Árbol de decisión: es un algoritmo de aprendizaje supervisado que presenta un módelo gráfico con las decisiones y sus consecuencias

Instalar paquetes y llamar librerías

# install.packages("cluster")  #Analisis de Agrupamiento
library(cluster)
# install.packages("ggplot2") #Graficar
library(ggplot2)
# install.packages("data.table") #Manejo de muchos datos
library(data.table)
# install.packages("factoextra") #Gráfica optimización de numeros cluster
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# install.packages("rpart") #Gráfica optimización de numeros cluster
library(rpart)
# install.packages("rpart.plot") #Gráfica optimización de numeros cluster
library(rpart.plot)
library(factoextra)
library(cluster)
library(ggplot2)
library(data.table)
library(factoextra)
library(dplyr)
library(rpart)
library(rpart.plot)

Importar base de Datos

titanic <- read.csv("/Users/mariajoseflores/Downloads/titanic.csv")

Entender la base de datos

summary(titanic)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189
str(titanic)
## 'data.frame':    1310 obs. of  14 variables:
##  $ pclass   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ survived : int  1 1 0 0 0 1 1 0 1 0 ...
##  $ name     : chr  "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
##  $ sex      : chr  "female" "male" "female" "male" ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ ticket   : chr  "24160" "113781" "113781" "113781" ...
##  $ fare     : num  211 152 152 152 152 ...
##  $ cabin    : chr  "B5" "C22 C26" "C22 C26" "C22 C26" ...
##  $ embarked : chr  "S" "S" "S" "S" ...
##  $ boat     : chr  "2" "11" "" "" ...
##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...
##  $ home.dest: chr  "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...
head(titanic)
##   pclass survived                                            name    sex
## 1      1        1                   Allen, Miss. Elisabeth Walton female
## 2      1        1                  Allison, Master. Hudson Trevor   male
## 3      1        0                    Allison, Miss. Helen Loraine female
## 4      1        0            Allison, Mr. Hudson Joshua Creighton   male
## 5      1        0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female
## 6      1        1                             Anderson, Mr. Harry   male
##       age sibsp parch ticket     fare   cabin embarked boat body
## 1 29.0000     0     0  24160 211.3375      B5        S    2   NA
## 2  0.9167     1     2 113781 151.5500 C22 C26        S   11   NA
## 3  2.0000     1     2 113781 151.5500 C22 C26        S        NA
## 4 30.0000     1     2 113781 151.5500 C22 C26        S       135
## 5 25.0000     1     2 113781 151.5500 C22 C26        S        NA
## 6 48.0000     0     0  19952  26.5500     E12        S    3   NA
##                         home.dest
## 1                    St Louis, MO
## 2 Montreal, PQ / Chesterville, ON
## 3 Montreal, PQ / Chesterville, ON
## 4 Montreal, PQ / Chesterville, ON
## 5 Montreal, PQ / Chesterville, ON
## 6                    New York, NY

Crear árbol de decisión

titanic <- titanic[c("pclass", "age", "sex", "survived")]
titanic$survived <- as.factor(titanic$survived)
titanic$pclass <- as.factor(titanic$pclass)
titanic$sex <- as.factor(titanic$sex)
str(titanic)
## 'data.frame':    1310 obs. of  4 variables:
##  $ pclass  : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ age     : num  29 0.917 2 30 25 ...
##  $ sex     : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
##  $ survived: Factor w/ 2 levels "0","1": 2 2 1 1 1 2 2 1 2 1 ...
arbol_titanic <- rpart(survived~., data=titanic)
rpart.plot(arbol_titanic)

Conclusiones

en conclusión, las más altas probabilidades de sobrevivir en el naufragio del Titanic son: * 100% : si eres hombre menor de 9.5 años de 1° o 2° clase * 73%: si eres mujer

Y por el contrario las más bajas probabilidades de sobrevivir son: * 17%: Si eres hombre mayor a 9.5 años. *38% : si eres niño hombre menor de 9.5 años de 3° clase

LS0tCnRpdGxlOiAiVGl0YW5pYyIKYXV0aG9yOiAiTWFyaWEgSm9zZSBGbG9yZXMiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjb3NtbwotLS0KCiFbXShodHRwczovL2kucGluaW1nLmNvbS9vcmlnaW5hbHMvNTUvODcvMmEvNTU4NzJhMjJjNjUwNWQ3YmE2MmY4ZDg4MjA3ZTc2ZDAuZ2lmKQoKw4FyYm9sIGRlIGRlY2lzacOzbjogZXMgdW4gYWxnb3JpdG1vIGRlIGFwcmVuZGl6YWplIHN1cGVydmlzYWRvIHF1ZSBwcmVzZW50YSB1biBtw7NkZWxvIGdyw6FmaWNvIGNvbiBsYXMgZGVjaXNpb25lcyB5IHN1cyBjb25zZWN1ZW5jaWFzIAoKIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgpgYGB7cn0KIyBpbnN0YWxsLnBhY2thZ2VzKCJjbHVzdGVyIikgICNBbmFsaXNpcyBkZSBBZ3J1cGFtaWVudG8KbGlicmFyeShjbHVzdGVyKQojIGluc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAjR3JhZmljYXIKbGlicmFyeShnZ3Bsb3QyKQojIGluc3RhbGwucGFja2FnZXMoImRhdGEudGFibGUiKSAjTWFuZWpvIGRlIG11Y2hvcyBkYXRvcwpsaWJyYXJ5KGRhdGEudGFibGUpCiMgaW5zdGFsbC5wYWNrYWdlcygiZmFjdG9leHRyYSIpICNHcsOhZmljYSBvcHRpbWl6YWNpw7NuIGRlIG51bWVyb3MgY2x1c3RlcgpsaWJyYXJ5KGZhY3RvZXh0cmEpCmxpYnJhcnkoZHBseXIpCiMgaW5zdGFsbC5wYWNrYWdlcygicnBhcnQiKSAjR3LDoWZpY2Egb3B0aW1pemFjacOzbiBkZSBudW1lcm9zIGNsdXN0ZXIKbGlicmFyeShycGFydCkKIyBpbnN0YWxsLnBhY2thZ2VzKCJycGFydC5wbG90IikgI0dyw6FmaWNhIG9wdGltaXphY2nDs24gZGUgbnVtZXJvcyBjbHVzdGVyCmxpYnJhcnkocnBhcnQucGxvdCkKbGlicmFyeShmYWN0b2V4dHJhKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KGNsdXN0ZXIpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShkYXRhLnRhYmxlKQpsaWJyYXJ5KGZhY3RvZXh0cmEpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkocnBhcnQpCmxpYnJhcnkocnBhcnQucGxvdCkKCmBgYAoKIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpibHVlOyI+ICBJbXBvcnRhciBiYXNlIGRlIERhdG9zIDwvc3Bhbj4KYGBge3J9CnRpdGFuaWMgPC0gcmVhZC5jc3YoIi9Vc2Vycy9tYXJpYWpvc2VmbG9yZXMvRG93bmxvYWRzL3RpdGFuaWMuY3N2IikKYGBgCgojIDxzcGFuIHN0eWxlID0gImNvbG9yOmJsdWU7Ij4gIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeSh0aXRhbmljKQpzdHIodGl0YW5pYykKaGVhZCh0aXRhbmljKQpgYGAKCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiAgQ3JlYXIgw6FyYm9sIGRlIGRlY2lzacOzbiA8L3NwYW4+CmBgYHtyfQp0aXRhbmljIDwtIHRpdGFuaWNbYygicGNsYXNzIiwgImFnZSIsICJzZXgiLCAic3Vydml2ZWQiKV0KdGl0YW5pYyRzdXJ2aXZlZCA8LSBhcy5mYWN0b3IodGl0YW5pYyRzdXJ2aXZlZCkKdGl0YW5pYyRwY2xhc3MgPC0gYXMuZmFjdG9yKHRpdGFuaWMkcGNsYXNzKQp0aXRhbmljJHNleCA8LSBhcy5mYWN0b3IodGl0YW5pYyRzZXgpCnN0cih0aXRhbmljKQoKYXJib2xfdGl0YW5pYyA8LSBycGFydChzdXJ2aXZlZH4uLCBkYXRhPXRpdGFuaWMpCnJwYXJ0LnBsb3QoYXJib2xfdGl0YW5pYykKCgpgYGAKCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6Ymx1ZTsiPiAgQ29uY2x1c2lvbmVzIDwvc3Bhbj4KZW4gY29uY2x1c2nDs24sIGxhcyBtw6FzIGFsdGFzIHByb2JhYmlsaWRhZGVzIGRlIHNvYnJldml2aXIgZW4gZWwgbmF1ZnJhZ2lvIGRlbCBUaXRhbmljIHNvbjogCiogMTAwJSA6IHNpIGVyZXMgaG9tYnJlIG1lbm9yIGRlIDkuNSBhw7FvcyBkZSAxwrAgbyAywrAgY2xhc2UKKiA3MyU6IHNpIGVyZXMgbXVqZXIgCgpZIHBvciBlbCBjb250cmFyaW8gbGFzIG3DoXMgYmFqYXMgcHJvYmFiaWxpZGFkZXMgZGUgc29icmV2aXZpciBzb246CiogMTclOiBTaSBlcmVzIGhvbWJyZSBtYXlvciBhIDkuNSBhw7Fvcy4KKjM4JSA6IHNpIGVyZXMgbmnDsW8gaG9tYnJlIG1lbm9yIGRlIDkuNSBhw7FvcyBkZSAzwrAgY2xhc2UKCgoKCg==