Instalar paquetes y llamar librerías

#install.packages("rpart")
library(rpart)
#install.packages("rpart.plot")
library(rpart.plot)

Importar base de datos

titanic <- read.csv("/Users/fedezorrilla/Downloads/titanic.csv")

Entender la base de datos

summary(titanic)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189
str(titanic)
## 'data.frame':    1310 obs. of  14 variables:
##  $ pclass   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ survived : int  1 1 0 0 0 1 1 0 1 0 ...
##  $ name     : chr  "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
##  $ sex      : chr  "female" "male" "female" "male" ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ ticket   : chr  "24160" "113781" "113781" "113781" ...
##  $ fare     : num  211 152 152 152 152 ...
##  $ cabin    : chr  "B5" "C22 C26" "C22 C26" "C22 C26" ...
##  $ embarked : chr  "S" "S" "S" "S" ...
##  $ boat     : chr  "2" "11" "" "" ...
##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...
##  $ home.dest: chr  "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...

Crear el árbol de decisión

titanic <- titanic[,c("pclass","age","sex","survived")]

titanic$survived <- as.factor(titanic$survived)
titanic$pclass <- as.factor(titanic$pclass)
titanic$sex <- as.factor(titanic$sex)


arboltitanic <- rpart(survived~.,data=titanic) #SOBREVIVIR ES LA VARIABLE DE LA TABLA QUE NOS INTERESA
rpart.plot(arboltitanic)

prp(arboltitanic, extra=7, prefix = "Fracción\n")

Conclusiones

En conclusión, las más altas probabilidades de sobrevivir en el naufragio del Titanic son:

  • 100%: Si eres varón menor de 9.5 años de 1ra o 2da clase.
  • 73%: Si eres mujer.

Y, por el contrario, las más bajas probabilidades de sobrevivir son:

  • 17%: Si eres hombre mayor a 9.5 años.
  • 38%: Si eres varon menor a 9.5 años, pero vas en 3ra clase.
LS0tCnRpdGxlOiAiVGl0YW5jIgphdXRob3I6ICJGZWRlcmljbyBab3JyaWxsYSBBMDA4MzY2MjkiCmRhdGU6ICIyMDI1LTA4LTIwIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY29zbW8KLS0tCgohW10oaHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi9mL2ZkL1JNU19UaXRhbmljXzMuanBnLzMzMHB4LVJNU19UaXRhbmljXzMuanBnKQoKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFfQojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQiKQpsaWJyYXJ5KHJwYXJ0KQojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQucGxvdCIpCmxpYnJhcnkocnBhcnQucGxvdCkKCmBgYAoKCgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBJbXBvcnRhciBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CnRpdGFuaWMgPC0gcmVhZC5jc3YoIi9Vc2Vycy9mZWRlem9ycmlsbGEvRG93bmxvYWRzL3RpdGFuaWMuY3N2IikKYGBgCgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CnN1bW1hcnkodGl0YW5pYykKc3RyKHRpdGFuaWMpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBDcmVhciBlbCDDoXJib2wgZGUgZGVjaXNpw7NuIDwvc3Bhbj4KYGBge3J9CnRpdGFuaWMgPC0gdGl0YW5pY1ssYygicGNsYXNzIiwiYWdlIiwic2V4Iiwic3Vydml2ZWQiKV0KCnRpdGFuaWMkc3Vydml2ZWQgPC0gYXMuZmFjdG9yKHRpdGFuaWMkc3Vydml2ZWQpCnRpdGFuaWMkcGNsYXNzIDwtIGFzLmZhY3Rvcih0aXRhbmljJHBjbGFzcykKdGl0YW5pYyRzZXggPC0gYXMuZmFjdG9yKHRpdGFuaWMkc2V4KQoKCmFyYm9sdGl0YW5pYyA8LSBycGFydChzdXJ2aXZlZH4uLGRhdGE9dGl0YW5pYykgI1NPQlJFVklWSVIgRVMgTEEgVkFSSUFCTEUgREUgTEEgVEFCTEEgUVVFIE5PUyBJTlRFUkVTQQpycGFydC5wbG90KGFyYm9sdGl0YW5pYykKcHJwKGFyYm9sdGl0YW5pYywgZXh0cmE9NywgcHJlZml4ID0gIkZyYWNjacOzblxuIikKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IENvbmNsdXNpb25lcyA8L3NwYW4+CgpFbiBjb25jbHVzacOzbiwgbGFzIG3DoXMgYWx0YXMgcHJvYmFiaWxpZGFkZXMgZGUgc29icmV2aXZpciBlbiBlbCBuYXVmcmFnaW8gZGVsIFRpdGFuaWMgc29uOgoKKiAxMDAlOiBTaSBlcmVzIHZhcsOzbiBtZW5vciBkZSA5LjUgYcOxb3MgZGUgMXJhIG8gMmRhIGNsYXNlLiAgCiogNzMlOiBTaSBlcmVzIG11amVyLiAgCgpZLCBwb3IgZWwgY29udHJhcmlvLCBsYXMgbcOhcyBiYWphcyBwcm9iYWJpbGlkYWRlcyBkZSBzb2JyZXZpdmlyIHNvbjoKCiogMTclOiBTaSBlcmVzIGhvbWJyZSBtYXlvciBhIDkuNSBhw7Fvcy4gIAoqIDM4JTogU2kgZXJlcyB2YXJvbiBtZW5vciBhIDkuNSBhw7FvcywgcGVybyB2YXMgZW4gM3JhIGNsYXNlLgoKCgoKCg==