Contexto

El conjunto de datos es de la Universidad de Nueva York y contiene 90 observaciones que incluyen los costos de 6 aerolíneas estadounidenses durante 15 años, de 1970 a 1984.

Las variables son:

  • I = Airline
  • T = Year
  • Q = Output, in revenue passenger miles, index number
  • C = Total cost, in $1000
  • PF = Fuel price
  • LF = Load factor, the average capacity utilization of the fleet

Fuente:
Tabla F7.1

Instalar paquetes y llamar librerías

# install.packages("tidyverse")
library(tidyverse)
# install.packages("gplots")
library(gplots)
# install.packages("plm")
library(plm)
# install.packages("DataExplorer")
library(DataExplorer)
# install.packages("forecast")
library(forecast)
# install.packages("lavaan")
library(lavaan)
# install.packages("lavaanPlot")
library(lavaanPlot)

Tema 1. Datos de Panel

Importar la Base de Datos

df <- read.csv("E:\\Archivos\\docs23sep\\Escritorio\\vuelos.csv")

Entender la Base de Datos

summary(df)
##        I             T            C                 Q          
##  Min.   :1.0   Min.   : 1   Min.   :  68978   Min.   :0.03768  
##  1st Qu.:2.0   1st Qu.: 4   1st Qu.: 292046   1st Qu.:0.14213  
##  Median :3.5   Median : 8   Median : 637001   Median :0.30503  
##  Mean   :3.5   Mean   : 8   Mean   :1122524   Mean   :0.54499  
##  3rd Qu.:5.0   3rd Qu.:12   3rd Qu.:1345968   3rd Qu.:0.94528  
##  Max.   :6.0   Max.   :15   Max.   :4748320   Max.   :1.93646  
##        PF                LF        
##  Min.   : 103795   Min.   :0.4321  
##  1st Qu.: 129848   1st Qu.:0.5288  
##  Median : 357434   Median :0.5661  
##  Mean   : 471683   Mean   :0.5605  
##  3rd Qu.: 849840   3rd Qu.:0.5947  
##  Max.   :1015610   Max.   :0.6763
str(df)
## 'data.frame':    90 obs. of  6 variables:
##  $ I : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ T : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ C : int  1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
##  $ Q : num  0.953 0.987 1.092 1.176 1.16 ...
##  $ PF: int  106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
##  $ LF: num  0.534 0.532 0.548 0.541 0.591 ...
head(df)
##   I T       C        Q     PF       LF
## 1 1 1 1140640 0.952757 106650 0.534487
## 2 1 2 1215690 0.986757 110307 0.532328
## 3 1 3 1309570 1.091980 110574 0.547736
## 4 1 4 1511530 1.175780 121974 0.540846
## 5 1 5 1676730 1.160170 196606 0.591167
## 6 1 6 1823740 1.173760 265609 0.575417
# create_report(df)
plot_missing(df)

plot_histogram(df)

plot_correlation(df)

Revisar Heterogeneidad

plotmeans(C ~ I, main= "Heterogeneidad entre aerolíneas", data=df)

Creación de Datos de Panel

df1 <- pdata.frame(df, index=c("I", "T"))

Modelo 1. Regresión Agrupada (pooled)

pooled <- plm(C~ Q + PF + LF, data=df1, model="pooling")
summary(pooled)
## Pooling Model
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "pooling")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -520654 -250270   37333  208690  849700 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept)  1.1586e+06  3.6059e+05  3.2129   0.00185 ** 
## Q            2.0261e+06  6.1807e+04 32.7813 < 2.2e-16 ***
## PF           1.2253e+00  1.0372e-01 11.8138 < 2.2e-16 ***
## LF          -3.0658e+06  6.9633e+05 -4.4027 3.058e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1.2647e+14
## Residual Sum of Squares: 6.8177e+12
## R-Squared:      0.94609
## Adj. R-Squared: 0.94421
## F-statistic: 503.118 on 3 and 86 DF, p-value: < 2.22e-16

Modelo 2. Efectos Fijos (within)

within <- plm(C~ Q + PF + LF, data=df1, model="within")
summary(within)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "within")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -551783 -159259    1796       0  137226  499296 
## 
## Coefficients:
##       Estimate  Std. Error t-value  Pr(>|t|)    
## Q   3.3190e+06  1.7135e+05 19.3694 < 2.2e-16 ***
## PF  7.7307e-01  9.7319e-02  7.9437 9.698e-12 ***
## LF -3.7974e+06  6.1377e+05 -6.1869 2.375e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    5.0776e+13
## Residual Sum of Squares: 3.5865e+12
## R-Squared:      0.92937
## Adj. R-Squared: 0.92239
## F-statistic: 355.254 on 3 and 81 DF, p-value: < 2.22e-16

Modelo Pooled vs Modelo de Efectos Fijos

pFtest(within,pooled)
## 
##  F test for individual effects
## 
## data:  C ~ Q + PF + LF
## F = 14.595, df1 = 5, df2 = 81, p-value = 3.467e-10
## alternative hypothesis: significant effects

Modelo 3. Efectos Aleatorios (random) - Método Walhus

walhus <- plm(C~ Q + PF + LF, data=df1, model="random", random.method = "walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "walhus")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 7.339e+10 2.709e+05 0.969
## individual    2.363e+09 4.861e+04 0.031
## theta: 0.1788
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -524180 -243611   39332  199517  824905 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.1267e+06  3.6994e+05  3.0455  0.002323 ** 
## Q            2.0647e+06  7.1927e+04 28.7051 < 2.2e-16 ***
## PF           1.2075e+00  1.0358e-01 11.6578 < 2.2e-16 ***
## LF          -3.0314e+06  7.1431e+05 -4.2438 2.198e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1.0182e+14
## Residual Sum of Squares: 6.5784e+12
## R-Squared:      0.93539
## Adj. R-Squared: 0.93314
## Chisq: 1245.09 on 3 DF, p-value: < 2.22e-16

Modelo 3. Efectos Aleatorios (random) - Método Amemiya

amemiya <- plm(C~ Q + PF + LF, data=df1, model="random", random.method = "amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "amemiya")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 4.270e+10 2.066e+05 0.084
## individual    4.640e+11 6.812e+05 0.916
## theta: 0.9219
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -603585 -144415   22641  158005  485417 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.0746e+06  4.2105e+05  2.5522    0.0107 *  
## Q            3.2090e+06  1.6482e+05 19.4695 < 2.2e-16 ***
## PF           8.1014e-01  9.6147e-02  8.4260 < 2.2e-16 ***
## LF          -3.7168e+06  6.1330e+05 -6.0603 1.359e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    5.1238e+13
## Residual Sum of Squares: 3.8227e+12
## R-Squared:      0.92539
## Adj. R-Squared: 0.92279
## Chisq: 1066.71 on 3 DF, p-value: < 2.22e-16

Modelo 3. Efectos Aleatorios (random) - Método Nerlove

nerlove <- plm(C~ Q + PF + LF, data=df1, model="random", random.method = "nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = C ~ Q + PF + LF, data = df1, model = "random", 
##     random.method = "nerlove")
## 
## Balanced Panel: n = 6, T = 15, N = 90
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 3.985e+10 1.996e+05 0.066
## individual    5.602e+11 7.485e+05 0.934
## theta: 0.9313
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -601947 -145039   18713  154903  483623 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept)  1.0752e+06  4.4535e+05  2.4142   0.01577 *  
## Q            3.2323e+06  1.6521e+05 19.5652 < 2.2e-16 ***
## PF           8.0229e-01  9.5804e-02  8.3743 < 2.2e-16 ***
## LF          -3.7338e+06  6.0963e+05 -6.1247 9.084e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    5.1133e+13
## Residual Sum of Squares: 3.7726e+12
## R-Squared:      0.92622
## Adj. R-Squared: 0.92365
## Chisq: 1079.63 on 3 DF, p-value: < 2.22e-16

Modelo de Efectos Fijos vs Modelo de Efectos Aleatorios

phtest(walhus,within)
## 
##  Hausman Test
## 
## data:  C ~ Q + PF + LF
## chisq = 65.039, df = 3, p-value = 4.919e-14
## alternative hypothesis: one model is inconsistent

Por lo tanto, nos quedamos con el Modelo de Efectos Fijos.

Tema 2. Series de Tiempo

Generar la Serie de Tiempo

df2 <- df %>% group_by(T) %>% summarise("Cost" = sum(C))
ts <- ts(data=df2$Cost, start=1970, frequency = 1)

Generar el Modelo ARIMA

arima <- auto.arima(ts)
summary(arima)
## Series: ts 
## ARIMA(0,2,1) 
## 
## Coefficients:
##          ma1
##       0.6262
## s.e.  0.2198
## 
## sigma^2 = 9.087e+10:  log likelihood = -182.19
## AIC=368.37   AICc=369.57   BIC=369.5
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE    MAPE      MASE        ACF1
## Training set 27996.87 269624.3 201889.4 0.7953103 2.71744 0.2597085 -0.06184266

Generar el Pronóstico

pronostico <- forecast(arima, level=95, h=5)
pronostico
##      Point Forecast    Lo 95    Hi 95
## 1985       14087526 13496696 14678356
## 1986       14990145 13329820 16650471
## 1987       15892764 12881265 18904264
## 1988       16795384 12198346 21392421
## 1989       17698003 11310993 24085012
plot(pronostico, main="Costos Totales de las Aerolíneas")

Tema 3. Modelos de Ecuaciones Estructurales

Generar el Modelo

modelo <- '
          # Regresiones
          Q ~ LF 
          C ~ I + T + PF + LF 
          LF ~ PF + I 
          PF ~ T
          # Variables latentes
          # Varianzas y covarianzas
          # Intercepto
          '

Generar el Diagrama

df3 <- scale(df)
df4 <- cfa(modelo, df3)
summary(df4)
## lavaan 0.6-19 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                            90
## 
## Model Test User Model:
##                                                       
##   Test statistic                               166.924
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Q ~                                                 
##     LF                0.425    0.095    4.462    0.000
##   C ~                                                 
##     I                 0.105    0.025    4.158    0.000
##     T                 0.140    0.063    2.211    0.027
##     PF                0.194    0.065    2.986    0.003
##     LF                0.271    0.100    2.726    0.006
##   LF ~                                                
##     PF                0.491    0.085    5.812    0.000
##     I                -0.346    0.085   -4.099    0.000
##   PF ~                                                
##     T                 0.931    0.038   24.233    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .Q ~~                                                
##    .C                 0.811    0.123    6.612    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Q                 0.810    0.121    6.708    0.000
##    .C                 0.859    0.128    6.708    0.000
##    .LF                0.636    0.095    6.708    0.000
##    .PF                0.131    0.020    6.708    0.000
lavaanPlot(df4, coef=TRUE, cov=TRUE)
LS0tDQp0aXRsZTogIlZ1ZWxvcyINCmF1dGhvcjogIlJhdWwgQ2FudHUgLSBBMDEwODc2ODMiDQpkYXRlOiAiMjAyNS0wOC0yMCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiBkYXJrDQotLS0NCg0KPGNlbnRlcj4NCiFbXShodHRwczovL21lZGlhNC5naXBoeS5jb20vbWVkaWEvdjEuWTJsa1BUWmpNRGxpT1RVeVpIaHlkamwxYmpFMU9XdHJkR3A0ZG1kaU1tVndhR0UwTmpGNlkzRmhlbkkyTldnNE1XUnRNaVpsY0QxMk1WOW5hV1p6WDNObFlYSmphQ1pqZEQxbi81WENXTEg2b3Zsc2lJU3BVMlUvZ2lwaHkuZ2lmKQ0KPC9jZW50ZXI+DQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3ciPiBDb250ZXh0byA8L3NwYW4+DQpFbCBjb25qdW50byBkZSBkYXRvcyBlcyBkZSBsYSBVbml2ZXJzaWRhZCBkZSBOdWV2YSBZb3JrIHkgY29udGllbmUgOTAgb2JzZXJ2YWNpb25lcyBxdWUgaW5jbHV5ZW4gbG9zIGNvc3RvcyBkZSA2IGFlcm9sw61uZWFzIGVzdGFkb3VuaWRlbnNlcyBkdXJhbnRlIDE1IGHDsW9zLCBkZSAxOTcwIGEgMTk4NC4gIA0KDQpMYXMgdmFyaWFibGVzIHNvbjogIA0KDQoqIEkgPSBBaXJsaW5lICANCiogVCA9IFllYXIgIA0KKiBRID0gT3V0cHV0LCBpbiByZXZlbnVlIHBhc3NlbmdlciBtaWxlcywgaW5kZXggbnVtYmVyICANCiogQyA9IFRvdGFsIGNvc3QsIGluICQxMDAwICANCiogUEYgPSBGdWVsIHByaWNlICANCiogTEYgPSBMb2FkIGZhY3RvciwgdGhlIGF2ZXJhZ2UgY2FwYWNpdHkgdXRpbGl6YXRpb24gb2YgdGhlIGZsZWV0ICANCg0KRnVlbnRlOiAgDQpbVGFibGEgRjcuMV0oaHR0cHM6Ly9wYWdlcy5zdGVybi5ueXUuZWR1L353Z3JlZW5lL1RleHQvdGFibGVzL3RhYmxlbGlzdDUuaHRtKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQojIGluc3RhbGwucGFja2FnZXMoImdwbG90cyIpDQpsaWJyYXJ5KGdwbG90cykNCiMgaW5zdGFsbC5wYWNrYWdlcygicGxtIikNCmxpYnJhcnkocGxtKQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJEYXRhRXhwbG9yZXIiKQ0KbGlicmFyeShEYXRhRXhwbG9yZXIpDQojIGluc3RhbGwucGFja2FnZXMoImZvcmVjYXN0IikNCmxpYnJhcnkoZm9yZWNhc3QpDQojIGluc3RhbGwucGFja2FnZXMoImxhdmFhbiIpDQpsaWJyYXJ5KGxhdmFhbikNCiMgaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuUGxvdCIpDQpsaWJyYXJ5KGxhdmFhblBsb3QpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IFRlbWEgMS4gRGF0b3MgZGUgUGFuZWwgPC9zcGFuPg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IEltcG9ydGFyIGxhIEJhc2UgZGUgRGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZiA8LSByZWFkLmNzdigiRTpcXEFyY2hpdm9zXFxkb2NzMjNzZXBcXEVzY3JpdG9yaW9cXHZ1ZWxvcy5jc3YiKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gRW50ZW5kZXIgbGEgQmFzZSBkZSBEYXRvcyA8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpoZWFkKGRmKQ0KIyBjcmVhdGVfcmVwb3J0KGRmKQ0KcGxvdF9taXNzaW5nKGRmKQ0KcGxvdF9oaXN0b2dyYW0oZGYpDQpwbG90X2NvcnJlbGF0aW9uKGRmKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gUmV2aXNhciBIZXRlcm9nZW5laWRhZCA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KcGxvdG1lYW5zKEMgfiBJLCBtYWluPSAiSGV0ZXJvZ2VuZWlkYWQgZW50cmUgYWVyb2zDrW5lYXMiLCBkYXRhPWRmKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gQ3JlYWNpw7NuIGRlIERhdG9zIGRlIFBhbmVsIDwvc3Bhbj4NCmBgYHtyfQ0KZGYxIDwtIHBkYXRhLmZyYW1lKGRmLCBpbmRleD1jKCJJIiwgIlQiKSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IE1vZGVsbyAxLiBSZWdyZXNpw7NuIEFncnVwYWRhIChwb29sZWQpIDwvc3Bhbj4NCmBgYHtyfQ0KcG9vbGVkIDwtIHBsbShDfiBRICsgUEYgKyBMRiwgZGF0YT1kZjEsIG1vZGVsPSJwb29saW5nIikNCnN1bW1hcnkocG9vbGVkKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gTW9kZWxvIDIuIEVmZWN0b3MgRmlqb3MgKHdpdGhpbikgPC9zcGFuPg0KYGBge3J9DQp3aXRoaW4gPC0gcGxtKEN+IFEgKyBQRiArIExGLCBkYXRhPWRmMSwgbW9kZWw9IndpdGhpbiIpDQpzdW1tYXJ5KHdpdGhpbikNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IE1vZGVsbyBQb29sZWQgdnMgTW9kZWxvIGRlIEVmZWN0b3MgRmlqb3MgPC9zcGFuPg0KYGBge3J9DQpwRnRlc3Qod2l0aGluLHBvb2xlZCkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IE1vZGVsbyAzLiBFZmVjdG9zIEFsZWF0b3Jpb3MgKHJhbmRvbSkgLSBNw6l0b2RvIFdhbGh1cyA8L3NwYW4+DQpgYGB7cn0NCndhbGh1cyA8LSBwbG0oQ34gUSArIFBGICsgTEYsIGRhdGE9ZGYxLCBtb2RlbD0icmFuZG9tIiwgcmFuZG9tLm1ldGhvZCA9ICJ3YWxodXMiKQ0Kc3VtbWFyeSh3YWxodXMpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3ciPiBNb2RlbG8gMy4gRWZlY3RvcyBBbGVhdG9yaW9zIChyYW5kb20pIC0gTcOpdG9kbyBBbWVtaXlhIDwvc3Bhbj4NCmBgYHtyfQ0KYW1lbWl5YSA8LSBwbG0oQ34gUSArIFBGICsgTEYsIGRhdGE9ZGYxLCBtb2RlbD0icmFuZG9tIiwgcmFuZG9tLm1ldGhvZCA9ICJhbWVtaXlhIikNCnN1bW1hcnkoYW1lbWl5YSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IE1vZGVsbyAzLiBFZmVjdG9zIEFsZWF0b3Jpb3MgKHJhbmRvbSkgLSBNw6l0b2RvIE5lcmxvdmUgPC9zcGFuPg0KYGBge3J9DQpuZXJsb3ZlIDwtIHBsbShDfiBRICsgUEYgKyBMRiwgZGF0YT1kZjEsIG1vZGVsPSJyYW5kb20iLCByYW5kb20ubWV0aG9kID0gIm5lcmxvdmUiKQ0Kc3VtbWFyeShuZXJsb3ZlKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gTW9kZWxvIGRlIEVmZWN0b3MgRmlqb3MgdnMgTW9kZWxvIGRlIEVmZWN0b3MgQWxlYXRvcmlvcyA8L3NwYW4+DQpgYGB7cn0NCnBodGVzdCh3YWxodXMsd2l0aGluKQ0KYGBgDQoNClBvciBsbyB0YW50bywgbm9zIHF1ZWRhbW9zIGNvbiBlbCBNb2RlbG8gZGUgRWZlY3RvcyBGaWpvcy4gIA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gVGVtYSAyLiBTZXJpZXMgZGUgVGllbXBvIDwvc3Bhbj4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3ciPiBHZW5lcmFyIGxhIFNlcmllIGRlIFRpZW1wbyA8L3NwYW4+DQpgYGB7cn0NCmRmMiA8LSBkZiAlPiUgZ3JvdXBfYnkoVCkgJT4lIHN1bW1hcmlzZSgiQ29zdCIgPSBzdW0oQykpDQp0cyA8LSB0cyhkYXRhPWRmMiRDb3N0LCBzdGFydD0xOTcwLCBmcmVxdWVuY3kgPSAxKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93Ij4gR2VuZXJhciBlbCBNb2RlbG8gQVJJTUEgPC9zcGFuPg0KYGBge3J9DQphcmltYSA8LSBhdXRvLmFyaW1hKHRzKQ0Kc3VtbWFyeShhcmltYSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IEdlbmVyYXIgZWwgUHJvbsOzc3RpY28gPC9zcGFuPg0KYGBge3J9DQpwcm9ub3N0aWNvIDwtIGZvcmVjYXN0KGFyaW1hLCBsZXZlbD05NSwgaD01KQ0KcHJvbm9zdGljbw0KcGxvdChwcm9ub3N0aWNvLCBtYWluPSJDb3N0b3MgVG90YWxlcyBkZSBsYXMgQWVyb2zDrW5lYXMiKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3ciPiBUZW1hIDMuIE1vZGVsb3MgZGUgRWN1YWNpb25lcyBFc3RydWN0dXJhbGVzIDwvc3Bhbj4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3ciPiBHZW5lcmFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbyA8LSAnDQogICAgICAgICAgIyBSZWdyZXNpb25lcw0KICAgICAgICAgIFEgfiBMRiANCiAgICAgICAgICBDIH4gSSArIFQgKyBQRiArIExGIA0KICAgICAgICAgIExGIH4gUEYgKyBJIA0KICAgICAgICAgIFBGIH4gVA0KICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzDQogICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3Zhcmlhbnphcw0KICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICcNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdyI+IEdlbmVyYXIgZWwgRGlhZ3JhbWEgPC9zcGFuPg0KYGBge3J9DQpkZjMgPC0gc2NhbGUoZGYpDQpkZjQgPC0gY2ZhKG1vZGVsbywgZGYzKQ0Kc3VtbWFyeShkZjQpDQpsYXZhYW5QbG90KGRmNCwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQo=