.683 0.000 1.422 0.825
## RRE10 0.813 0.067 12.089 0.000 1.036 0.696
## maestria =~
## RMA02 1.000 1.407 0.729
## RMA03 1.155 0.096 12.063 0.000 1.624 0.800
## RMA04 1.179 0.089 13.271 0.000 1.659 0.874
## RMA05 1.140 0.087 13.048 0.000 1.604 0.860
## RMA06 0.647 0.075 8.618 0.000 0.910 0.581
## RMA07 1.103 0.085 13.051 0.000 1.552 0.860
## RMA08 1.109 0.085 12.986 0.000 1.560 0.856
## RMA09 1.030 0.084 12.254 0.000 1.449 0.811
## RMA10 1.056 0.088 12.040 0.000 1.486 0.798
## control =~
## RCO02 1.000 1.631 0.855
## RCO03 0.948 0.049 19.242 0.000 1.546 0.912
## RCO04 0.795 0.044 18.137 0.000 1.297 0.886
## RCO05 0.817 0.043 18.991 0.000 1.332 0.907
## RCO06 0.834 0.046 18.240 0.000 1.360 0.888
## RCO07 0.834 0.046 18.074 0.000 1.360 0.884
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego ~~
## relajacion 1.122 0.166 6.772 0.000 0.612 0.612
## maestria 0.648 0.159 4.064 0.000 0.320 0.320
## control 1.351 0.207 6.537 0.000 0.576 0.576
## relajacion ~~
## maestria 0.968 0.159 6.085 0.000 0.540 0.540
## control 1.483 0.195 7.610 0.000 0.713 0.713
## maestria ~~
## control 1.221 0.202 6.048 0.000 0.532 0.532
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .RPD01 1.022 0.116 8.783 0.000 1.022 0.331
## .RPD02 0.906 0.118 7.709 0.000 0.906 0.239
## .RPD03 1.182 0.139 8.493 0.000 1.182 0.299
## .RPD05 0.822 0.121 6.807 0.000 0.822 0.192
## .RRE02 0.626 0.068 9.265 0.000 0.626 0.278
## .RRE03 0.653 0.073 9.004 0.000 0.653 0.243
## .RRE04 0.480 0.055 8.780 0.000 0.480 0.219
## .RRE05 0.373 0.046 8.132 0.000 0.373 0.171
## .RRE06 0.886 0.097 9.143 0.000 0.886 0.260
## .RRE07 0.952 0.100 9.502 0.000 0.952 0.320
## .RRE10 1.141 0.113 10.094 0.000 1.141 0.515
## .RMA02 1.742 0.175 9.934 0.000 1.742 0.468
## .RMA03 1.489 0.155 9.581 0.000 1.489 0.361
## .RMA04 0.853 0.097 8.770 0.000 0.853 0.237
## .RMA05 0.905 0.101 8.984 0.000 0.905 0.260
## .RMA06 1.627 0.158 10.279 0.000 1.627 0.662
## .RMA07 0.846 0.094 8.981 0.000 0.846 0.260
## .RMA08 0.885 0.098 9.036 0.000 0.885 0.267
## .RMA09 1.089 0.115 9.495 0.000 1.089 0.342
## .RMA10 1.258 0.131 9.590 0.000 1.258 0.363
## .RCO02 0.979 0.104 9.376 0.000 0.979 0.269
## .RCO03 0.481 0.057 8.378 0.000 0.481 0.167
## .RCO04 0.462 0.052 8.967 0.000 0.462 0.215
## .RCO05 0.385 0.045 8.537 0.000 0.385 0.178
## .RCO06 0.494 0.055 8.922 0.000 0.494 0.211
## .RCO07 0.517 0.057 8.993 0.000 0.517 0.218
## desapego 2.070 0.284 7.293 0.000 1.000 1.000
## relajacion 1.624 0.207 7.839 0.000 1.000 1.000
## maestria 1.979 0.317 6.242 0.000 1.000 1.000
## control 2.661 0.335 7.931 0.000 1.000 1.000
lavaanPlot(model = sem3, coefs = TRUE, covs = TRUE, stars = TRUE)
modelo4 <- '
# Variables Latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
'
sem4 <- sem(modelo4, data = df3)
summary(sem4, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 2324.436
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.986
## Tucker-Lewis Index (TLI) 0.978
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -2017.154
## Loglikelihood unrestricted model (H1) -1993.543
##
## Akaike (AIC) 4062.308
## Bayesian (BIC) 4110.008
## Sample-size adjusted Bayesian (SABIC) 4065.641
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.103
## 90 Percent confidence interval - lower 0.072
## 90 Percent confidence interval - upper 0.136
## P-value H_0: RMSEA <= 0.050 0.004
## P-value H_0: RMSEA >= 0.080 0.892
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.012
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## energia =~
## EN01 1.000 1.674 0.893
## EN02 1.029 0.044 23.192 0.000 1.723 0.933
## EN04 0.999 0.044 22.583 0.000 1.672 0.924
## EN05 0.999 0.042 23.649 0.000 1.672 0.939
## EN06 0.986 0.042 23.722 0.000 1.651 0.940
## EN07 1.049 0.046 22.856 0.000 1.755 0.928
## EN08 1.036 0.043 24.173 0.000 1.734 0.946
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .EN01 0.711 0.074 9.651 0.000 0.711 0.202
## .EN02 0.444 0.049 9.012 0.000 0.444 0.130
## .EN04 0.481 0.052 9.214 0.000 0.481 0.147
## .EN05 0.375 0.042 8.830 0.000 0.375 0.118
## .EN06 0.359 0.041 8.798 0.000 0.359 0.116
## .EN07 0.499 0.055 9.129 0.000 0.499 0.139
## .EN08 0.353 0.041 8.580 0.000 0.353 0.105
## energia 2.801 0.327 8.565 0.000 1.000 1.000
lavaanPlot(model = sem4, coefs = TRUE, covs = TRUE, stars = TRUE)
modelo5 <- '
desapego =~ RPD01 + RPD02 + RPD03 + RPD05
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorbcion =~ EAB01 + EAB02 + EAB03
'
sem5 <- sem(modelo5, data = df3)
summary(sem5, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 94 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 112
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1839.261
## Degrees of freedom 791
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 11684.422
## Degrees of freedom 861
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.903
## Tucker-Lewis Index (TLI) 0.895
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -13572.104
## Loglikelihood unrestricted model (H1) -12652.474
##
## Akaike (AIC) 27368.209
## Bayesian (BIC) 27749.812
## Sample-size adjusted Bayesian (SABIC) 27394.870
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.077
## 90 Percent confidence interval - lower 0.072
## 90 Percent confidence interval - upper 0.082
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.151
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.064
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego =~
## RPD01 1.000 1.438 0.817
## RPD02 1.181 0.076 15.565 0.000 1.697 0.871
## RPD03 1.159 0.079 14.711 0.000 1.666 0.838
## RPD05 1.297 0.080 16.282 0.000 1.864 0.900
## relajacion =~
## RRE02 1.000 1.274 0.849
## RRE03 1.121 0.065 17.252 0.000 1.428 0.871
## RRE04 1.023 0.058 17.631 0.000 1.303 0.881
## RRE05 1.054 0.056 18.721 0.000 1.343 0.909
## RRE06 1.246 0.074 16.874 0.000 1.587 0.860
## RRE07 1.120 0.071 15.755 0.000 1.427 0.827
## RRE10 0.815 0.067 12.126 0.000 1.039 0.698
## maestria =~
## RMA02 1.000 1.407 0.730
## RMA03 1.152 0.096 12.048 0.000 1.621 0.798
## RMA04 1.179 0.089 13.281 0.000 1.659 0.874
## RMA05 1.139 0.087 13.050 0.000 1.603 0.860
## RMA06 0.648 0.075 8.639 0.000 0.912 0.582
## RMA07 1.103 0.084 13.061 0.000 1.552 0.860
## RMA08 1.109 0.085 13.002 0.000 1.561 0.857
## RMA09 1.030 0.084 12.276 0.000 1.450 0.812
## RMA10 1.057 0.088 12.059 0.000 1.487 0.799
## control =~
## RCO02 1.000 1.631 0.855
## RCO03 0.945 0.049 19.129 0.000 1.542 0.910
## RCO04 0.794 0.044 18.068 0.000 1.295 0.884
## RCO05 0.815 0.043 18.918 0.000 1.329 0.905
## RCO06 0.838 0.045 18.420 0.000 1.366 0.893
## RCO07 0.837 0.046 18.203 0.000 1.365 0.887
## energia =~
## EN01 1.000 1.681 0.897
## EN02 1.026 0.044 23.583 0.000 1.725 0.934
## EN04 0.996 0.043 22.959 0.000 1.674 0.925
## EN05 0.994 0.042 23.920 0.000 1.670 0.938
## EN06 0.980 0.041 23.933 0.000 1.648 0.938
## EN07 1.044 0.045 23.138 0.000 1.755 0.927
## EN08 1.030 0.042 24.458 0.000 1.732 0.945
## vigor =~
## EVI01 1.000 1.692 0.971
## EVI02 0.977 0.027 35.895 0.000 1.653 0.958
## EVI03 0.990 0.048 20.675 0.000 1.675 0.835
## dedicacion =~
## EDE01 1.000 1.858 0.946
## EDE02 0.915 0.035 26.258 0.000 1.699 0.924
## EDE03 0.581 0.037 15.858 0.000 1.080 0.763
## absorbcion =~
## EAB01 1.000 1.614 0.921
## EAB02 0.704 0.051 13.897 0.000 1.136 0.748
## EAB03 0.728 0.063 11.625 0.000 1.174 0.667
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego ~~
## relajacion 1.120 0.165 6.769 0.000 0.612 0.612
## maestria 0.647 0.159 4.064 0.000 0.320 0.320
## control 1.350 0.207 6.536 0.000 0.576 0.576
## energia 1.475 0.213 6.915 0.000 0.611 0.611
## vigor 1.148 0.196 5.848 0.000 0.472 0.472
## dedicacion 1.147 0.214 5.355 0.000 0.430 0.430
## absorbcion 0.853 0.186 4.586 0.000 0.368 0.368
## relajacion ~~
## maestria 0.970 0.159 6.093 0.000 0.541 0.541
## control 1.482 0.195 7.609 0.000 0.713 0.713
## energia 1.372 0.188 7.290 0.000 0.641 0.641
## vigor 0.957 0.168 5.690 0.000 0.444 0.444
## dedicacion 1.036 0.187 5.548 0.000 0.438 0.438
## absorbcion 0.752 0.162 4.656 0.000 0.366 0.366
## maestria ~~
## control 1.222 0.202 6.051 0.000 0.533 0.533
## energia 1.327 0.209 6.356 0.000 0.561 0.561
## vigor 1.009 0.191 5.290 0.000 0.424 0.424
## dedicacion 0.987 0.207 4.774 0.000 0.378 0.378
## absorbcion 0.866 0.185 4.692 0.000 0.381 0.381
## control ~~
## energia 1.989 0.252 7.877 0.000 0.726 0.726
## vigor 1.493 0.225 6.642 0.000 0.541 0.541
## dedicacion 1.534 0.246 6.238 0.000 0.506 0.506
## absorbcion 1.154 0.212 5.437 0.000 0.438 0.438
## energia ~~
## vigor 2.047 0.249 8.227 0.000 0.720 0.720
## dedicacion 1.850 0.259 7.134 0.000 0.592 0.592
## absorbcion 1.344 0.220 6.098 0.000 0.495 0.495
## vigor ~~
## dedicacion 2.763 0.293 9.420 0.000 0.879 0.879
## absorbcion 2.137 0.248 8.622 0.000 0.783 0.783
## dedicacion ~~
## absorbcion 2.734 0.293 9.323 0.000 0.912 0.912
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .RPD01 1.026 0.116 8.824 0.000 1.026 0.332
## .RPD02 0.913 0.117 7.793 0.000 0.913 0.241
## .RPD03 1.174 0.138 8.510 0.000 1.174 0.297
## .RPD05 0.818 0.119 6.852 0.000 0.818 0.191
## .RRE02 0.627 0.068 9.269 0.000 0.627 0.279
## .RRE03 0.649 0.072 8.991 0.000 0.649 0.241
## .RRE04 0.488 0.055 8.822 0.000 0.488 0.223
## .RRE05 0.377 0.046 8.164 0.000 0.377 0.173
## .RRE06 0.884 0.097 9.139 0.000 0.884 0.260
## .RRE07 0.939 0.099 9.482 0.000 0.939 0.316
## .RRE10 1.136 0.113 10.090 0.000 1.136 0.513
## .RMA02 1.740 0.175 9.938 0.000 1.740 0.468
## .RMA03 1.499 0.156 9.599 0.000 1.499 0.363
## .RMA04 0.854 0.097 8.786 0.000 0.854 0.237
## .RMA05 0.909 0.101 9.005 0.000 0.909 0.261
## .RMA06 1.624 0.158 10.280 0.000 1.624 0.661
## .RMA07 0.847 0.094 8.996 0.000 0.847 0.260
## .RMA08 0.884 0.098 9.045 0.000 0.884 0.266
## .RMA09 1.085 0.114 9.498 0.000 1.085 0.341
## .RMA10 1.255 0.131 9.595 0.000 1.255 0.362
## .RCO02 0.980 0.104 9.397 0.000 0.980 0.269
## .RCO03 0.496 0.058 8.494 0.000 0.496 0.173
## .RCO04 0.469 0.052 9.026 0.000 0.469 0.219
## .RCO05 0.392 0.045 8.619 0.000 0.392 0.182
## .RCO06 0.476 0.054 8.873 0.000 0.476 0.203
## .RCO07 0.504 0.056 8.970 0.000 0.504 0.213
## .EN01 0.687 0.071 9.659 0.000 0.687 0.196
## .EN02 0.439 0.048 9.068 0.000 0.439 0.129
## .EN04 0.474 0.051 9.261 0.000 0.474 0.145
## .EN05 0.381 0.043 8.946 0.000 0.381 0.120
## .EN06 0.369 0.041 8.941 0.000 0.369 0.120
## .EN07 0.501 0.054 9.209 0.000 0.501 0.140
## .EN08 0.359 0.041 8.720 0.000 0.359 0.107
## .EVI01 0.174 0.036 4.859 0.000 0.174 0.057
## .EVI02 0.245 0.039 6.351 0.000 0.245 0.082
## .EVI03 1.222 0.124 9.829 0.000 1.222 0.304
## .EDE01 0.402 0.065 6.153 0.000 0.402 0.104
## .EDE02 0.492 0.065 7.542 0.000 0.492 0.146
## .EDE03 0.834 0.084 9.885 0.000 0.834 0.417
## .EAB01 0.468 0.098 4.757 0.000 0.468 0.152
## .EAB02 1.018 0.109 9.328 0.000 1.018 0.441
## .EAB03 1.722 0.176 9.798 0.000 1.722 0.555
## desapego 2.067 0.284 7.287 0.000 1.000 1.000
## relajacion 1.623 0.207 7.834 0.000 1.000 1.000
## maestria 1.980 0.317 6.247 0.000 1.000 1.000
## control 2.660 0.335 7.932 0.000 1.000 1.000
## energia 2.825 0.327 8.627 0.000 1.000 1.000
## vigor 2.862 0.289 9.909 0.000 1.000 1.000
## dedicacion 3.451 0.367 9.408 0.000 1.000 1.000
## absorbcion 2.605 0.301 8.662 0.000 1.000 1.000
lavaanPlot(model = sem5, coefs = TRUE, covs = TRUE, stars = TRUE)
modelo4 <- ' #Regresiones
# Variables latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Varianzas y covarianzas
#Intercepto
'
sem4 <- sem(modelo4, data = df3)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.029 0.044 23.192 0.000
## EN04 0.999 0.044 22.583 0.000
## EN05 0.999 0.042 23.649 0.000
## EN06 0.986 0.042 23.722 0.000
## EN07 1.049 0.046 22.856 0.000
## EN08 1.036 0.043 24.173 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .EN01 0.711 0.074 9.651 0.000
## .EN02 0.444 0.049 9.012 0.000
## .EN04 0.481 0.052 9.214 0.000
## .EN05 0.375 0.042 8.830 0.000
## .EN06 0.359 0.041 8.798 0.000
## .EN07 0.499 0.055 9.129 0.000
## .EN08 0.353 0.041 8.580 0.000
## energia 2.801 0.327 8.565 0.000
modelo5 <- ' #Regresiones
# Variables latentes
#Parte 1
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
#Parte 2
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
#Parte 3
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorcion =~ EAB01 + EAB02
# Varianzas y covarianzas
#Intercepto
'
sem5 <- sem(modelo5, data = df3)
summary(sem5)
## lavaan 0.6-19 ended normally after 103 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 120
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2313.998
## Degrees of freedom 961
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.204 0.081 14.854 0.000
## RPD03 1.144 0.085 13.492 0.000
## RPD05 1.311 0.085 15.353 0.000
## RPD06 1.080 0.088 12.240 0.000
## RPD07 1.226 0.085 14.502 0.000
## RPD08 1.157 0.086 13.445 0.000
## RPD09 1.313 0.086 15.205 0.000
## RPD10 1.341 0.088 15.302 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.121 0.065 17.282 0.000
## RRE04 1.022 0.058 17.629 0.000
## RRE05 1.054 0.056 18.736 0.000
## RRE06 1.245 0.074 16.864 0.000
## RRE07 1.119 0.071 15.754 0.000
## RRE10 0.817 0.067 12.165 0.000
## maestria =~
## RMA02 1.000
## RMA03 1.152 0.096 12.038 0.000
## RMA04 1.179 0.089 13.273 0.000
## RMA05 1.140 0.087 13.046 0.000
## RMA06 0.648 0.075 8.634 0.000
## RMA07 1.103 0.085 13.056 0.000
## RMA08 1.110 0.085 12.997 0.000
## RMA09 1.031 0.084 12.268 0.000
## RMA10 1.057 0.088 12.052 0.000
## control =~
## RCO02 1.000
## RCO03 0.945 0.049 19.120 0.000
## RCO04 0.794 0.044 18.058 0.000
## RCO05 0.815 0.043 18.910 0.000
## RCO06 0.838 0.045 18.422 0.000
## RCO07 0.837 0.046 18.200 0.000
## energia =~
## EN01 1.000
## EN02 1.026 0.044 23.552 0.000
## EN04 0.996 0.043 22.929 0.000
## EN05 0.994 0.042 23.900 0.000
## EN06 0.981 0.041 23.931 0.000
## EN07 1.044 0.045 23.110 0.000
## EN08 1.031 0.042 24.444 0.000
## vigor =~
## EVI01 1.000
## EVI02 0.978 0.027 35.863 0.000
## EVI03 0.991 0.048 20.695 0.000
## dedicacion =~
## EDE01 1.000
## EDE02 0.912 0.034 26.456 0.000
## EDE03 0.576 0.037 15.716 0.000
## absorcion =~
## EAB01 1.000
## EAB02 0.655 0.052 12.563 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## desapego ~~
## relajacion 1.155 0.164 7.022 0.000
## maestria 0.697 0.156 4.477 0.000
## control 1.321 0.201 6.588 0.000
## energia 1.387 0.204 6.785 0.000
## vigor 1.051 0.186 5.635 0.000
## dedicacion 1.096 0.205 5.336 0.000
## absorcion 0.860 0.181 4.755 0.000
## relajacion ~~
## maestria 0.970 0.159 6.093 0.000
## control 1.482 0.195 7.609 0.000
## energia 1.372 0.188 7.290 0.000
## vigor 0.957 0.168 5.690 0.000
## dedicacion 1.038 0.187 5.553 0.000
## absorcion 0.766 0.164 4.682 0.000
## maestria ~~
## control 1.222 0.202 6.050 0.000
## energia 1.326 0.209 6.355 0.000
## vigor 1.008 0.191 5.290 0.000
## dedicacion 0.990 0.207 4.779 0.000
## absorcion 0.883 0.187 4.725 0.000
## control ~~
## energia 1.988 0.252 7.875 0.000
## vigor 1.492 0.225 6.641 0.000
## dedicacion 1.539 0.246 6.248 0.000
## absorcion 1.221 0.216 5.647 0.000
## energia ~~
## vigor 2.046 0.249 8.225 0.000
## dedicacion 1.854 0.260 7.142 0.000
## absorcion 1.382 0.223 6.189 0.000
## vigor ~~
## dedicacion 2.770 0.294 9.434 0.000
## absorcion 2.191 0.251 8.744 0.000
## dedicacion ~~
## absorcion 2.797 0.296 9.442 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.162 0.119 9.778 0.000
## .RPD02 0.997 0.108 9.236 0.000
## .RPD03 1.422 0.146 9.722 0.000
## .RPD05 0.976 0.109 8.953 0.000
## .RPD06 1.836 0.184 9.983 0.000
## .RPD07 1.173 0.125 9.393 0.000
## .RPD08 1.475 0.151 9.734 0.000
## .RPD09 1.038 0.115 9.046 0.000
## .RPD10 1.043 0.116 8.986 0.000
## .RRE02 0.626 0.067 9.275 0.000
## .RRE03 0.647 0.072 8.994 0.000
## .RRE04 0.490 0.055 8.840 0.000
## .RRE05 0.377 0.046 8.179 0.000
## .RRE06 0.888 0.097 9.156 0.000
## .RRE07 0.941 0.099 9.492 0.000
## .RRE10 1.131 0.112 10.089 0.000
## .RMA02 1.742 0.175 9.938 0.000
## .RMA03 1.500 0.156 9.600 0.000
## .RMA04 0.854 0.097 8.786 0.000
## .RMA05 0.907 0.101 9.001 0.000
## .RMA06 1.624 0.158 10.280 0.000
## .RMA07 0.846 0.094 8.993 0.000
## .RMA08 0.883 0.098 9.042 0.000
## .RMA09 1.086 0.114 9.498 0.000
## .RMA10 1.255 0.131 9.594 0.000
## .RCO02 0.981 0.104 9.399 0.000
## .RCO03 0.496 0.058 8.496 0.000
## .RCO04 0.470 0.052 9.028 0.000
## .RCO05 0.392 0.046 8.620 0.000
## .RCO06 0.475 0.054 8.870 0.000
## .RCO07 0.503 0.056 8.969 0.000
## .EN01 0.689 0.071 9.662 0.000
## .EN02 0.439 0.048 9.070 0.000
## .EN04 0.475 0.051 9.263 0.000
## .EN05 0.380 0.043 8.944 0.000
## .EN06 0.368 0.041 8.933 0.000
## .EN07 0.502 0.054 9.211 0.000
## .EN08 0.358 0.041 8.714 0.000
## .EVI01 0.176 0.036 4.910 0.000
## .EVI02 0.244 0.038 6.341 0.000
## .EVI03 1.219 0.124 9.824 0.000
## .EDE01 0.387 0.064 6.037 0.000
## .EDE02 0.494 0.065 7.606 0.000
## .EDE03 0.848 0.086 9.917 0.000
## .EAB01 0.376 0.122 3.075 0.002
## .EAB02 1.150 0.120 9.588 0.000
## desapego 1.931 0.275 7.018 0.000
## relajacion 1.624 0.207 7.838 0.000
## maestria 1.979 0.317 6.243 0.000
## control 2.659 0.335 7.930 0.000
## energia 2.823 0.327 8.623 0.000
## vigor 2.860 0.289 9.903 0.000
## dedicacion 3.466 0.367 9.448 0.000
## absorcion 2.697 0.312 8.655 0.000
modelo_cfa <- '
desapego =~ RPD01 + RPD02 + RPD03 + RPD05
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorbcion =~ EAB01 + EAB02 + EAB03
'
cfa_model <- cfa(modelo_cfa, data = df3)
summary(cfa_model, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 94 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 112
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1839.261
## Degrees of freedom 791
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 11684.422
## Degrees of freedom 861
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.903
## Tucker-Lewis Index (TLI) 0.895
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -13572.104
## Loglikelihood unrestricted model (H1) -12652.474
##
## Akaike (AIC) 27368.209
## Bayesian (BIC) 27749.812
## Sample-size adjusted Bayesian (SABIC) 27394.870
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.077
## 90 Percent confidence interval - lower 0.072
## 90 Percent confidence interval - upper 0.082
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.151
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.064
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego =~
## RPD01 1.000 1.438 0.817
## RPD02 1.181 0.076 15.565 0.000 1.697 0.871
## RPD03 1.159 0.079 14.711 0.000 1.666 0.838
## RPD05 1.297 0.080 16.282 0.000 1.864 0.900
## relajacion =~
## RRE02 1.000 1.274 0.849
## RRE03 1.121 0.065 17.252 0.000 1.428 0.871
## RRE04 1.023 0.058 17.631 0.000 1.303 0.881
## RRE05 1.054 0.056 18.721 0.000 1.343 0.909
## RRE06 1.246 0.074 16.874 0.000 1.587 0.860
## RRE07 1.120 0.071 15.755 0.000 1.427 0.827
## RRE10 0.815 0.067 12.126 0.000 1.039 0.698
## maestria =~
## RMA02 1.000 1.407 0.730
## RMA03 1.152 0.096 12.048 0.000 1.621 0.798
## RMA04 1.179 0.089 13.281 0.000 1.659 0.874
## RMA05 1.139 0.087 13.050 0.000 1.603 0.860
## RMA06 0.648 0.075 8.639 0.000 0.912 0.582
## RMA07 1.103 0.084 13.061 0.000 1.552 0.860
## RMA08 1.109 0.085 13.002 0.000 1.561 0.857
## RMA09 1.030 0.084 12.276 0.000 1.450 0.812
## RMA10 1.057 0.088 12.059 0.000 1.487 0.799
## control =~
## RCO02 1.000 1.631 0.855
## RCO03 0.945 0.049 19.129 0.000 1.542 0.910
## RCO04 0.794 0.044 18.068 0.000 1.295 0.884
## RCO05 0.815 0.043 18.918 0.000 1.329 0.905
## RCO06 0.838 0.045 18.420 0.000 1.366 0.893
## RCO07 0.837 0.046 18.203 0.000 1.365 0.887
## energia =~
## EN01 1.000 1.681 0.897
## EN02 1.026 0.044 23.583 0.000 1.725 0.934
## EN04 0.996 0.043 22.959 0.000 1.674 0.925
## EN05 0.994 0.042 23.920 0.000 1.670 0.938
## EN06 0.980 0.041 23.933 0.000 1.648 0.938
## EN07 1.044 0.045 23.138 0.000 1.755 0.927
## EN08 1.030 0.042 24.458 0.000 1.732 0.945
## vigor =~
## EVI01 1.000 1.692 0.971
## EVI02 0.977 0.027 35.895 0.000 1.653 0.958
## EVI03 0.990 0.048 20.675 0.000 1.675 0.835
## dedicacion =~
## EDE01 1.000 1.858 0.946
## EDE02 0.915 0.035 26.258 0.000 1.699 0.924
## EDE03 0.581 0.037 15.858 0.000 1.080 0.763
## absorbcion =~
## EAB01 1.000 1.614 0.921
## EAB02 0.704 0.051 13.897 0.000 1.136 0.748
## EAB03 0.728 0.063 11.625 0.000 1.174 0.667
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## desapego ~~
## relajacion 1.120 0.165 6.769 0.000 0.612 0.612
## maestria 0.647 0.159 4.064 0.000 0.320 0.320
## control 1.350 0.207 6.536 0.000 0.576 0.576
## energia 1.475 0.213 6.915 0.000 0.611 0.611
## vigor 1.148 0.196 5.848 0.000 0.472 0.472
## dedicacion 1.147 0.214 5.355 0.000 0.430 0.430
## absorbcion 0.853 0.186 4.586 0.000 0.368 0.368
## relajacion ~~
## maestria 0.970 0.159 6.093 0.000 0.541 0.541
## control 1.482 0.195 7.609 0.000 0.713 0.713
## energia 1.372 0.188 7.290 0.000 0.641 0.641
## vigor 0.957 0.168 5.690 0.000 0.444 0.444
## dedicacion 1.036 0.187 5.548 0.000 0.438 0.438
## absorbcion 0.752 0.162 4.656 0.000 0.366 0.366
## maestria ~~
## control 1.222 0.202 6.051 0.000 0.533 0.533
## energia 1.327 0.209 6.356 0.000 0.561 0.561
## vigor 1.009 0.191 5.290 0.000 0.424 0.424
## dedicacion 0.987 0.207 4.774 0.000 0.378 0.378
## absorbcion 0.866 0.185 4.692 0.000 0.381 0.381
## control ~~
## energia 1.989 0.252 7.877 0.000 0.726 0.726
## vigor 1.493 0.225 6.642 0.000 0.541 0.541
## dedicacion 1.534 0.246 6.238 0.000 0.506 0.506
## absorbcion 1.154 0.212 5.437 0.000 0.438 0.438
## energia ~~
## vigor 2.047 0.249 8.227 0.000 0.720 0.720
## dedicacion 1.850 0.259 7.134 0.000 0.592 0.592
## absorbcion 1.344 0.220 6.098 0.000 0.495 0.495
## vigor ~~
## dedicacion 2.763 0.293 9.420 0.000 0.879 0.879
## absorbcion 2.137 0.248 8.622 0.000 0.783 0.783
## dedicacion ~~
## absorbcion 2.734 0.293 9.323 0.000 0.912 0.912
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .RPD01 1.026 0.116 8.824 0.000 1.026 0.332
## .RPD02 0.913 0.117 7.793 0.000 0.913 0.241
## .RPD03 1.174 0.138 8.510 0.000 1.174 0.297
## .RPD05 0.818 0.119 6.852 0.000 0.818 0.191
## .RRE02 0.627 0.068 9.269 0.000 0.627 0.279
## .RRE03 0.649 0.072 8.991 0.000 0.649 0.241
## .RRE04 0.488 0.055 8.822 0.000 0.488 0.223
## .RRE05 0.377 0.046 8.164 0.000 0.377 0.173
## .RRE06 0.884 0.097 9.139 0.000 0.884 0.260
## .RRE07 0.939 0.099 9.482 0.000 0.939 0.316
## .RRE10 1.136 0.113 10.090 0.000 1.136 0.513
## .RMA02 1.740 0.175 9.938 0.000 1.740 0.468
## .RMA03 1.499 0.156 9.599 0.000 1.499 0.363
## .RMA04 0.854 0.097 8.786 0.000 0.854 0.237
## .RMA05 0.909 0.101 9.005 0.000 0.909 0.261
## .RMA06 1.624 0.158 10.280 0.000 1.624 0.661
## .RMA07 0.847 0.094 8.996 0.000 0.847 0.260
## .RMA08 0.884 0.098 9.045 0.000 0.884 0.266
## .RMA09 1.085 0.114 9.498 0.000 1.085 0.341
## .RMA10 1.255 0.131 9.595 0.000 1.255 0.362
## .RCO02 0.980 0.104 9.397 0.000 0.980 0.269
## .RCO03 0.496 0.058 8.494 0.000 0.496 0.173
## .RCO04 0.469 0.052 9.026 0.000 0.469 0.219
## .RCO05 0.392 0.045 8.619 0.000 0.392 0.182
## .RCO06 0.476 0.054 8.873 0.000 0.476 0.203
## .RCO07 0.504 0.056 8.970 0.000 0.504 0.213
## .EN01 0.687 0.071 9.659 0.000 0.687 0.196
## .EN02 0.439 0.048 9.068 0.000 0.439 0.129
## .EN04 0.474 0.051 9.261 0.000 0.474 0.145
## .EN05 0.381 0.043 8.946 0.000 0.381 0.120
## .EN06 0.369 0.041 8.941 0.000 0.369 0.120
## .EN07 0.501 0.054 9.209 0.000 0.501 0.140
## .EN08 0.359 0.041 8.720 0.000 0.359 0.107
## .EVI01 0.174 0.036 4.859 0.000 0.174 0.057
## .EVI02 0.245 0.039 6.351 0.000 0.245 0.082
## .EVI03 1.222 0.124 9.829 0.000 1.222 0.304
## .EDE01 0.402 0.065 6.153 0.000 0.402 0.104
## .EDE02 0.492 0.065 7.542 0.000 0.492 0.146
## .EDE03 0.834 0.084 9.885 0.000 0.834 0.417
## .EAB01 0.468 0.098 4.757 0.000 0.468 0.152
## .EAB02 1.018 0.109 9.328 0.000 1.018 0.441
## .EAB03 1.722 0.176 9.798 0.000 1.722 0.555
## desapego 2.067 0.284 7.287 0.000 1.000 1.000
## relajacion 1.623 0.207 7.834 0.000 1.000 1.000
## maestria 1.980 0.317 6.247 0.000 1.000 1.000
## control 2.660 0.335 7.932 0.000 1.000 1.000
## energia 2.825 0.327 8.627 0.000 1.000 1.000
## vigor 2.862 0.289 9.909 0.000 1.000 1.000
## dedicacion 3.451 0.367 9.408 0.000 1.000 1.000
## absorbcion 2.605 0.301 8.662 0.000 1.000 1.000
lavaanPlot(model = cfa_model, coefs = TRUE, covs = TRUE, stars = TRUE)
En conclusión, las experiencias de recuperación pueden entenderse como un conjunto de 4 dominios: desapego, relajación, maestría y control. Cada uno de ellos contribuye significativamente en la variable latente. La energía recuperada es unidimensional, y sus variables también contribuyen significativamente. De manera global, tanto la energía como las experiencias de recuperación contribuyen significativamente en el engagement laboral, destacando la relación de la dedicación con la absorción del trabajo.