This is a pilot study that tests the effect of losing in a zero-sum
game on solidarity.
We devised a minimal groups’ paradigm in which there are 100 circles
representing 100 people. 50 are green and 50 are blue. Each person has
10 coins. The participant is told that they are one of the green
people.
Then, they are randomly assigned to one of three conditions: (1) lose
zs; (2) win zs; and (3) ctrl.
lose zs:
Total resources in this society are limited. This means that as blue
people gain more coins, green people end up with less coins, and vice
versa.
In recent weeks, more coins have gone to the blue people, and as a
result, green people have lost an equal amount of coins. Currently, blue
people have 12 coins each and green people have 8 coins each.
You have 8 coins.
win zs:
Total resources in this society are limited. This means that as blue
people gain more coins, green people end up with less coins, and vice
versa.
In recent weeks, more coins have gone to the green people, and as a
result, blue people have lost an equal amount of coins. Currently, green
people have 12 coins each and blue people have 8 coins each.
You have 12 coins.
ctrl:
Total resources in this society are limited. This means that as blue
people gain more coins, green people end up with less coins, and vice
versa.
You have 10 coins.
# Eligibility
There was on bot-check with an invisible attention check.
eligible_n <- df_zss %>%
group_by(is_elg) %>%
summarise(n = n()) %>%
ungroup() %>%
filter(is_elg == 1) %>%
select(n) %>%
unlist() %>%
unname()
df_zss %>%
group_by(att_1) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
att_1 | N | Perc |
---|---|---|
1 | 227 | 100 |
That gives us a total of 227 eligible participants.
df_zss_elg %>%
group_by(race) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
race | N | Perc |
---|---|---|
American Indian or Alaska Native | 1 | 0.44 |
Asian | 27 | 11.89 |
Black or African American | 17 | 7.49 |
Hispanic, Latino, or Spanish origin | 14 | 6.17 |
Middle Eastern or North African | 1 | 0.44 |
Native Hawaiian or Other Pacific Islander | 1 | 0.44 |
White | 149 | 65.64 |
multiracial | 17 | 7.49 |
df_zss_elg %>%
mutate(gender = ifelse(is.na(gender) | gender == "","other",gender)) %>%
group_by(gender) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
gender | N | Perc |
---|---|---|
man | 128 | 56.39 |
other | 4 | 1.76 |
woman | 95 | 41.85 |
df_zss_elg %>%
summarise(age_mean = round(mean(age,na.rm = T),2),
age_sd = round(sd(age,na.rm = T),2)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
age_mean | age_sd |
---|---|
39.3 | 11.68 |
df_zss_elg %>%
group_by(edu) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
edu | N | Perc |
---|---|---|
noHS | 1 | 0.44 |
GED | 53 | 23.35 |
2yearColl | 32 | 14.10 |
4yearColl | 101 | 44.49 |
MA | 24 | 10.57 |
PHD | 14 | 6.17 |
NA | 2 | 0.88 |
df_zss_elg %>%
ggplot(aes(x = income)) +
geom_bar() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_blank(),
axis.title.y = element_blank()) +
coord_flip()
Participants were asked about the extent to which they subscribe to the following ideologies on a scale of 1-7 (select NA if unfamiliar): Conservatism, Liberalism, Democratic Socialism, Libertarianism, Progressivism.
means <- df_zss_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
group_by(ideo) %>%
summarise(score = mean(score)) %>%
ungroup()
df_zss_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
ggplot() +
geom_density(aes(x = score), fill = "lightblue") +
scale_x_continuous(limits = c(1,7),
breaks = seq(1,7,1)) +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~ideo,nrow = 2)
df_zss_elg %>%
group_by(party_id) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
party_id | N | Perc |
---|---|---|
Democrat | 105 | 46.26 |
Independent | 71 | 31.28 |
Republican | 51 | 22.47 |
I identify with the green people
df_zss_elg %>%
ggplot(aes(x = green_id)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$green_id,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I identify with the blue people
df_zss_elg %>%
ggplot(aes(x = blue_id)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$blue_id,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I feel connected with the green people
df_zss_elg %>%
ggplot(aes(x = green_connect)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$green_connect,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I feel connected with the blue people
df_zss_elg %>%
ggplot(aes(x = blue_connect)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$blue_connect,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I feel a sense of solidarity with the green people
df_zss_elg %>%
ggplot(aes(x = green_soli)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$green_soli,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I feel a sense of solidarity with the blue people
df_zss_elg %>%
ggplot(aes(x = blue_soli)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$blue_soli,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I value other green people
df_zss_elg %>%
ggplot(aes(x = green_value)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$green_value,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I value other blue people
df_zss_elg %>%
ggplot(aes(x = blue_value)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$blue_value,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I like other green people
df_zss_elg %>%
ggplot(aes(x = green_like)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$green_like,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
I like other blue people
df_zss_elg %>%
ggplot(aes(x = blue_like)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(0,100,20),
limits = c(-1,101)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$blue_like,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
In this scenario, to what extent do you feel threatened as a green person? (1 = Not at all to 5 = Extremely)
df_zss_elg %>%
ggplot(aes(x = threat)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$threat,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
In this scenario, to what extent do you see blue people as the enemy? (1 = Not at all to 5 = Extremely)
df_zss_elg %>%
ggplot(aes(x = enemy)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$enemy,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
In this scenario, to what extent do you see green people and blue people as part of the same group? (1 = Not at all to 5 = Extremely)
df_zss_elg %>%
ggplot(aes(x = shared)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$shared,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
In this scenario, to what extent do you see your fate as linked to the fate of other green people? (1 = Not at all to 5 = Extremely)
df_zss_elg %>%
ggplot(aes(x = linked)) +
geom_histogram(fill = "lightblue",
binwidth = 1) +
scale_x_continuous(breaks = seq(1,5,1),
limits = c(0,6)) +
ylab("count") +
geom_vline(xintercept = mean(df_zss_elg$linked,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
hmm, can we average the green feeling items and the blue feeling items? They’re correlated af with each other.
alpha = 0.95
alpha = 0.91
Great! I’ll analyze these mean scores as well.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(feelgreen,na.rm = T),2),
SD = round(sd(feelgreen,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 77.55 | 19.40 |
lose | 72 | 69.07 | 18.10 |
win | 77 | 73.09 | 15.94 |
m <- t.test(feelgreen ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(141.7) = -1.43, p =
0.154, Lower CI = -9.56, Upper CI = 1.52, d =
-0.24.
m <- t.test(feelgreen ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(147.98) = 2.77, p =
0.006, Lower CI = 2.43, Upper CI = 14.53, d =
0.46.
m <- t.test(feelgreen ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(148.13) = 1.57, p =
0.119, Lower CI = -1.17, Upper CI = 10.09, d
= 0.26.
hmm, this is the opposite direction of what we’d expect. losing and winning in a zero-sum game, compared to control, decreases group feelings.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(feelblue,na.rm = T),2),
SD = round(sd(feelblue,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 29.94 | 19.03 |
lose | 72 | 39.84 | 19.20 |
win | 77 | 49.04 | 18.00 |
m <- t.test(feelblue ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(144.49) = -3.01, p =
0.003, Lower CI = -15.24, Upper CI = -3.17, d
= -0.5.
m <- t.test(feelblue ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(146.83) = -3.17, p =
0.002, Lower CI = -16.08, Upper CI = -3.73, d
= -0.52.
m <- t.test(feelblue ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.72) = -6.42, p =
0, Lower CI = -24.98, Upper CI = -13.23, d =
-1.04.
Oh. Interesting. Being on the winning side makes you feel positive feelings toward the losing outgroup. This is more like cross-group solidarity.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(green_id,na.rm = T),2),
SD = round(sd(green_id,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 79.65 | 21.24 |
lose | 72 | 71.47 | 20.20 |
win | 77 | 74.64 | 20.13 |
m <- t.test(green_id ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(146.26) = -0.96, p =
0.34, Lower CI = -9.7, Upper CI = 3.37, d =
-0.16.
m <- t.test(green_id ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(147.87) = 2.42, p =
0.017, Lower CI = 1.49, Upper CI = 14.87, d =
0.4.
m <- t.test(green_id ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.74) = 1.51, p =
0.133, Lower CI = -1.55, Upper CI = 11.58, d
= 0.24.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(green_connect,na.rm = T),2),
SD = round(sd(green_connect,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 77.42 | 22.74 |
lose | 72 | 68.85 | 20.04 |
win | 77 | 73.92 | 17.83 |
m <- t.test(green_connect ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(142.21) = -1.63, p =
0.106, Lower CI = -11.23, Upper CI = 1.08, d
= -0.27.
m <- t.test(green_connect ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(147.69) = 2.45, p =
0.015, Lower CI = 1.67, Upper CI = 15.48, d =
0.4.
m <- t.test(green_connect ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(145.58) = 1.07, p =
0.288, Lower CI = -2.98, Upper CI = 9.98, d =
0.18.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(green_soli,na.rm = T),2),
SD = round(sd(green_soli,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 79.64 | 21.12 |
lose | 72 | 70.08 | 20.88 |
win | 77 | 73.61 | 18.18 |
m <- t.test(green_soli ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(141.08) = -1.1, p =
0.275, Lower CI = -9.89, Upper CI = 2.83, d =
-0.18.
m <- t.test(green_soli ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(147.29) = 2.79, p =
0.006, Lower CI = 2.78, Upper CI = 16.34, d =
0.46.
m <- t.test(green_soli ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(150.22) = 1.91, p =
0.059, Lower CI = -0.22, Upper CI = 12.28, d
= 0.31.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(green_value,na.rm = T),2),
SD = round(sd(green_value,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 76.41 | 19.73 |
lose | 72 | 69.82 | 19.89 |
win | 77 | 72.10 | 16.23 |
m <- t.test(green_value ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(137.26) = -0.77, p =
0.446, Lower CI = -8.19, Upper CI = 3.62, d =
-0.13.
m <- t.test(green_value ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(146.85) = 2.04, p =
0.044, Lower CI = 0.19, Upper CI = 12.99, d =
0.34.
m <- t.test(green_value ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(148.21) = 1.48, p =
0.14, Lower CI = -1.43, Upper CI = 10.04, d =
0.24.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(green_like,na.rm = T),2),
SD = round(sd(green_like,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 74.62 | 20.76 |
lose | 72 | 65.11 | 19.04 |
win | 77 | 71.16 | 15.67 |
m <- t.test(green_like ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(137.78) = -2.11, p =
0.037, Lower CI = -11.71, Upper CI = -0.38, d
= -0.36.
m <- t.test(green_like ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(147.99) = 2.92, p =
0.004, Lower CI = 3.08, Upper CI = 15.93, d =
0.48.
m <- t.test(green_like ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(143.18) = 1.17, p =
0.243, Lower CI = -2.38, Upper CI = 9.29, d =
0.2.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(blue_id,na.rm = T),2),
SD = round(sd(blue_id,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 23.64 | 22.06 |
lose | 72 | 34.81 | 23.47 |
win | 77 | 41.82 | 23.00 |
m <- t.test(blue_id ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(145.87) = -1.84, p =
0.068, Lower CI = -14.54, Upper CI = 0.52, d
= -0.3.
m <- t.test(blue_id ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(145.07) = -3, p =
0.003, Lower CI = -18.53, Upper CI = -3.8, d
= -0.5.
m <- t.test(blue_id ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.55) = -5.02, p =
0, Lower CI = -25.33, Upper CI = -11.02, d =
-0.81.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(blue_connect,na.rm = T),2),
SD = round(sd(blue_connect,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 26.63 | 22.94 |
lose | 72 | 36.10 | 23.31 |
win | 77 | 42.39 | 21.15 |
m <- t.test(blue_connect ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(143.15) = -1.72, p =
0.087, Lower CI = -13.52, Upper CI = 0.93, d
= -0.29.
m <- t.test(blue_connect ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(146.63) = -2.5, p =
0.013, Lower CI = -16.94, Upper CI = -2, d =
-0.41.
m <- t.test(blue_connect ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.3) = -4.45, p =
0, Lower CI = -22.76, Upper CI = -8.76, d =
-0.72.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(blue_soli,na.rm = T),2),
SD = round(sd(blue_soli,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 23.90 | 21.46 |
lose | 72 | 33.17 | 23.83 |
win | 77 | 43.26 | 23.09 |
m <- t.test(blue_soli ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(145.57) = -2.62, p =
0.01, Lower CI = -17.7, Upper CI = -2.49, d =
-0.43.
m <- t.test(blue_soli ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(143.15) = -2.5, p =
0.014, Lower CI = -16.61, Upper CI = -1.93, d
= -0.42.
m <- t.test(blue_soli ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(151.88) = -5.41, p =
0, Lower CI = -26.44, Upper CI = -12.29, d =
-0.88.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(blue_value,na.rm = T),2),
SD = round(sd(blue_value,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 38.53 | 24.65 |
lose | 72 | 47.54 | 20.69 |
win | 77 | 59.09 | 22.61 |
m <- t.test(blue_value ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(146.94) = -3.26, p =
0.001, Lower CI = -18.56, Upper CI = -4.54, d
= -0.54.
m <- t.test(blue_value ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(146.71) = -2.43, p =
0.016, Lower CI = -16.34, Upper CI = -1.69, d
= -0.4.
m <- t.test(blue_value ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.18) = -5.41, p =
0, Lower CI = -28.07, Upper CI = -13.06, d =
-0.88.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(blue_like,na.rm = T),2),
SD = round(sd(blue_like,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 37.00 | 23.40 |
lose | 72 | 47.60 | 18.45 |
win | 77 | 58.66 | 18.49 |
m <- t.test(blue_like ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(146.38) = -3.65, p =
0, Lower CI = -17.05, Upper CI = -5.08, d =
-0.6.
m <- t.test(blue_like ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(144.55) = -3.09, p =
0.002, Lower CI = -17.37, Upper CI = -3.82, d
= -0.51.
m <- t.test(blue_like ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(146.04) = -6.4, p =
0, Lower CI = -28.35, Upper CI = -14.97, d =
-1.06.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(threat,na.rm = T),2),
SD = round(sd(threat,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 2.38 | 1.19 |
lose | 72 | 2.36 | 0.88 |
win | 77 | 1.55 | 0.80 |
m <- t.test(threat ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(143.58) = 5.91, p =
0, Lower CI = 0.54, Upper CI = 1.09, d =
0.99.
m <- t.test(threat ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(141.39) = 0.14, p =
0.89, Lower CI = -0.31, Upper CI = 0.36, d =
0.02.
m <- t.test(threat ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(135.52) = 5.16, p =
0, Lower CI = 0.52, Upper CI = 1.16, d =
0.89.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(enemy,na.rm = T),2),
SD = round(sd(enemy,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 2.45 | 1.30 |
lose | 72 | 2.08 | 0.90 |
win | 77 | 1.69 | 0.75 |
m <- t.test(enemy ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(138.4) = 2.9, p =
0.004, Lower CI = 0.13, Upper CI = 0.66, d =
0.49.
m <- t.test(enemy ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(137.71) = 2.02, p =
0.046, Lower CI = 0.01, Upper CI = 0.72, d =
0.34.
m <- t.test(enemy ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(123.5) = 4.48, p = 0,
Lower CI = 0.42, Upper CI = 1.1, d =
0.81.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(shared,na.rm = T),2),
SD = round(sd(shared,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 2.27 | 1.29 |
lose | 72 | 2.18 | 0.97 |
win | 77 | 2.61 | 1.23 |
m <- t.test(shared ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(143.08) = -2.38, p =
0.019, Lower CI = -0.79, Upper CI = -0.07, d
= -0.4.
m <- t.test(shared ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(142.41) = 0.48, p =
0.633, Lower CI = -0.28, Upper CI = 0.45, d =
0.08.
m <- t.test(shared ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.82) = -1.69, p =
0.093, Lower CI = -0.74, Upper CI = 0.06, d =
-0.27.
df_zss_elg %>%
group_by(cond) %>%
summarise(N = n(),
Mean = round(mean(linked,na.rm = T),2),
SD = round(sd(linked,na.rm = T),2)) %>%
ungroup() %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
cond | N | Mean | SD |
---|---|---|---|
ctrl | 78 | 3.49 | 1.11 |
lose | 72 | 3.21 | 1.14 |
win | 77 | 3.43 | 1.04 |
m <- t.test(linked ~ cond,data = df_zss_elg %>% filter(cond != "ctrl"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. lose: t(143.65) = -1.23, p =
0.221, Lower CI = -0.57, Upper CI = 0.13, d =
-0.21.
m <- t.test(linked ~ cond,data = df_zss_elg %>% filter(cond != "win"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
lose vs. ctrl: t(146.48) = 1.52, p =
0.132, Lower CI = -0.08, Upper CI = 0.64, d =
0.25.
m <- t.test(linked ~ cond,data = df_zss_elg %>% filter(cond != "lose"))
d_mod <- cohens_d(m)
d = d_mod[1,1]
win vs. ctrl: t(152.6) = 0.34, p =
0.736, Lower CI = -0.28, Upper CI = 0.4, d =
0.05.