pacman::p_load(dplyr, readxl, tidyverse, raster, vegan, tigris, sf, sp, plotly, ggrepel, kableExtra, brms, parameters, gt)
## Set seed
set.seed(97)
# Tree PCQ Data
tree_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Tree_PCQ")
tree_data <- tree_data %>%
filter(Authority %in% c("BRSF", "WSF", "Jay"))
# Soil Data
fuel_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Fuel_Sampling")
fuel_data <- fuel_data %>%
filter(Authority %in% c("BRSF", "WSF", "Jay"))
Seasonal_Fuel_Sampling <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
sheet = "Fuel_Data")
Seasonal_Fuel_Sampling <- Seasonal_Fuel_Sampling %>%
filter(Authority %in% c("BRSF", "WSF", "Jay"))
# Seasonal Sampling Locations
Seasonal_Sampling_Locations <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
sheet = "Sites")
Seasonal_Sampling_Locations <- Seasonal_Sampling_Locations %>%
filter(Authority %in% c("BRSF", "WSF", "Jay"))
# Bag Weights
bag_weights <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
sheet = "Bag_Avg")
## New names:
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
# Site Data
CogonSites <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/CogonSites_FL_AL_MS.xlsx")
CogonSites <- CogonSites %>%
filter(Authority %in% c("BRSF", "WSF", "Jay"))
# Only include Florida/Alabama Sites
CogonSites <- CogonSites[CogonSites$Authority != "CNF" & CogonSites$Authority != "DSNF", ]
#Fuel Dynamics ## Combine seasonal fuel data
There are 10,000 square meters in a hectare. Biomass is from 25 cm by 25 cm quadrats, so we have 0.0625 square meters. Therefore, 10,000/0.0625 = 160,000. So biomass gets multiplied by 160,000 and divided by 1,000,000 to convert from grams to tonnes.
## Warning: Found 1 observations with a pareto_k > 0.7 in model
## 'LV_Bio_model_student'. We recommend to set 'moment_match = TRUE' in order to
## perform moment matching for problematic observations.
## Warning: There were 15 divergent transitions after warmup. Increasing
## adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: avg_live_biomass ~ Status * Season + Status * Region + (1 | Plot)
## Data: merged_sites (Number of observations: 183)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~Plot (Number of levels: 183)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.19 0.14 0.01 0.52 1.03 125 34
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept 0.64 0.12 0.41 0.89 1.00 1690
## StatusInvaded 1.36 0.20 0.98 1.76 1.00 1048
## SeasonSpring -0.04 0.18 -0.38 0.32 1.01 673
## SeasonWinter -0.19 0.17 -0.52 0.15 1.01 456
## RegionCF -0.05 0.14 -0.32 0.23 1.01 1317
## StatusInvaded:SeasonSpring -0.67 0.31 -1.24 -0.04 1.00 1450
## StatusInvaded:SeasonWinter -0.91 0.29 -1.46 -0.33 1.00 1364
## StatusInvaded:RegionCF 1.21 0.26 0.70 1.72 1.01 892
## Tail_ESS
## Intercept 1773
## StatusInvaded 975
## SeasonSpring 776
## SeasonWinter 523
## RegionCF 1611
## StatusInvaded:SeasonSpring 2365
## StatusInvaded:SeasonWinter 2394
## StatusInvaded:RegionCF 1616
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.58 0.09 0.36 0.76 1.03 125 34
## nu 2.48 0.74 1.44 4.28 1.01 278 176
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: There were 7 divergent transitions after warmup. Increasing
## adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: avg_dead_biomass ~ Status * Season + Status * Region + (1 | Plot)
## Data: merged_sites (Number of observations: 181)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~Plot (Number of levels: 181)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.19 0.15 0.01 0.57 1.00 939 886
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept 0.39 0.18 0.04 0.75 1.00 3000
## StatusInvaded 1.70 0.31 1.12 2.31 1.00 2229
## SeasonSpring 0.40 0.29 -0.16 0.98 1.00 3237
## SeasonWinter 0.39 0.28 -0.13 0.97 1.00 3074
## RegionCF 0.14 0.22 -0.29 0.58 1.00 3622
## StatusInvaded:SeasonSpring -0.30 0.47 -1.25 0.56 1.00 2693
## StatusInvaded:SeasonWinter 0.70 0.63 -0.59 1.95 1.00 2883
## StatusInvaded:RegionCF 0.91 0.52 -0.11 1.93 1.00 3177
## Tail_ESS
## Intercept 2880
## StatusInvaded 1860
## SeasonSpring 3117
## SeasonWinter 2462
## RegionCF 2642
## StatusInvaded:SeasonSpring 2269
## StatusInvaded:SeasonWinter 2825
## StatusInvaded:RegionCF 2763
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.93 0.15 0.66 1.24 1.00 1620 1459
## nu 1.89 0.49 1.19 3.03 1.00 2426 1717
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?