#install.packages("rpart")
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)
#install.packages("neuralnet")
library(neuralnet)
#install.packages("ggplot2") # Gráficas
library(ggplot2)
#install.packages("lattice") # Crear gráficos
library(lattice)
#install.packages ("caret") # Algoritmos de aprendizaje automático
library (caret)
#install.packages ("datasets") # Usar bases de datos, en este caso Iris
library(datasets)
#install.packages ("DataExplorer") # Análisis Exploratorio
library (DataExplorer)
#install.packages("kernlab")
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
cancer_de_mama <- read.csv("C:\\Concentracion LIT\\Modulo2\\cancer_de_mama.csv")
df <- data.frame(cancer_de_mama)
summary(df)
## diagnosis radius_mean texture_mean perimeter_mean
## Length:569 Min. : 6.981 Min. : 9.71 Min. : 43.79
## Class :character 1st Qu.:11.700 1st Qu.:16.17 1st Qu.: 75.17
## Mode :character Median :13.370 Median :18.84 Median : 86.24
## Mean :14.127 Mean :19.29 Mean : 91.97
## 3rd Qu.:15.780 3rd Qu.:21.80 3rd Qu.:104.10
## Max. :28.110 Max. :39.28 Max. :188.50
## area_mean smoothness_mean compactness_mean concavity_mean
## Min. : 143.5 Min. :0.05263 Min. :0.01938 Min. :0.00000
## 1st Qu.: 420.3 1st Qu.:0.08637 1st Qu.:0.06492 1st Qu.:0.02956
## Median : 551.1 Median :0.09587 Median :0.09263 Median :0.06154
## Mean : 654.9 Mean :0.09636 Mean :0.10434 Mean :0.08880
## 3rd Qu.: 782.7 3rd Qu.:0.10530 3rd Qu.:0.13040 3rd Qu.:0.13070
## Max. :2501.0 Max. :0.16340 Max. :0.34540 Max. :0.42680
## concave_points_mean symmetry_mean fractal_dimension_mean radius_se
## Min. :0.00000 Min. :0.1060 Min. :0.04996 Min. :0.1115
## 1st Qu.:0.02031 1st Qu.:0.1619 1st Qu.:0.05770 1st Qu.:0.2324
## Median :0.03350 Median :0.1792 Median :0.06154 Median :0.3242
## Mean :0.04892 Mean :0.1812 Mean :0.06280 Mean :0.4052
## 3rd Qu.:0.07400 3rd Qu.:0.1957 3rd Qu.:0.06612 3rd Qu.:0.4789
## Max. :0.20120 Max. :0.3040 Max. :0.09744 Max. :2.8730
## texture_se perimeter_se area_se smoothness_se
## Min. :0.3602 Min. : 0.757 Min. : 6.802 Min. :0.001713
## 1st Qu.:0.8339 1st Qu.: 1.606 1st Qu.: 17.850 1st Qu.:0.005169
## Median :1.1080 Median : 2.287 Median : 24.530 Median :0.006380
## Mean :1.2169 Mean : 2.866 Mean : 40.337 Mean :0.007041
## 3rd Qu.:1.4740 3rd Qu.: 3.357 3rd Qu.: 45.190 3rd Qu.:0.008146
## Max. :4.8850 Max. :21.980 Max. :542.200 Max. :0.031130
## compactness_se concavity_se concave_points_se symmetry_se
## Min. :0.002252 Min. :0.00000 Min. :0.000000 Min. :0.007882
## 1st Qu.:0.013080 1st Qu.:0.01509 1st Qu.:0.007638 1st Qu.:0.015160
## Median :0.020450 Median :0.02589 Median :0.010930 Median :0.018730
## Mean :0.025478 Mean :0.03189 Mean :0.011796 Mean :0.020542
## 3rd Qu.:0.032450 3rd Qu.:0.04205 3rd Qu.:0.014710 3rd Qu.:0.023480
## Max. :0.135400 Max. :0.39600 Max. :0.052790 Max. :0.078950
## fractal_dimension_se radius_worst texture_worst perimeter_worst
## Min. :0.0008948 Min. : 7.93 Min. :12.02 Min. : 50.41
## 1st Qu.:0.0022480 1st Qu.:13.01 1st Qu.:21.08 1st Qu.: 84.11
## Median :0.0031870 Median :14.97 Median :25.41 Median : 97.66
## Mean :0.0037949 Mean :16.27 Mean :25.68 Mean :107.26
## 3rd Qu.:0.0045580 3rd Qu.:18.79 3rd Qu.:29.72 3rd Qu.:125.40
## Max. :0.0298400 Max. :36.04 Max. :49.54 Max. :251.20
## area_worst smoothness_worst compactness_worst concavity_worst
## Min. : 185.2 Min. :0.07117 Min. :0.02729 Min. :0.0000
## 1st Qu.: 515.3 1st Qu.:0.11660 1st Qu.:0.14720 1st Qu.:0.1145
## Median : 686.5 Median :0.13130 Median :0.21190 Median :0.2267
## Mean : 880.6 Mean :0.13237 Mean :0.25427 Mean :0.2722
## 3rd Qu.:1084.0 3rd Qu.:0.14600 3rd Qu.:0.33910 3rd Qu.:0.3829
## Max. :4254.0 Max. :0.22260 Max. :1.05800 Max. :1.2520
## concave_points_worst symmetry_worst fractal_dimension_worst
## Min. :0.00000 Min. :0.1565 Min. :0.05504
## 1st Qu.:0.06493 1st Qu.:0.2504 1st Qu.:0.07146
## Median :0.09993 Median :0.2822 Median :0.08004
## Mean :0.11461 Mean :0.2901 Mean :0.08395
## 3rd Qu.:0.16140 3rd Qu.:0.3179 3rd Qu.:0.09208
## Max. :0.29100 Max. :0.6638 Max. :0.20750
str(df)
## 'data.frame': 569 obs. of 31 variables:
## $ diagnosis : chr "M" "M" "M" "M" ...
## $ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave_points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## $ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## $ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## $ area_se : num 153.4 74.1 94 27.2 94.4 ...
## $ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## $ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## $ concave_points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## $ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## $ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## $ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## $ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## $ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## $ area_worst : num 2019 1956 1709 568 1575 ...
## $ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## $ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## $ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## $ concave_points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## $ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## $ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
head(df)
## diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1 M 17.99 10.38 122.80 1001.0 0.11840
## 2 M 20.57 17.77 132.90 1326.0 0.08474
## 3 M 19.69 21.25 130.00 1203.0 0.10960
## 4 M 11.42 20.38 77.58 386.1 0.14250
## 5 M 20.29 14.34 135.10 1297.0 0.10030
## 6 M 12.45 15.70 82.57 477.1 0.12780
## compactness_mean concavity_mean concave_points_mean symmetry_mean
## 1 0.27760 0.3001 0.14710 0.2419
## 2 0.07864 0.0869 0.07017 0.1812
## 3 0.15990 0.1974 0.12790 0.2069
## 4 0.28390 0.2414 0.10520 0.2597
## 5 0.13280 0.1980 0.10430 0.1809
## 6 0.17000 0.1578 0.08089 0.2087
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1 0.07871 1.0950 0.9053 8.589 153.40
## 2 0.05667 0.5435 0.7339 3.398 74.08
## 3 0.05999 0.7456 0.7869 4.585 94.03
## 4 0.09744 0.4956 1.1560 3.445 27.23
## 5 0.05883 0.7572 0.7813 5.438 94.44
## 6 0.07613 0.3345 0.8902 2.217 27.19
## smoothness_se compactness_se concavity_se concave_points_se symmetry_se
## 1 0.006399 0.04904 0.05373 0.01587 0.03003
## 2 0.005225 0.01308 0.01860 0.01340 0.01389
## 3 0.006150 0.04006 0.03832 0.02058 0.02250
## 4 0.009110 0.07458 0.05661 0.01867 0.05963
## 5 0.011490 0.02461 0.05688 0.01885 0.01756
## 6 0.007510 0.03345 0.03672 0.01137 0.02165
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1 0.006193 25.38 17.33 184.60 2019.0
## 2 0.003532 24.99 23.41 158.80 1956.0
## 3 0.004571 23.57 25.53 152.50 1709.0
## 4 0.009208 14.91 26.50 98.87 567.7
## 5 0.005115 22.54 16.67 152.20 1575.0
## 6 0.005082 15.47 23.75 103.40 741.6
## smoothness_worst compactness_worst concavity_worst concave_points_worst
## 1 0.1622 0.6656 0.7119 0.2654
## 2 0.1238 0.1866 0.2416 0.1860
## 3 0.1444 0.4245 0.4504 0.2430
## 4 0.2098 0.8663 0.6869 0.2575
## 5 0.1374 0.2050 0.4000 0.1625
## 6 0.1791 0.5249 0.5355 0.1741
## symmetry_worst fractal_dimension_worst
## 1 0.4601 0.11890
## 2 0.2750 0.08902
## 3 0.3613 0.08758
## 4 0.6638 0.17300
## 5 0.2364 0.07678
## 6 0.3985 0.12440
cancer_de_mama <- cancer_de_mama[,c("diagnosis", "radius_mean", "texture_mean", "perimeter_mean", "area_mean", "smoothness_mean", "compactness_mean", "concavity_mean",
"concave_points_mean", "symmetry_mean", "fractal_dimension_mean")]
cancer_de_mama$diagnosis <- factor(cancer_de_mama$diagnosis, levels = c("M", "B"))
str(cancer_de_mama)
## 'data.frame': 569 obs. of 11 variables:
## $ diagnosis : Factor w/ 2 levels "M","B": 1 1 1 1 1 1 1 1 1 1 ...
## $ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave_points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean: num 0.0787 0.0567 0.06 0.0974 0.0588 ...
arbol_cancer_de_mama <- rpart(diagnosis~., data=cancer_de_mama)
rpart.plot(arbol_cancer_de_mama)
prp(arbol_cancer_de_mama, extra=7, prefix = "fraccion\n")
En conclusion, las mas altas probabilidades de que el diagnostico sea benigno son
97%: Si el concave es menor de 0.051 y el area_mean menor de 696.
94%: Si el concave es mayor de 0.051 y texture menor de 16, pero concave es menor que 0.079
Y por el contrario, las mas altas probabilidades de un diagnostico maligno:
# Normalmente 80-20
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$diagnosis, p=0.8, list = FALSE)
entrenamiento <- cancer_de_mama[renglones_entrenamiento, ]
prueba <- cancer_de_mama[-renglones_entrenamiento, ]
modelo5 <- train(diagnosis ~ ., data=entrenamiento,
method = "nnet", #Cambiar
preProcess = c("scale", "center"),
trControl = trainControl(method="cv", number=10)
)
## # weights: 13
## initial value 262.852887
## iter 10 value 70.609437
## iter 20 value 64.546421
## iter 30 value 57.317690
## iter 40 value 55.655902
## iter 50 value 55.269971
## iter 60 value 55.215698
## iter 70 value 55.013382
## iter 80 value 54.983822
## iter 90 value 54.958822
## iter 100 value 54.933881
## final value 54.933881
## stopped after 100 iterations
## # weights: 37
## initial value 324.647267
## iter 10 value 52.761411
## iter 20 value 33.594391
## iter 30 value 22.089999
## iter 40 value 20.162890
## iter 50 value 19.591472
## iter 60 value 19.302073
## iter 70 value 19.061345
## iter 80 value 18.976040
## iter 90 value 18.950420
## iter 100 value 18.922419
## final value 18.922419
## stopped after 100 iterations
## # weights: 61
## initial value 243.343199
## iter 10 value 59.953810
## iter 20 value 44.536631
## iter 30 value 30.803207
## iter 40 value 18.863191
## iter 50 value 5.543866
## iter 60 value 0.980608
## iter 70 value 0.100439
## iter 80 value 0.000890
## final value 0.000077
## converged
## # weights: 13
## initial value 312.188154
## iter 10 value 79.343767
## iter 20 value 70.152394
## iter 30 value 69.474631
## iter 40 value 69.466812
## final value 69.466798
## converged
## # weights: 37
## initial value 300.039791
## iter 10 value 90.496889
## iter 20 value 60.262214
## iter 30 value 57.348992
## iter 40 value 52.740342
## iter 50 value 52.244307
## iter 60 value 52.183777
## final value 52.183747
## converged
## # weights: 61
## initial value 284.785204
## iter 10 value 66.835685
## iter 20 value 54.204007
## iter 30 value 50.926420
## iter 40 value 50.027544
## iter 50 value 49.635243
## iter 60 value 49.553447
## iter 70 value 49.540061
## iter 80 value 49.538812
## final value 49.538695
## converged
## # weights: 13
## initial value 386.596775
## iter 10 value 74.121021
## iter 20 value 62.224714
## iter 30 value 56.862866
## iter 40 value 56.408644
## iter 50 value 55.349097
## iter 60 value 55.163680
## iter 70 value 55.134719
## iter 80 value 55.127520
## iter 90 value 55.107772
## iter 100 value 55.107032
## final value 55.107032
## stopped after 100 iterations
## # weights: 37
## initial value 393.083357
## iter 10 value 50.515083
## iter 20 value 39.080672
## iter 30 value 29.692059
## iter 40 value 17.629483
## iter 50 value 10.266854
## iter 60 value 8.730551
## iter 70 value 8.394069
## iter 80 value 8.234457
## iter 90 value 8.169380
## iter 100 value 8.045147
## final value 8.045147
## stopped after 100 iterations
## # weights: 61
## initial value 334.817714
## iter 10 value 56.884241
## iter 20 value 30.194704
## iter 30 value 20.806781
## iter 40 value 16.607687
## iter 50 value 15.691824
## iter 60 value 15.345333
## iter 70 value 13.519343
## iter 80 value 13.023630
## iter 90 value 12.903240
## iter 100 value 12.842043
## final value 12.842043
## stopped after 100 iterations
## # weights: 13
## initial value 281.991800
## iter 10 value 72.256778
## iter 20 value 65.803482
## iter 30 value 59.756163
## iter 40 value 56.143223
## iter 50 value 55.729681
## iter 60 value 55.624762
## iter 70 value 55.371144
## iter 80 value 55.306779
## iter 90 value 55.294936
## iter 100 value 55.275715
## final value 55.275715
## stopped after 100 iterations
## # weights: 37
## initial value 317.244142
## iter 10 value 67.542742
## iter 20 value 51.031041
## iter 30 value 38.445924
## iter 40 value 31.587340
## iter 50 value 30.392223
## iter 60 value 28.401034
## iter 70 value 27.472274
## iter 80 value 27.197832
## iter 90 value 26.806286
## iter 100 value 26.308570
## final value 26.308570
## stopped after 100 iterations
## # weights: 61
## initial value 254.499449
## iter 10 value 50.469899
## iter 20 value 25.858280
## iter 30 value 7.856915
## iter 40 value 4.579678
## iter 50 value 4.306305
## iter 60 value 4.231443
## iter 70 value 4.185178
## iter 80 value 4.182189
## iter 90 value 4.179678
## iter 100 value 4.177928
## final value 4.177928
## stopped after 100 iterations
## # weights: 13
## initial value 335.561056
## iter 10 value 78.685485
## iter 20 value 70.711885
## iter 30 value 70.626683
## final value 70.626504
## converged
## # weights: 37
## initial value 325.791203
## iter 10 value 77.747932
## iter 20 value 59.102900
## iter 30 value 53.708151
## iter 40 value 51.547316
## iter 50 value 51.200146
## iter 60 value 51.179173
## final value 51.179149
## converged
## # weights: 61
## initial value 280.382405
## iter 10 value 63.464864
## iter 20 value 54.734037
## iter 30 value 50.168200
## iter 40 value 49.732482
## iter 50 value 49.669416
## iter 60 value 49.653787
## iter 70 value 49.651188
## iter 80 value 49.651023
## iter 80 value 49.651023
## iter 80 value 49.651023
## final value 49.651023
## converged
## # weights: 13
## initial value 257.325771
## iter 10 value 67.250226
## iter 20 value 56.677948
## iter 30 value 55.843217
## iter 40 value 55.741174
## iter 50 value 55.487364
## iter 60 value 55.457596
## iter 70 value 55.441353
## iter 80 value 55.428590
## final value 55.428533
## converged
## # weights: 37
## initial value 353.282837
## iter 10 value 72.767668
## iter 20 value 44.790648
## iter 30 value 33.179037
## iter 40 value 23.529448
## iter 50 value 22.188364
## iter 60 value 22.055879
## iter 70 value 21.980368
## iter 80 value 21.909945
## iter 90 value 21.700167
## iter 100 value 21.425272
## final value 21.425272
## stopped after 100 iterations
## # weights: 61
## initial value 285.535637
## iter 10 value 66.159903
## iter 20 value 42.952836
## iter 30 value 30.486378
## iter 40 value 24.460770
## iter 50 value 23.570634
## iter 60 value 23.272962
## iter 70 value 23.129872
## iter 80 value 23.074071
## iter 90 value 23.030569
## iter 100 value 22.987638
## final value 22.987638
## stopped after 100 iterations
## # weights: 13
## initial value 325.445418
## iter 10 value 65.979516
## iter 20 value 60.943063
## iter 30 value 59.636435
## iter 40 value 59.521077
## iter 50 value 59.333361
## iter 60 value 59.196536
## iter 70 value 59.183078
## iter 80 value 59.161068
## iter 90 value 59.151265
## iter 100 value 59.132267
## final value 59.132267
## stopped after 100 iterations
## # weights: 37
## initial value 293.191054
## iter 10 value 60.631711
## iter 20 value 45.781689
## iter 30 value 35.197322
## iter 40 value 28.570978
## iter 50 value 28.147799
## iter 60 value 28.141280
## final value 28.141266
## converged
## # weights: 61
## initial value 278.048147
## iter 10 value 57.860776
## iter 20 value 42.680948
## iter 30 value 30.713136
## iter 40 value 22.978257
## iter 50 value 22.047022
## iter 60 value 20.959509
## iter 70 value 20.694155
## iter 80 value 19.722669
## iter 90 value 19.386615
## iter 100 value 19.150788
## final value 19.150788
## stopped after 100 iterations
## # weights: 13
## initial value 344.581959
## iter 10 value 82.335483
## iter 20 value 74.562969
## iter 30 value 73.965780
## iter 40 value 73.965673
## iter 40 value 73.965673
## iter 40 value 73.965673
## final value 73.965673
## converged
## # weights: 37
## initial value 283.758324
## iter 10 value 87.979068
## iter 20 value 67.733996
## iter 30 value 59.102222
## iter 40 value 57.197596
## iter 50 value 56.755584
## iter 60 value 56.701886
## iter 70 value 56.696469
## final value 56.696468
## converged
## # weights: 61
## initial value 287.735163
## iter 10 value 120.134053
## iter 20 value 70.785500
## iter 30 value 60.360851
## iter 40 value 56.331088
## iter 50 value 54.340652
## iter 60 value 52.866634
## iter 70 value 52.614782
## iter 80 value 51.921005
## iter 90 value 51.806995
## iter 100 value 51.794007
## final value 51.794007
## stopped after 100 iterations
## # weights: 13
## initial value 276.218345
## iter 10 value 67.907362
## iter 20 value 61.951243
## iter 30 value 60.243385
## iter 40 value 59.844701
## iter 50 value 59.382291
## iter 60 value 59.308471
## iter 70 value 59.298074
## iter 80 value 59.286116
## iter 90 value 59.282725
## iter 100 value 59.280507
## final value 59.280507
## stopped after 100 iterations
## # weights: 37
## initial value 316.372830
## iter 10 value 73.083183
## iter 20 value 56.038105
## iter 30 value 51.043301
## iter 40 value 46.699658
## iter 50 value 43.542947
## iter 60 value 42.824038
## iter 70 value 42.737881
## iter 80 value 42.701566
## iter 90 value 42.632971
## iter 100 value 42.524928
## final value 42.524928
## stopped after 100 iterations
## # weights: 61
## initial value 269.447214
## iter 10 value 63.176539
## iter 20 value 45.472073
## iter 30 value 29.152276
## iter 40 value 21.533666
## iter 50 value 16.031765
## iter 60 value 13.460169
## iter 70 value 10.865326
## iter 80 value 10.247244
## iter 90 value 8.828201
## iter 100 value 7.380834
## final value 7.380834
## stopped after 100 iterations
## # weights: 13
## initial value 308.075473
## iter 10 value 106.333964
## iter 20 value 71.137861
## iter 30 value 68.815383
## iter 40 value 66.941865
## iter 50 value 62.652882
## iter 60 value 59.265303
## iter 70 value 57.131233
## iter 80 value 56.571066
## iter 90 value 56.544616
## iter 100 value 56.480040
## final value 56.480040
## stopped after 100 iterations
## # weights: 37
## initial value 283.099446
## iter 10 value 55.356200
## iter 20 value 41.853683
## iter 30 value 35.843577
## iter 40 value 33.083272
## iter 50 value 30.613026
## iter 60 value 29.229265
## iter 70 value 29.221361
## final value 29.221341
## converged
## # weights: 61
## initial value 236.787035
## iter 10 value 56.062201
## iter 20 value 29.960223
## iter 30 value 17.516557
## iter 40 value 14.942721
## iter 50 value 12.773162
## iter 60 value 12.078206
## iter 70 value 11.652492
## iter 80 value 11.611263
## iter 90 value 11.536497
## iter 100 value 11.510465
## final value 11.510465
## stopped after 100 iterations
## # weights: 13
## initial value 277.722211
## iter 10 value 82.357488
## iter 20 value 71.620764
## iter 30 value 71.562866
## final value 71.562854
## converged
## # weights: 37
## initial value 320.661150
## iter 10 value 72.379391
## iter 20 value 62.386250
## iter 30 value 59.927937
## iter 40 value 58.694006
## iter 50 value 56.522361
## iter 60 value 56.191582
## iter 70 value 56.044976
## iter 80 value 56.014059
## iter 90 value 56.010159
## iter 100 value 56.009932
## final value 56.009932
## stopped after 100 iterations
## # weights: 61
## initial value 268.363518
## iter 10 value 60.560796
## iter 20 value 53.023638
## iter 30 value 51.430024
## iter 40 value 51.245447
## iter 50 value 51.229162
## iter 60 value 51.226079
## final value 51.226032
## converged
## # weights: 13
## initial value 316.003201
## iter 10 value 101.165413
## iter 20 value 67.879378
## iter 30 value 65.007813
## iter 40 value 62.048440
## iter 50 value 59.890172
## iter 60 value 57.049484
## iter 70 value 56.685972
## iter 80 value 56.654793
## iter 90 value 56.577927
## iter 100 value 56.536653
## final value 56.536653
## stopped after 100 iterations
## # weights: 37
## initial value 305.368958
## iter 10 value 61.892640
## iter 20 value 46.747392
## iter 30 value 42.833666
## iter 40 value 40.185986
## iter 50 value 37.892448
## iter 60 value 37.146749
## iter 70 value 36.150920
## iter 80 value 34.463194
## iter 90 value 33.893850
## iter 100 value 33.565970
## final value 33.565970
## stopped after 100 iterations
## # weights: 61
## initial value 319.563256
## iter 10 value 75.990153
## iter 20 value 53.182537
## iter 30 value 44.403675
## iter 40 value 40.756581
## iter 50 value 40.081065
## iter 60 value 39.613274
## iter 70 value 38.914914
## iter 80 value 37.758051
## iter 90 value 35.296847
## iter 100 value 33.292523
## final value 33.292523
## stopped after 100 iterations
## # weights: 13
## initial value 325.381328
## iter 10 value 95.475671
## iter 20 value 65.913058
## iter 30 value 61.115061
## iter 40 value 60.516392
## iter 50 value 59.877605
## iter 60 value 59.590336
## iter 70 value 59.566637
## iter 80 value 59.546943
## iter 90 value 59.537225
## iter 100 value 59.523417
## final value 59.523417
## stopped after 100 iterations
## # weights: 37
## initial value 307.480096
## iter 10 value 71.615079
## iter 20 value 44.166916
## iter 30 value 36.683819
## iter 40 value 32.031082
## iter 50 value 28.433422
## iter 60 value 26.766362
## iter 70 value 25.721497
## iter 80 value 24.977988
## iter 90 value 24.495667
## iter 100 value 23.662677
## final value 23.662677
## stopped after 100 iterations
## # weights: 61
## initial value 279.653579
## iter 10 value 61.920271
## iter 20 value 34.150467
## iter 30 value 19.271675
## iter 40 value 14.542946
## iter 50 value 12.375336
## iter 60 value 11.820388
## iter 70 value 11.803922
## iter 80 value 11.803519
## iter 90 value 11.803461
## iter 100 value 11.797822
## final value 11.797822
## stopped after 100 iterations
## # weights: 13
## initial value 270.876529
## iter 10 value 95.463313
## iter 20 value 78.453604
## iter 30 value 75.257268
## iter 40 value 75.011359
## final value 75.010000
## converged
## # weights: 37
## initial value 289.176647
## iter 10 value 80.497270
## iter 20 value 70.646478
## iter 30 value 64.303828
## iter 40 value 59.137090
## iter 50 value 57.675692
## iter 60 value 56.024493
## iter 70 value 55.864407
## final value 55.862473
## converged
## # weights: 61
## initial value 270.865458
## iter 10 value 63.474512
## iter 20 value 56.759754
## iter 30 value 54.651040
## iter 40 value 54.324099
## iter 50 value 54.192998
## iter 60 value 54.170484
## final value 54.170306
## converged
## # weights: 13
## initial value 375.460073
## iter 10 value 91.934736
## iter 20 value 67.470354
## iter 30 value 62.328396
## iter 40 value 61.236009
## iter 50 value 59.925593
## iter 60 value 59.802929
## iter 70 value 59.749889
## iter 80 value 59.663648
## iter 90 value 59.660106
## iter 100 value 59.657428
## final value 59.657428
## stopped after 100 iterations
## # weights: 37
## initial value 278.235329
## iter 10 value 64.956310
## iter 20 value 57.879576
## iter 30 value 49.466890
## iter 40 value 45.147824
## iter 50 value 44.480322
## iter 60 value 44.377779
## iter 70 value 44.336233
## iter 80 value 44.275399
## iter 90 value 44.191846
## iter 100 value 43.969505
## final value 43.969505
## stopped after 100 iterations
## # weights: 61
## initial value 305.301400
## iter 10 value 58.938190
## iter 20 value 47.521714
## iter 30 value 38.260054
## iter 40 value 32.294146
## iter 50 value 30.837499
## iter 60 value 30.095982
## iter 70 value 29.865959
## iter 80 value 29.195772
## iter 90 value 28.867140
## iter 100 value 27.809151
## final value 27.809151
## stopped after 100 iterations
## # weights: 13
## initial value 277.888455
## iter 10 value 76.085314
## iter 20 value 70.892175
## iter 30 value 68.112778
## iter 40 value 61.137736
## iter 50 value 55.991875
## iter 60 value 54.794942
## iter 70 value 54.654357
## iter 80 value 54.556223
## iter 90 value 54.439895
## iter 100 value 54.436161
## final value 54.436161
## stopped after 100 iterations
## # weights: 37
## initial value 269.070178
## iter 10 value 77.112872
## iter 20 value 53.891203
## iter 30 value 48.616148
## iter 40 value 41.892497
## iter 50 value 40.000123
## iter 60 value 39.155672
## iter 70 value 39.056763
## iter 80 value 38.921617
## iter 90 value 38.911294
## iter 100 value 38.895349
## final value 38.895349
## stopped after 100 iterations
## # weights: 61
## initial value 324.632672
## iter 10 value 52.608073
## iter 20 value 34.962277
## iter 30 value 12.876760
## iter 40 value 6.922373
## iter 50 value 6.295801
## iter 60 value 6.042933
## iter 70 value 6.011247
## iter 80 value 6.004328
## iter 90 value 6.002370
## iter 100 value 6.000829
## final value 6.000829
## stopped after 100 iterations
## # weights: 13
## initial value 271.400303
## iter 10 value 88.802525
## iter 20 value 72.978182
## iter 30 value 69.153429
## iter 40 value 69.089103
## final value 69.088902
## converged
## # weights: 37
## initial value 267.921620
## iter 10 value 71.359843
## iter 20 value 57.042197
## iter 30 value 51.920283
## iter 40 value 50.802756
## iter 50 value 49.847178
## iter 60 value 49.813438
## final value 49.813359
## converged
## # weights: 61
## initial value 258.039436
## iter 10 value 62.789035
## iter 20 value 51.980621
## iter 30 value 49.497800
## iter 40 value 48.819106
## iter 50 value 48.730642
## iter 60 value 48.724063
## iter 70 value 48.723904
## final value 48.723860
## converged
## # weights: 13
## initial value 310.013197
## iter 10 value 67.558405
## iter 20 value 59.514670
## iter 30 value 57.648459
## iter 40 value 56.572218
## iter 50 value 55.624849
## iter 60 value 54.709826
## iter 70 value 54.559029
## iter 80 value 54.554354
## iter 90 value 54.512429
## iter 100 value 54.500709
## final value 54.500709
## stopped after 100 iterations
## # weights: 37
## initial value 283.875978
## iter 10 value 53.486716
## iter 20 value 34.315367
## iter 30 value 24.105189
## iter 40 value 21.507741
## iter 50 value 20.709017
## iter 60 value 20.060348
## iter 70 value 19.689740
## iter 80 value 18.699017
## iter 90 value 18.362967
## iter 100 value 18.189665
## final value 18.189665
## stopped after 100 iterations
## # weights: 61
## initial value 379.954475
## iter 10 value 48.437410
## iter 20 value 28.240148
## iter 30 value 11.711350
## iter 40 value 9.559550
## iter 50 value 8.777640
## iter 60 value 7.619139
## iter 70 value 7.347729
## iter 80 value 7.187601
## iter 90 value 6.777671
## iter 100 value 6.364409
## final value 6.364409
## stopped after 100 iterations
## # weights: 13
## initial value 324.410517
## iter 10 value 84.816249
## iter 20 value 62.394592
## iter 30 value 56.750953
## iter 40 value 55.703085
## iter 50 value 55.055702
## iter 60 value 54.961767
## iter 70 value 54.929265
## iter 80 value 54.838064
## iter 90 value 54.819884
## iter 100 value 54.812981
## final value 54.812981
## stopped after 100 iterations
## # weights: 37
## initial value 269.221162
## iter 10 value 70.434570
## iter 20 value 54.433343
## iter 30 value 51.506217
## iter 40 value 47.510624
## iter 50 value 44.782493
## iter 60 value 44.244064
## iter 70 value 43.670018
## iter 80 value 43.367356
## iter 90 value 42.949899
## iter 100 value 42.060650
## final value 42.060650
## stopped after 100 iterations
## # weights: 61
## initial value 326.089993
## iter 10 value 75.086289
## iter 20 value 50.203771
## iter 30 value 39.887849
## iter 40 value 19.131384
## iter 50 value 10.262409
## iter 60 value 6.523806
## iter 70 value 5.749826
## iter 80 value 5.612422
## iter 90 value 5.580629
## iter 100 value 5.426853
## final value 5.426853
## stopped after 100 iterations
## # weights: 13
## initial value 283.068967
## iter 10 value 85.552707
## iter 20 value 70.637593
## iter 30 value 68.614399
## final value 68.613652
## converged
## # weights: 37
## initial value 254.824529
## iter 10 value 65.658843
## iter 20 value 56.926527
## iter 30 value 54.490962
## iter 40 value 53.879918
## iter 50 value 52.803553
## iter 60 value 52.013978
## iter 70 value 51.978878
## final value 51.978870
## converged
## # weights: 61
## initial value 260.300614
## iter 10 value 60.449722
## iter 20 value 55.110815
## iter 30 value 52.791952
## iter 40 value 52.515255
## iter 50 value 52.205015
## iter 60 value 52.146965
## iter 70 value 52.143679
## iter 80 value 52.143610
## iter 80 value 52.143610
## iter 80 value 52.143610
## final value 52.143610
## converged
## # weights: 13
## initial value 329.000231
## iter 10 value 62.752072
## iter 20 value 56.483273
## iter 30 value 55.872167
## iter 40 value 55.474633
## iter 50 value 55.043434
## iter 60 value 55.023521
## iter 70 value 54.958635
## iter 80 value 54.937765
## iter 90 value 54.930371
## iter 100 value 54.927880
## final value 54.927880
## stopped after 100 iterations
## # weights: 37
## initial value 261.912222
## iter 10 value 55.808974
## iter 20 value 40.863949
## iter 30 value 34.101838
## iter 40 value 29.577958
## iter 50 value 22.084305
## iter 60 value 20.632028
## iter 70 value 20.513265
## iter 80 value 20.363023
## iter 90 value 20.239687
## iter 100 value 19.933996
## final value 19.933996
## stopped after 100 iterations
## # weights: 61
## initial value 259.051940
## iter 10 value 57.493600
## iter 20 value 42.490704
## iter 30 value 29.625857
## iter 40 value 26.916460
## iter 50 value 26.172427
## iter 60 value 25.685738
## iter 70 value 25.386348
## iter 80 value 25.234414
## iter 90 value 24.988845
## iter 100 value 24.751675
## final value 24.751675
## stopped after 100 iterations
## # weights: 13
## initial value 278.071300
## iter 10 value 67.850286
## iter 20 value 65.438084
## iter 30 value 62.017566
## iter 40 value 60.203221
## iter 50 value 50.030510
## iter 60 value 47.995987
## iter 70 value 46.939834
## iter 80 value 46.388661
## iter 90 value 46.185563
## iter 100 value 46.143183
## final value 46.143183
## stopped after 100 iterations
## # weights: 37
## initial value 273.820200
## iter 10 value 64.778819
## iter 20 value 48.472153
## iter 30 value 43.461353
## iter 40 value 39.578480
## iter 50 value 37.999421
## iter 60 value 37.276672
## iter 70 value 35.891676
## iter 80 value 34.326503
## iter 90 value 34.039900
## iter 100 value 33.122229
## final value 33.122229
## stopped after 100 iterations
## # weights: 61
## initial value 283.840710
## iter 10 value 51.914669
## iter 20 value 33.887810
## iter 30 value 19.546835
## iter 40 value 9.951235
## iter 50 value 6.217465
## iter 60 value 4.749076
## iter 70 value 4.608190
## iter 80 value 4.575615
## iter 90 value 4.558680
## iter 100 value 4.527658
## final value 4.527658
## stopped after 100 iterations
## # weights: 13
## initial value 369.962017
## iter 10 value 65.913748
## iter 20 value 63.294232
## iter 30 value 63.259302
## final value 63.259243
## converged
## # weights: 37
## initial value 282.612857
## iter 10 value 62.907576
## iter 20 value 57.827913
## iter 30 value 53.681578
## iter 40 value 52.614026
## iter 50 value 52.353180
## final value 52.352922
## converged
## # weights: 61
## initial value 302.557884
## iter 10 value 104.570918
## iter 20 value 58.065641
## iter 30 value 50.126336
## iter 40 value 48.251624
## iter 50 value 46.451957
## iter 60 value 45.089646
## iter 70 value 44.823981
## iter 80 value 44.750124
## iter 90 value 44.745345
## iter 100 value 44.741764
## final value 44.741764
## stopped after 100 iterations
## # weights: 13
## initial value 325.081438
## iter 10 value 77.631140
## iter 20 value 56.356405
## iter 30 value 47.622759
## iter 40 value 47.032439
## iter 50 value 46.298672
## iter 60 value 46.281553
## iter 70 value 46.267471
## iter 80 value 46.241995
## iter 90 value 46.230863
## iter 100 value 46.228926
## final value 46.228926
## stopped after 100 iterations
## # weights: 37
## initial value 279.784132
## iter 10 value 102.856216
## iter 20 value 47.618025
## iter 30 value 33.796173
## iter 40 value 26.598075
## iter 50 value 25.849298
## iter 60 value 23.422796
## iter 70 value 20.909278
## iter 80 value 20.447757
## iter 90 value 20.306948
## iter 100 value 20.193256
## final value 20.193256
## stopped after 100 iterations
## # weights: 61
## initial value 313.482416
## iter 10 value 48.653270
## iter 20 value 26.038472
## iter 30 value 18.417555
## iter 40 value 12.760284
## iter 50 value 12.206179
## iter 60 value 11.687000
## iter 70 value 11.381741
## iter 80 value 10.028461
## iter 90 value 8.386672
## iter 100 value 8.176887
## final value 8.176887
## stopped after 100 iterations
## # weights: 13
## initial value 274.771174
## iter 10 value 144.476155
## iter 20 value 72.664464
## iter 30 value 60.482983
## iter 40 value 59.686116
## iter 50 value 58.752324
## iter 60 value 58.464638
## iter 70 value 58.447498
## iter 80 value 58.428580
## iter 90 value 58.387254
## iter 100 value 58.377098
## final value 58.377098
## stopped after 100 iterations
## # weights: 37
## initial value 324.074969
## iter 10 value 77.168670
## iter 20 value 68.055599
## iter 30 value 59.176047
## iter 40 value 55.274191
## iter 50 value 53.952043
## iter 60 value 53.364337
## iter 70 value 52.798096
## iter 80 value 52.143576
## iter 90 value 51.779573
## iter 100 value 51.458241
## final value 51.458241
## stopped after 100 iterations
## # weights: 61
## initial value 379.968368
## iter 10 value 59.942786
## iter 20 value 37.158189
## iter 30 value 26.167883
## iter 40 value 21.399563
## iter 50 value 18.642912
## iter 60 value 18.078200
## iter 70 value 17.976713
## iter 80 value 17.793700
## iter 90 value 17.775135
## iter 100 value 17.771516
## final value 17.771516
## stopped after 100 iterations
## # weights: 13
## initial value 326.658571
## iter 10 value 84.873259
## iter 20 value 75.044847
## iter 30 value 72.932062
## iter 40 value 72.821204
## final value 72.821192
## converged
## # weights: 37
## initial value 299.535328
## iter 10 value 75.554356
## iter 20 value 64.467293
## iter 30 value 62.513598
## iter 40 value 59.770953
## iter 50 value 58.998230
## iter 60 value 55.990031
## iter 70 value 55.185493
## iter 80 value 55.147098
## iter 90 value 55.146293
## final value 55.146282
## converged
## # weights: 61
## initial value 304.286848
## iter 10 value 74.808195
## iter 20 value 58.251699
## iter 30 value 53.675946
## iter 40 value 52.613109
## iter 50 value 52.038174
## iter 60 value 51.668939
## iter 70 value 51.667307
## iter 80 value 51.667256
## final value 51.667255
## converged
## # weights: 13
## initial value 268.635739
## iter 10 value 75.137803
## iter 20 value 60.244611
## iter 30 value 59.204259
## iter 40 value 59.035366
## iter 50 value 58.623124
## iter 60 value 58.559731
## iter 70 value 58.544068
## iter 80 value 58.540926
## iter 90 value 58.539378
## iter 100 value 58.538769
## final value 58.538769
## stopped after 100 iterations
## # weights: 37
## initial value 308.118402
## iter 10 value 62.362742
## iter 20 value 36.839311
## iter 30 value 30.394619
## iter 40 value 22.554197
## iter 50 value 20.523708
## iter 60 value 19.791546
## iter 70 value 19.560044
## iter 80 value 19.394278
## iter 90 value 19.192373
## iter 100 value 19.006997
## final value 19.006997
## stopped after 100 iterations
## # weights: 61
## initial value 254.777277
## iter 10 value 64.208963
## iter 20 value 52.574731
## iter 30 value 45.992005
## iter 40 value 40.402501
## iter 50 value 36.202656
## iter 60 value 34.760116
## iter 70 value 33.936250
## iter 80 value 32.751202
## iter 90 value 31.785850
## iter 100 value 31.017513
## final value 31.017513
## stopped after 100 iterations
## # weights: 13
## initial value 306.932897
## iter 10 value 82.371728
## iter 20 value 73.734205
## iter 30 value 73.522758
## iter 40 value 73.301024
## iter 50 value 70.391470
## iter 60 value 68.357445
## iter 70 value 68.341943
## iter 80 value 68.327597
## iter 90 value 68.316353
## iter 100 value 68.313371
## final value 68.313371
## stopped after 100 iterations
## # weights: 37
## initial value 335.698117
## iter 10 value 61.288617
## iter 20 value 35.994641
## iter 30 value 30.061652
## iter 40 value 23.072574
## iter 50 value 20.402904
## iter 60 value 20.248272
## iter 70 value 20.208039
## iter 80 value 20.139913
## iter 90 value 20.127292
## iter 100 value 20.122751
## final value 20.122751
## stopped after 100 iterations
## # weights: 61
## initial value 252.694737
## iter 10 value 49.577846
## iter 20 value 31.320276
## iter 30 value 21.488279
## iter 40 value 12.493169
## iter 50 value 7.784448
## iter 60 value 2.857372
## iter 70 value 1.523516
## iter 80 value 1.418918
## iter 90 value 1.396565
## iter 100 value 1.393512
## final value 1.393512
## stopped after 100 iterations
## # weights: 13
## initial value 349.360516
## iter 10 value 75.405765
## iter 20 value 66.806545
## iter 30 value 65.863898
## iter 40 value 65.863414
## final value 65.863408
## converged
## # weights: 37
## initial value 305.643248
## iter 10 value 67.716761
## iter 20 value 58.326244
## iter 30 value 54.179827
## iter 40 value 52.699966
## iter 50 value 52.517284
## iter 60 value 52.515970
## final value 52.515935
## converged
## # weights: 61
## initial value 325.036134
## iter 10 value 86.835756
## iter 20 value 57.707410
## iter 30 value 52.723673
## iter 40 value 49.657244
## iter 50 value 48.780199
## iter 60 value 48.245937
## iter 70 value 48.040655
## iter 80 value 48.032839
## iter 90 value 48.032495
## final value 48.032478
## converged
## # weights: 13
## initial value 330.458861
## iter 10 value 72.291945
## iter 20 value 60.682734
## iter 30 value 59.183916
## iter 40 value 55.274108
## iter 50 value 53.018585
## iter 60 value 52.773363
## iter 70 value 52.687576
## iter 80 value 52.547734
## iter 90 value 52.539115
## iter 100 value 52.522081
## final value 52.522081
## stopped after 100 iterations
## # weights: 37
## initial value 291.968487
## iter 10 value 61.225814
## iter 20 value 46.006786
## iter 30 value 39.659708
## iter 40 value 36.771194
## iter 50 value 33.798337
## iter 60 value 32.894135
## iter 70 value 32.185694
## iter 80 value 30.014890
## iter 90 value 26.828129
## iter 100 value 26.501921
## final value 26.501921
## stopped after 100 iterations
## # weights: 61
## initial value 331.010454
## iter 10 value 55.745070
## iter 20 value 46.333696
## iter 30 value 31.831435
## iter 40 value 21.167175
## iter 50 value 13.052778
## iter 60 value 10.968315
## iter 70 value 10.048785
## iter 80 value 8.905155
## iter 90 value 7.769923
## iter 100 value 6.145303
## final value 6.145303
## stopped after 100 iterations
## # weights: 61
## initial value 326.164850
## iter 10 value 102.519277
## iter 20 value 77.587055
## iter 30 value 62.534833
## iter 40 value 59.525045
## iter 50 value 58.411250
## iter 60 value 57.897126
## iter 70 value 57.772405
## iter 80 value 57.760153
## iter 90 value 57.756674
## iter 100 value 57.755216
## final value 57.755216
## stopped after 100 iterations
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
#Matrices de confusión
# Es una tabla de evaluación que desglosa el rendimiento del modelo de clasficiación.
#Matriz de confusion del resultado del entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$diagnosis)
mcre5
## Confusion Matrix and Statistics
##
## Reference
## Prediction M B
## M 162 4
## B 8 282
##
## Accuracy : 0.9737
## 95% CI : (0.9545, 0.9863)
## No Information Rate : 0.6272
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9435
##
## Mcnemar's Test P-Value : 0.3865
##
## Sensitivity : 0.9529
## Specificity : 0.9860
## Pos Pred Value : 0.9759
## Neg Pred Value : 0.9724
## Prevalence : 0.3728
## Detection Rate : 0.3553
## Detection Prevalence : 0.3640
## Balanced Accuracy : 0.9695
##
## 'Positive' Class : M
##
# Matriz de confusion del resultado de la prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$diagnosis)
mcrp5
## Confusion Matrix and Statistics
##
## Reference
## Prediction M B
## M 42 2
## B 0 69
##
## Accuracy : 0.9823
## 95% CI : (0.9375, 0.9978)
## No Information Rate : 0.6283
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9625
##
## Mcnemar's Test P-Value : 0.4795
##
## Sensitivity : 1.0000
## Specificity : 0.9718
## Pos Pred Value : 0.9545
## Neg Pred Value : 1.0000
## Prevalence : 0.3717
## Detection Rate : 0.3717
## Detection Prevalence : 0.3894
## Balanced Accuracy : 0.9859
##
## 'Positive' Class : M
##