pacman::p_load(dplyr, readxl, tidyverse, raster, vegan, tigris, sf, sp, plotly, ggrepel, kableExtra, glmmTMB, parameters, gt, performance, car)

## Set seed
set.seed(97)

# Tree PCQ Data
tree_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
                        sheet = "Tree_PCQ")
tree_data <- tree_data %>%
  filter(Authority %in% c("BRSF", "WSF", "Jay"))

# Soil Data
fuel_data <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
                        sheet = "Fuel_Sampling")
fuel_data <- fuel_data %>%
  filter(Authority %in% c("BRSF", "WSF", "Jay"))

Seasonal_Fuel_Sampling <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                     sheet = "Fuel_Data")
Seasonal_Fuel_Sampling <- Seasonal_Fuel_Sampling %>%
  filter(Authority %in% c("BRSF", "WSF", "Jay"))

# Seasonal Sampling Locations
Seasonal_Sampling_Locations <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                          sheet = "Sites")
Seasonal_Sampling_Locations <- Seasonal_Sampling_Locations %>%
  filter(Authority %in% c("BRSF", "WSF", "Jay"))

# Bag Weights
bag_weights <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/01_FuelDynamics/02_Data/02_Fuel_Data/Seasonal_Fuel_Sampling.xlsx",
                                          sheet = "Bag_Avg")
## New names:
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
# Site Data
CogonSites <- read_excel("C:/Users/DrewIvory/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/CogonSites_FL_AL_MS.xlsx")
CogonSites <- CogonSites %>%
  filter(Authority %in% c("BRSF", "WSF", "Jay"))

# Only include Florida/Alabama Sites
CogonSites <- CogonSites[CogonSites$Authority != "CNF" & CogonSites$Authority != "DSNF", ]

Filter All data to only include specified species (Per PLANTS database)

Filter all data to only include species found at 3% of all sites

#Fuel Dynamics ## Combine seasonal fuel data

Net Weight Method

Live

Comb_Live_Data_Net <- Combined_Data_Net %>%
  mutate(
    Live_Bag = as.numeric(Live_Bag),
    Live_Weight_Post = as.numeric(Live_Weight_Post),
    Live_Weight_Initial = as.numeric(Live_Weight_Initial),
    Live_Height = as.numeric(Height),
    Net_Live = as.numeric(Net_Live),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Live_Height = as.numeric(Height)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  mutate(biomass = Net_Live)

Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  filter(biomass >= 0)

Comb_Live_Data_Net <- Comb_Live_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Live_Weight_Initial - Live_Bag) - Net_Live) / Net_Live * 100, NA))

avg_live_values_Net <- Comb_Live_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_live_biomass = mean(biomass, na.rm = TRUE),
            avg_live_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            avg_height = mean(Live_Height, na.rm = TRUE) / 100,
            .groups = "drop")

Dead

Comb_Dead_Data_Net <- Combined_Data_Net %>%
  mutate(
    Dead_Bag = as.numeric(Dead_Bag),
    Dead_Weight_Post = as.numeric(Dead_Weight_Post),
    Dead_Weight_Initial = as.numeric(Dead_Weight_Initial),
    Net_Dead = as.numeric(Net_Dead),
    Status = as.character(Status)  # Status as a character
  )

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  mutate(biomass = Net_Dead)

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  filter(biomass >= 0)

Comb_Dead_Data_Net <- Comb_Dead_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Dead_Weight_Initial - Dead_Bag) - Net_Dead) / Net_Dead * 100, NA))

avg_dead_values_Net <- Comb_Dead_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_dead_biomass = mean(biomass, na.rm = TRUE),
            avg_dead_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Litter

Comb_Litter_Data_Net <- Combined_Data_Net %>%
  mutate(
    Litter_Bag = as.numeric(Litter_Bag),
    Litter_Weight_Post = as.numeric(Litter_Weight_Post),
    Litter_Weight_Initial = as.numeric(Litter_Weight_Initial),
    Net_Litter = as.numeric(Net_Litter),
    Status = as.character(Status)  # Status as a character
  )

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  mutate(biomass = Net_Litter)

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  filter(biomass >= 0)

Comb_Litter_Data_Net <- Comb_Litter_Data_Net %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, ((Litter_Weight_Initial - Litter_Bag) - Net_Litter) / Net_Litter * 100, NA))

avg_litter_values_Net <- Comb_Litter_Data_Net %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_litter_biomass = mean(biomass, na.rm = TRUE),
            avg_litter_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Average Bag Weight Method

Live

Comb_Live_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Live_Bag = as.numeric(Live_Bag),
    Live_Weight_Post = as.numeric(Live_Weight_Post),
    Live_Weight_Initial = as.numeric(Live_Weight_Initial),
    Live_Height = as.numeric(Height),
    Dry_LiveBag = as.numeric(Dry_LiveBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There were 2 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `Live_Height = as.numeric(Height)`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  mutate(biomass = Live_Weight_Post - Dry_LiveBag)

Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  filter(biomass >= 0)

Comb_Live_Data_Avg <- Comb_Live_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Live_Weight_Initial - Live_Weight_Post) / biomass * 100, NA))

avg_live_values_Avg <- Comb_Live_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_live_biomass = mean(biomass, na.rm = TRUE),
            avg_live_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            avg_height = mean(Live_Height, na.rm = TRUE) / 100,
            .groups = "drop")

Dead

Comb_Dead_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Dead_Bag = as.numeric(Dead_Bag),
    Dead_Weight_Post = as.numeric(Dead_Weight_Post),
    Dead_Weight_Initial = as.numeric(Dead_Weight_Initial),
    Dry_DeadBag = as.numeric(Dry_DeadBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Dry_DeadBag = as.numeric(Dry_DeadBag)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  mutate(biomass = Dead_Weight_Post - Dry_DeadBag)

Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  filter(biomass >= 0)

Comb_Dead_Data_Avg <- Comb_Dead_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Dead_Weight_Initial - Dead_Weight_Post) / biomass * 100, NA))

avg_dead_values_Avg <- Comb_Dead_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_dead_biomass = mean(biomass, na.rm = TRUE),
            avg_dead_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Litter

Comb_Litter_Data_Avg <- Combined_Data_Avg %>%
  mutate(
    Litter_Bag = as.numeric(Litter_Bag),
    Litter_Weight_Post = as.numeric(Litter_Weight_Post),
    Litter_Weight_Initial = as.numeric(Litter_Weight_Initial),
    Dry_LitterBag = as.numeric(Dry_LitterBag),
    Status = as.character(Status)  # Status as a character
  )
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Dry_LitterBag = as.numeric(Dry_LitterBag)`.
## Caused by warning:
## ! NAs introduced by coercion
Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  mutate(biomass = Litter_Weight_Post - Dry_LitterBag)

Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  filter(biomass >= 0)

Comb_Litter_Data_Avg <- Comb_Litter_Data_Avg %>%
  mutate(relative_moisture_content = ifelse(biomass > bioT, (Litter_Weight_Initial - Litter_Weight_Post) / biomass * 100, NA))

avg_litter_values_Avg <- Comb_Litter_Data_Avg %>%
  group_by(Plot, Season, Status) %>%
  summarize(avg_litter_biomass = mean(biomass, na.rm = TRUE),
            avg_litter_moisture_content = mean(relative_moisture_content, na.rm = TRUE),
            avg_soil_moisture = mean(Soil_Moisture, na.rm = TRUE),
            .groups = "drop")

Fill in gaps within Net method with Avg method.

# Live
avg_live_values_Combined <- avg_live_values_Net %>%
  full_join(avg_live_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_live_biomass = coalesce(avg_live_biomass_Net, avg_live_biomass_Avg),
    avg_live_moisture_content = coalesce(avg_live_moisture_content_Net, avg_live_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    avg_height = coalesce(avg_height_Net, avg_height_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_live_biomass, avg_live_moisture_content, avg_soil_moisture, avg_height)

# Dead
avg_dead_values_Combined <- avg_dead_values_Net %>%
  full_join(avg_dead_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_dead_biomass = coalesce(avg_dead_biomass_Net, avg_dead_biomass_Avg),
    avg_dead_moisture_content = coalesce(avg_dead_moisture_content_Net, avg_dead_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_dead_biomass, avg_dead_moisture_content, avg_soil_moisture)

# Litter
avg_litter_values_Combined <- avg_litter_values_Net %>%
  full_join(avg_litter_values_Avg, by = "Plot", suffix = c("_Net", "_Avg")) %>%
  mutate(
    avg_litter_biomass = coalesce(avg_litter_biomass_Net, avg_litter_biomass_Avg),
    avg_litter_moisture_content = coalesce(avg_litter_moisture_content_Net, avg_litter_moisture_content_Avg),
    avg_soil_moisture = coalesce(avg_soil_moisture_Net, avg_soil_moisture_Avg),
    Season = coalesce(Season_Net, Season_Avg),
    Status = coalesce(Status_Net, Status_Avg)
  ) %>%
  select(Plot, Season, Status, avg_litter_biomass, avg_litter_moisture_content, avg_soil_moisture)

Combine summer sampling (CogonSites) locations with winter sampling locations

Merge avg_live_values, avg_dead_values, and avg_litter_values

Average Fuel Values by Invasion Status and Season

There are 10,000 square meters in a hectare. Biomass is from 25 cm by 25 cm quadrats, so we have 0.0625 square meters. Therefore, 10,000/0.0625 = 160,000. So biomass gets multiplied by 160,000 and divided by 1,000,000 to convert from grams to tonnes.

25th, 50th and 75 quantiles of fuel values

Fuel_model_quantiles <- avg_fuel_values %>%
  group_by(Status, Season) %>%
  summarize(avg_live_biomass_25 = quantile(avg_live_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_live_biomass_50 = quantile(avg_live_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_live_biomass_75 = quantile(avg_live_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_dead_biomass_25 = quantile(avg_dead_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_dead_biomass_50 = quantile(avg_dead_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_dead_biomass_75 = quantile(avg_dead_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_litter_biomass_25 = quantile(avg_litter_biomass, 0.25, na.rm = TRUE) * 0.16,
            avg_litter_biomass_50 = quantile(avg_litter_biomass, 0.50, na.rm = TRUE) * 0.16,
            avg_litter_biomass_75 = quantile(avg_litter_biomass, 0.75, na.rm = TRUE) * 0.16,
            avg_live_moisture_content_25 = quantile(avg_live_moisture_content, 0.25, na.rm = TRUE),
            avg_live_moisture_content_50 = quantile(avg_live_moisture_content, 0.50, na.rm = TRUE),
            avg_live_moisture_content_75 = quantile(avg_live_moisture_content, 0.75, na.rm = TRUE),
            avg_dead_moisture_content_25 = quantile(avg_dead_moisture_content, 0.25, na.rm = TRUE),
            avg_dead_moisture_content_50 = quantile(avg_dead_moisture_content, 0.50, na.rm = TRUE),
            avg_dead_moisture_content_75 = quantile(avg_dead_moisture_content, 0.75, na.rm = TRUE),
            avg_litter_moisture_content_25 = quantile(avg_litter_moisture_content, 0.25, na.rm = TRUE),
            avg_litter_moisture_content_50 = quantile(avg_litter_moisture_content, 0.50, na.rm = TRUE),
            avg_litter_moisture_content_75 = quantile(avg_litter_moisture_content, 0.75, na.rm = TRUE),
            avg_soil_moisture_25 = quantile(avg_soil_moisture, 0.25, na.rm = TRUE),
            avg_soil_moisture_50 = quantile(avg_soil_moisture, 0.50, na.rm = TRUE),
            avg_soil_moisture_75 = quantile(avg_soil_moisture, 0.75, na.rm = TRUE),
            avg_height_25 = quantile(avg_height, 0.25, na.rm = TRUE),
            avg_height_50 = quantile(avg_height, 0.50, na.rm = TRUE),
            avg_height_75 = quantile(avg_height, 0.75, na.rm = TRUE),
            .groups = "drop")

# Kable table of quantiles
kable(Fuel_model_quantiles)
Status Season avg_live_biomass_25 avg_live_biomass_50 avg_live_biomass_75 avg_dead_biomass_25 avg_dead_biomass_50 avg_dead_biomass_75 avg_litter_biomass_25 avg_litter_biomass_50 avg_litter_biomass_75 avg_live_moisture_content_25 avg_live_moisture_content_50 avg_live_moisture_content_75 avg_dead_moisture_content_25 avg_dead_moisture_content_50 avg_dead_moisture_content_75 avg_litter_moisture_content_25 avg_litter_moisture_content_50 avg_litter_moisture_content_75 avg_soil_moisture_25 avg_soil_moisture_50 avg_soil_moisture_75 avg_height_25 avg_height_50 avg_height_75
Invaded Green_Up 1.1562667 2.1616000 3.4720000 1.8922667 2.4192000 3.108267 3.486400 4.974400 9.215467 54.66557 117.06158 133.0470 9.195465 10.39843 16.57708 9.487179 11.44906 14.92138 4.833333 5.766667 7.10000 0.5600000 0.7533333 0.9500000
Invaded Summer 1.7720000 2.4472000 3.7221333 1.2645333 2.3952000 4.480933 2.325600 4.085333 6.754400 133.21727 147.42139 168.2493 13.454489 18.01118 27.29767 11.681481 21.20772 35.50451 6.316667 10.900000 12.95833 0.6633333 0.8050000 1.0100000
Invaded Winter 0.9458667 1.4976000 2.4898667 1.9476000 3.4101333 6.198267 3.023867 5.620267 7.916800 95.76815 119.49396 151.1411 13.788625 19.72430 36.73561 15.979345 27.86209 47.96388 5.933333 10.916667 13.89167 0.7116667 0.8500000 0.9733333
Non_Invaded Green_Up 0.3685333 0.5088000 0.7546667 0.3370667 0.7482667 1.361600 3.924267 6.187200 8.342933 51.67528 80.33146 146.1973 9.750584 15.46700 17.59368 7.290356 12.30107 17.27920 3.066667 4.033333 9.30000 0.2333333 0.3333333 0.4366667
Non_Invaded Summer 0.2821333 0.5946667 1.0218667 0.1384000 0.3152000 0.896000 3.992200 6.060000 7.308933 133.27391 163.91720 191.7656 8.801051 15.42178 29.73250 10.007541 21.21443 47.66848 3.741667 5.500000 11.65833 0.1533333 0.2366667 0.3366667
Non_Invaded Winter 0.2112000 0.2728000 0.5125333 0.3168000 0.7242667 1.806667 4.612133 6.603733 9.257733 30.64949 85.18529 184.4349 11.679660 16.25337 49.32975 15.910721 42.65335 56.80946 6.233333 9.566667 12.37500 0.1116667 0.2366667 0.3583333

Fuel Table

Fuel and Moisture Quantiles by Invasion Status and Season
Variable Invaded - Spring Invaded - Summer Invaded - Winter Non Invaded - Spring Non Invaded - Summer Non Invaded - Winter
Live Biomass (25%) 1.16 1.77 0.95 0.37 0.28 0.21
Live Biomass (50%) 2.16 2.45 1.50 0.51 0.59 0.27
Live Biomass (75%) 3.47 3.72 2.49 0.75 1.02 0.51
Dead Biomass (25%) 1.89 1.26 1.95 0.34 0.14 0.32
Dead Biomass (50%) 2.42 2.40 3.41 0.75 0.32 0.72
Dead Biomass (75%) 3.11 4.48 6.20 1.36 0.90 1.81
Litter Biomass (25%) 3.49 2.33 3.02 3.92 3.99 4.61
Litter Biomass (50%) 4.97 4.09 5.62 6.19 6.06 6.60
Litter Biomass (75%) 9.22 6.75 7.92 8.34 7.31 9.26
Live Moisture Content (25%) 54.67 133.22 95.77 51.68 133.27 30.65
Live Moisture Content (50%) 117.06 147.42 119.49 80.33 163.92 85.19
Live Moisture Content (75%) 133.05 168.25 151.14 146.20 191.77 184.43
Dead Moisture Content (25%) 9.20 13.45 13.79 9.75 8.80 11.68
Dead Moisture Content (50%) 10.40 18.01 19.72 15.47 15.42 16.25
Dead Moisture Content (75%) 16.58 27.30 36.74 17.59 29.73 49.33
Litter Moisture Content (25%) 9.49 11.68 15.98 7.29 10.01 15.91
Litter Moisture Content (50%) 11.45 21.21 27.86 12.30 21.21 42.65
Litter Moisture Content (75%) 14.92 35.50 47.96 17.28 47.67 56.81
Soil Moisture (25%) 4.83 6.32 5.93 3.07 3.74 6.23
Soil Moisture (50%) 5.77 10.90 10.92 4.03 5.50 9.57
Soil Moisture (75%) 7.10 12.96 13.89 9.30 11.66 12.38
Height (25%) 0.56 0.66 0.71 0.23 0.15 0.11
Height (50%) 0.75 0.80 0.85 0.33 0.24 0.24
Height (75%) 0.95 1.01 0.97 0.44 0.34 0.36
## <div id="cxlzrxjqsa" style="padding-left:0px;padding-right:0px;padding-top:10px;padding-bottom:10px;overflow-x:auto;overflow-y:auto;width:auto;height:auto;">
##   <style>#cxlzrxjqsa table {
##   font-family: system-ui, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji';
##   -webkit-font-smoothing: antialiased;
##   -moz-osx-font-smoothing: grayscale;
## }
## 
## #cxlzrxjqsa thead, #cxlzrxjqsa tbody, #cxlzrxjqsa tfoot, #cxlzrxjqsa tr, #cxlzrxjqsa td, #cxlzrxjqsa th {
##   border-style: none;
## }
## 
## #cxlzrxjqsa p {
##   margin: 0;
##   padding: 0;
## }
## 
## #cxlzrxjqsa .gt_table {
##   display: table;
##   border-collapse: collapse;
##   line-height: normal;
##   margin-left: auto;
##   margin-right: auto;
##   color: #333333;
##   font-size: 16px;
##   font-weight: normal;
##   font-style: normal;
##   background-color: #FFFFFF;
##   width: 100%;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #A8A8A8;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #A8A8A8;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_caption {
##   padding-top: 4px;
##   padding-bottom: 4px;
## }
## 
## #cxlzrxjqsa .gt_title {
##   color: #333333;
##   font-size: 125%;
##   font-weight: initial;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-color: #FFFFFF;
##   border-bottom-width: 0;
## }
## 
## #cxlzrxjqsa .gt_subtitle {
##   color: #333333;
##   font-size: 85%;
##   font-weight: initial;
##   padding-top: 3px;
##   padding-bottom: 5px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-color: #FFFFFF;
##   border-top-width: 0;
## }
## 
## #cxlzrxjqsa .gt_heading {
##   background-color: #FFFFFF;
##   text-align: center;
##   border-bottom-color: #FFFFFF;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_bottom_border {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_col_headings {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_col_heading {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 6px;
##   padding-left: 5px;
##   padding-right: 5px;
##   overflow-x: hidden;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: normal;
##   text-transform: inherit;
##   padding-top: 0;
##   padding-bottom: 0;
##   padding-left: 4px;
##   padding-right: 4px;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer:first-child {
##   padding-left: 0;
## }
## 
## #cxlzrxjqsa .gt_column_spanner_outer:last-child {
##   padding-right: 0;
## }
## 
## #cxlzrxjqsa .gt_column_spanner {
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: bottom;
##   padding-top: 5px;
##   padding-bottom: 5px;
##   overflow-x: hidden;
##   display: inline-block;
##   width: 100%;
## }
## 
## #cxlzrxjqsa .gt_spanner_row {
##   border-bottom-style: hidden;
## }
## 
## #cxlzrxjqsa .gt_group_heading {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   text-align: left;
## }
## 
## #cxlzrxjqsa .gt_empty_group_heading {
##   padding: 0.5px;
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   vertical-align: middle;
## }
## 
## #cxlzrxjqsa .gt_from_md > :first-child {
##   margin-top: 0;
## }
## 
## #cxlzrxjqsa .gt_from_md > :last-child {
##   margin-bottom: 0;
## }
## 
## #cxlzrxjqsa .gt_row {
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
##   margin: 10px;
##   border-top-style: solid;
##   border-top-width: 1px;
##   border-top-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 1px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 1px;
##   border-right-color: #D3D3D3;
##   vertical-align: middle;
##   overflow-x: hidden;
## }
## 
## #cxlzrxjqsa .gt_stub {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_stub_row_group {
##   color: #333333;
##   background-color: #FFFFFF;
##   font-size: 100%;
##   font-weight: initial;
##   text-transform: inherit;
##   border-right-style: solid;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
##   padding-left: 5px;
##   padding-right: 5px;
##   vertical-align: top;
## }
## 
## #cxlzrxjqsa .gt_row_group_first td {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_row_group_first th {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_first_summary_row {
##   border-top-style: solid;
##   border-top-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_first_summary_row.thick {
##   border-top-width: 2px;
## }
## 
## #cxlzrxjqsa .gt_last_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_grand_summary_row {
##   color: #333333;
##   background-color: #FFFFFF;
##   text-transform: inherit;
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_first_grand_summary_row {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-top-style: double;
##   border-top-width: 6px;
##   border-top-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_last_grand_summary_row_top {
##   padding-top: 8px;
##   padding-bottom: 8px;
##   padding-left: 5px;
##   padding-right: 5px;
##   border-bottom-style: double;
##   border-bottom-width: 6px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_striped {
##   background-color: rgba(128, 128, 128, 0.05);
## }
## 
## #cxlzrxjqsa .gt_table_body {
##   border-top-style: solid;
##   border-top-width: 2px;
##   border-top-color: #D3D3D3;
##   border-bottom-style: solid;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_footnotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_footnote {
##   margin: 0px;
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_sourcenotes {
##   color: #333333;
##   background-color: #FFFFFF;
##   border-bottom-style: none;
##   border-bottom-width: 2px;
##   border-bottom-color: #D3D3D3;
##   border-left-style: none;
##   border-left-width: 2px;
##   border-left-color: #D3D3D3;
##   border-right-style: none;
##   border-right-width: 2px;
##   border-right-color: #D3D3D3;
## }
## 
## #cxlzrxjqsa .gt_sourcenote {
##   font-size: 90%;
##   padding-top: 4px;
##   padding-bottom: 4px;
##   padding-left: 5px;
##   padding-right: 5px;
## }
## 
## #cxlzrxjqsa .gt_left {
##   text-align: left;
## }
## 
## #cxlzrxjqsa .gt_center {
##   text-align: center;
## }
## 
## #cxlzrxjqsa .gt_right {
##   text-align: right;
##   font-variant-numeric: tabular-nums;
## }
## 
## #cxlzrxjqsa .gt_font_normal {
##   font-weight: normal;
## }
## 
## #cxlzrxjqsa .gt_font_bold {
##   font-weight: bold;
## }
## 
## #cxlzrxjqsa .gt_font_italic {
##   font-style: italic;
## }
## 
## #cxlzrxjqsa .gt_super {
##   font-size: 65%;
## }
## 
## #cxlzrxjqsa .gt_footnote_marks {
##   font-size: 75%;
##   vertical-align: 0.4em;
##   position: initial;
## }
## 
## #cxlzrxjqsa .gt_asterisk {
##   font-size: 100%;
##   vertical-align: 0;
## }
## 
## #cxlzrxjqsa .gt_indent_1 {
##   text-indent: 5px;
## }
## 
## #cxlzrxjqsa .gt_indent_2 {
##   text-indent: 10px;
## }
## 
## #cxlzrxjqsa .gt_indent_3 {
##   text-indent: 15px;
## }
## 
## #cxlzrxjqsa .gt_indent_4 {
##   text-indent: 20px;
## }
## 
## #cxlzrxjqsa .gt_indent_5 {
##   text-indent: 25px;
## }
## 
## #cxlzrxjqsa .katex-display {
##   display: inline-flex !important;
##   margin-bottom: 0.75em !important;
## }
## 
## #cxlzrxjqsa div.Reactable > div.rt-table > div.rt-thead > div.rt-tr.rt-tr-group-header > div.rt-th-group:after {
##   height: 0px !important;
## }
## </style>
##   <table class="gt_table" data-quarto-disable-processing="false" data-quarto-bootstrap="false">
##   <thead>
##     <tr class="gt_heading">
##       <td colspan="7" class="gt_heading gt_title gt_font_normal gt_bottom_border" style>Fuel and Moisture Quantiles by Invasion Status and Season</td>
##     </tr>
##     
##     <tr class="gt_col_headings">
##       <th class="gt_col_heading gt_columns_bottom_border gt_left" rowspan="1" colspan="1" scope="col" id="Variable">Variable</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Spring">Invaded - Spring</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Summer">Invaded - Summer</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Invaded---Winter">Invaded - Winter</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Spring">Non Invaded - Spring</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Summer">Non Invaded - Summer</th>
##       <th class="gt_col_heading gt_columns_bottom_border gt_right" rowspan="1" colspan="1" scope="col" id="Non_Invaded---Winter">Non Invaded - Winter</th>
##     </tr>
##   </thead>
##   <tbody class="gt_table_body">
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">1.16</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.77</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.95</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.37</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.28</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.21</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">2.16</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.45</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">1.50</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.51</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.59</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.27</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.47</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">3.72</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">2.49</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">1.02</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.51</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">1.89</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.26</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">1.95</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.34</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.14</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.32</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">2.42</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.40</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">3.41</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.32</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.72</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.11</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">4.48</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">6.20</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">1.36</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.90</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">1.81</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">3.49</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">2.33</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">3.02</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">3.92</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">3.99</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">4.61</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">4.97</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">4.09</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">5.62</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">6.19</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">6.06</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">6.60</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Biomass (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.22</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">6.75</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">7.92</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">8.34</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">7.31</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">9.26</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">54.67</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">133.22</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">95.77</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">51.68</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">133.27</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">30.65</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">117.06</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">147.42</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">119.49</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">80.33</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">163.92</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">85.19</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Live Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">133.05</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">168.25</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">151.14</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">146.20</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">191.77</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">184.43</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.20</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">13.45</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">13.79</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">9.75</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">8.80</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">11.68</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">10.40</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">18.01</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">19.72</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">15.47</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">15.42</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">16.25</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Dead Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">16.58</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">27.30</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">36.74</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">17.59</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">29.73</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">49.33</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">9.49</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">11.68</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">15.98</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">7.29</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">10.01</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">15.91</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">11.45</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">21.21</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">27.86</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">12.30</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">21.21</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">42.65</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Litter Moisture Content (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">14.92</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">35.50</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">47.96</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">17.28</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">47.67</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">56.81</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">4.83</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">6.32</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">5.93</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">3.07</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">3.74</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">6.23</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">5.77</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">10.90</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">10.92</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">4.03</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">5.50</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">9.57</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Soil Moisture (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">7.10</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">12.96</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">13.89</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">9.30</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">11.66</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">12.38</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (25%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.56</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">0.66</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.71</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.23</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.15</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.11</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (50%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.75</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">0.80</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.85</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.33</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.24</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.24</td></tr>
##     <tr><td headers="Variable" class="gt_row gt_left">Height (75%)</td>
## <td headers="Invaded - Spring" class="gt_row gt_right">0.95</td>
## <td headers="Invaded - Summer" class="gt_row gt_right">1.01</td>
## <td headers="Invaded - Winter" class="gt_row gt_right">0.97</td>
## <td headers="Non_Invaded - Spring" class="gt_row gt_right">0.44</td>
## <td headers="Non_Invaded - Summer" class="gt_row gt_right">0.34</td>
## <td headers="Non_Invaded - Winter" class="gt_row gt_right">0.36</td></tr>
##   </tbody>
##   
##   
## </table>
## </div>

Objective 1- Cogongrass relationship with fuel dynamics

Data Cleaning

GLMM Live Fuel Biomass

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal, AIC_wt, AICc_wt, BIC_wt
## # Comparison of Model Performance Indices
## 
## Name            |   Model |  RMSE | Sigma | Performance-Score
## -------------------------------------------------------------
## LiveB_gaussian  | glmmTMB | 0.550 | 0.777 |            65.26%
## LiveB_student   | glmmTMB | 1.154 | 0.535 |            50.00%
## LiveB_gamma     | glmmTMB | 0.950 | 0.678 |            46.46%
## LiveB_lognormal | glmmTMB | 0.684 | 0.884 |            38.91%

Live Biomass Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_live_biomass ~ Status * Season + Status * Region + (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##     515.3     550.6    -246.7     493.3       172 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance  Std.Dev. 
##  Plot   (Intercept) 2.619e-09 5.118e-05
## Number of obs: 183, groups:  Plot, 183
## 
## Dispersion estimate for t family (sigma^2): 0.287 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 0.61105    0.10288   5.939 2.86e-09 ***
## StatusInvaded               1.35149    0.18024   7.498 6.47e-14 ***
## SeasonSpring               -0.04727    0.14939  -0.316  0.75169    
## SeasonWinter               -0.21173    0.14245  -1.486  0.13720    
## RegionCF                   -0.04895    0.11984  -0.408  0.68295    
## StatusInvaded:SeasonSpring -0.72440    0.27367  -2.647  0.00812 ** 
## StatusInvaded:SeasonWinter -0.91711    0.28116  -3.262  0.00111 ** 
## StatusInvaded:RegionCF      1.17842    0.24705   4.770 1.84e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_live_biomass
##                 Chisq Df Pr(>Chisq)    
## (Intercept)   35.2748  1  2.863e-09 ***
## Status        56.2232  1  6.469e-14 ***
## Season         2.2561  2   0.323661    
## Region         0.1668  1   0.682953    
## Status:Season 13.3384  2   0.001269 ** 
## Status:Region 22.7524  1  1.843e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Live Biomass

GLMM Dead Fuel Biomass

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal, AIC_wt, AICc_wt, BIC_wt
## # Comparison of Model Performance Indices
## 
## Name           |   Model |  RMSE | Sigma | Performance-Score
## ------------------------------------------------------------
## DeadB_gaussian | glmmTMB | 0.980 | 1.386 |            50.00%
## DeadB_student  | glmmTMB | 2.034 | 0.801 |            50.00%

Dead Biomass Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_dead_biomass ~ Status * Season + Status * Region + (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##     724.0     759.2    -351.0     702.0       170 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance  Std.Dev. 
##  Plot   (Intercept) 2.553e-09 5.053e-05
## Number of obs: 181, groups:  Plot, 181
## 
## Dispersion estimate for t family (sigma^2): 0.642 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 0.35940    0.13813   2.602  0.00927 ** 
## StatusInvaded               1.61304    0.26476   6.092 1.11e-09 ***
## SeasonSpring                0.36698    0.25425   1.443  0.14891    
## SeasonWinter                0.30786    0.22576   1.364  0.17268    
## RegionCF                    0.10972    0.18659   0.588  0.55651    
## StatusInvaded:SeasonSpring -0.08331    0.41599  -0.200  0.84127    
## StatusInvaded:SeasonWinter  0.97185    0.58093   1.673  0.09435 .  
## StatusInvaded:RegionCF      0.87437    0.54328   1.609  0.10753    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_dead_biomass
##                 Chisq Df Pr(>Chisq)    
## (Intercept)    6.7700  1    0.00927 ** 
## Status        37.1185  1  1.112e-09 ***
## Season         3.1907  2    0.20284    
## Region         0.3458  1    0.55651    
## Status:Season  3.2263  2    0.19926    
## Status:Region  2.5902  1    0.10753    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Dead Biomass

GLMM Litter Fuel Biomass

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Following indices with missing values are not used for ranking: AIC_wt,
##   AICc_wt, BIC_wt
## # Comparison of Model Performance Indices
## 
## Name                    |   Model |  RMSE | Sigma | Performance-Score
## ---------------------------------------------------------------------
## LitterB_model_gamma     | glmmTMB | 3.301 | 0.573 |            59.51%
## LitterB_model_gaussian  | glmmTMB | 1.845 | 2.609 |            57.12%
## LitterB_model_lognormal | glmmTMB | 2.725 | 2.947 |            25.52%
## LitterB_model_student   | glmmTMB | 3.643 | 2.646 |             6.34%

Litter Biomass Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_litter_biomass ~ Status * Season + Status * Region + (1 |      Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    1019.3    1054.8    -498.6     997.3       175 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance Std.Dev.
##  Plot   (Intercept) 0.3995   0.632   
## Number of obs: 186, groups:  Plot, 186
## 
## Dispersion estimate for t family (sigma^2):    7 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  6.1447     0.5115  12.014   <2e-16 ***
## StatusInvaded               -1.1551     0.7575  -1.525    0.127    
## SeasonSpring                 0.4144     0.9105   0.455    0.649    
## SeasonWinter                 0.9210     0.7901   1.166    0.244    
## RegionCF                    -0.7632     0.6629  -1.151    0.250    
## StatusInvaded:SeasonSpring   0.7403     1.2823   0.577    0.564    
## StatusInvaded:SeasonWinter   0.5278     1.1671   0.452    0.651    
## StatusInvaded:RegionCF      -0.3086     0.9702  -0.318    0.750    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_litter_biomass
##                  Chisq Df Pr(>Chisq)    
## (Intercept)   144.3416  1     <2e-16 ***
## Status          2.3251  1     0.1273    
## Season          1.3819  2     0.5011    
## Region          1.3253  1     0.2497    
## Status:Season   0.4254  2     0.8084    
## Status:Region   0.1012  1     0.7505    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Litter Biomass

GLMM Live Moisture

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal
## # Comparison of Model Performance Indices
## 
## Name                  |   Model |      RMSE |  Sigma | AIC weights
## ------------------------------------------------------------------
## LiveM_model_lognormal | glmmTMB |    44.539 | 45.939 |       0.817
## LiveM_model_gaussian  | glmmTMB | 9.561e-04 |  0.214 |       0.134
## LiveM_model_gamma     | glmmTMB |    48.093 |  0.424 |    2.37e-08
## LiveM_model_student   | glmmTMB |    47.893 | 47.917 |       0.049
## 
## Name                  | AICc weights | BIC weights | Performance-Score
## ----------------------------------------------------------------------
## LiveM_model_lognormal |        0.824 |       0.849 |            62.31%
## LiveM_model_gaussian  |        0.135 |       0.139 |            49.83%
## LiveM_model_gamma     |     2.39e-08 |    2.46e-08 |            19.91%
## LiveM_model_student   |        0.041 |       0.012 |             2.57%

Live Moisture Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_live_moisture_content ~ Status * Season + Status * Region +      (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    1428.8    1460.6    -703.4    1406.8       122 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance Std.Dev.
##  Plot   (Intercept) 2.275    1.508   
## Number of obs: 133, groups:  Plot, 133
## 
## Dispersion estimate for t family (sigma^2): 2.3e+03 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 160.338     10.775  14.880  < 2e-16 ***
## StatusInvaded                -7.665     13.680  -0.560 0.575275    
## SeasonSpring                -63.248     16.901  -3.742 0.000182 ***
## SeasonWinter                -69.764     22.211  -3.141 0.001684 ** 
## RegionCF                     17.606     14.503   1.214 0.224762    
## StatusInvaded:SeasonSpring   10.705     21.208   0.505 0.613708    
## StatusInvaded:SeasonWinter   38.959     25.873   1.506 0.132132    
## StatusInvaded:RegionCF      -16.966     17.923  -0.947 0.343853    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_live_moisture_content
##                  Chisq Df Pr(>Chisq)    
## (Intercept)   221.4238  1  < 2.2e-16 ***
## Status          0.3139  1     0.5753    
## Season         19.8255  2  4.954e-05 ***
## Region          1.4737  1     0.2248    
## Status:Season   2.2916  2     0.3180    
## Status:Region   0.8960  1     0.3439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Live Moisture

GLMM Dead Moisture

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal, AIC_wt, AICc_wt, BIC_wt
## # Comparison of Model Performance Indices
## 
## Name                  |   Model |      RMSE |     Sigma | Performance-Score
## ---------------------------------------------------------------------------
## DeadM_model_gamma     | glmmTMB | 2.180e-05 | 4.970e-04 |           100.00%
## DeadM_model_gaussian  | glmmTMB |     0.102 |     1.547 |            95.98%
## DeadM_model_student   | glmmTMB |    26.048 |     5.123 |            37.35%
## DeadM_model_lognormal | glmmTMB |    24.170 |    20.245 |             3.61%

Dead Moisture Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_dead_moisture_content ~ Status * Season + Status * Region +      (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    1136.2    1168.2    -557.1    1114.2       124 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance  Std.Dev.
##  Plot   (Intercept) 6.496e-05 0.00806 
## Number of obs: 135, groups:  Plot, 135
## 
## Dispersion estimate for t family (sigma^2): 26.2 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 13.6175     2.5782   5.282 1.28e-07 ***
## StatusInvaded                3.0004     2.8424   1.056    0.291    
## SeasonSpring                 0.1124     2.8765   0.039    0.969    
## SeasonWinter                 0.8695     2.6067   0.334    0.739    
## RegionCF                    -1.1129     2.3638  -0.471    0.638    
## StatusInvaded:SeasonSpring  -5.5254     3.3495  -1.650    0.099 .  
## StatusInvaded:SeasonWinter  -0.8392     3.4316  -0.245    0.807    
## StatusInvaded:RegionCF       1.4954     2.8695   0.521    0.602    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_dead_moisture_content
##                 Chisq Df Pr(>Chisq)    
## (Intercept)   27.8980  1  1.279e-07 ***
## Status         1.1143  1     0.2912    
## Season         0.1393  2     0.9327    
## Region         0.2217  1     0.6378    
## Status:Season  3.1124  2     0.2109    
## Status:Region  0.2716  1     0.6023    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Dead Moisture

GLMM Litter Moisture

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal, AIC_wt, AICc_wt, BIC_wt
## # Comparison of Model Performance Indices
## 
## Name                    |   Model |   RMSE |  Sigma | Performance-Score
## -----------------------------------------------------------------------
## LitterM_model_gamma     | glmmTMB | 16.938 |  0.620 |           100.00%
## LitterM_model_student   | glmmTMB | 28.107 | 12.681 |            30.29%
## LitterM_model_gaussian  | glmmTMB | 25.549 | 25.851 |            20.22%
## LitterM_model_lognormal | glmmTMB | 26.674 | 31.214 |             6.41%

Litter Moisture Summary Table

##  Family: t  ( identity )
## Formula:          
## avg_litter_moisture_content ~ Status * Season + Status * Region +  
##     (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    1717.5    1753.0    -847.8    1695.5       175 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance  Std.Dev.
##  Plot   (Intercept) 0.0001714 0.01309 
## Number of obs: 186, groups:  Plot, 186
## 
## Dispersion estimate for t family (sigma^2):  161 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 21.3313     4.1776   5.106 3.29e-07 ***
## StatusInvaded               -0.2478     4.6825  -0.053  0.95779    
## SeasonSpring                -6.4317     4.3504  -1.478  0.13929    
## SeasonWinter                19.0172     6.8618   2.771  0.00558 ** 
## RegionCF                    -4.4238     3.9831  -1.111  0.26673    
## StatusInvaded:SeasonSpring  -1.0300     5.4397  -0.189  0.84983    
## StatusInvaded:SeasonWinter -12.6049     8.2149  -1.534  0.12493    
## StatusInvaded:RegionCF       1.4974     5.1639   0.290  0.77183    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_litter_moisture_content
##                 Chisq Df Pr(>Chisq)    
## (Intercept)   26.0729  1  3.288e-07 ***
## Status         0.0028  1  0.9577921    
## Season        16.5156  2  0.0002592 ***
## Region         1.2335  1  0.2667269    
## Status:Season  2.5237  2  0.2831252    
## Status:Region  0.0841  1  0.7718343    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Litter Moisture

GLMM Soil Moisture

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## Random effect variances not available. Returned R2 does not account for random effects.
## Following indices with missing values are not used for ranking:
##   R2_conditional, R2_marginal
## # Comparison of Model Performance Indices
## 
## Name                  |   Model |  RMSE | Sigma | AIC weights | AICc weights
## ----------------------------------------------------------------------------
## SoilM_model_lognormal | glmmTMB | 8.306 | 5.957 |       1.000 |        1.000
## SoilM_model_gamma     | glmmTMB | 4.566 | 0.506 |    5.22e-11 |     5.22e-11
## SoilM_model_gaussian  | glmmTMB | 3.773 | 5.433 |    7.34e-43 |     7.34e-43
## SoilM_model_student   | glmmTMB | 8.280 | 2.819 |    1.81e-14 |     1.59e-14
## 
## Name                  | BIC weights | Performance-Score
## -------------------------------------------------------
## SoilM_model_lognormal |       1.000 |            60.00%
## SoilM_model_gamma     |    5.22e-11 |            36.50%
## SoilM_model_gaussian  |    7.34e-43 |            21.92%
## SoilM_model_student   |    3.60e-15 |            11.63%

Soil Moisture Summary Table

##  Family: t  ( identity )
## Formula:          avg_soil_moisture ~ Status * Season + Status * Region + (1 |  
##     Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    1182.3    1217.8    -580.2    1160.3       175 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance Std.Dev.
##  Plot   (Intercept) 1.172    1.083   
## Number of obs: 186, groups:  Plot, 186
## 
## Dispersion estimate for t family (sigma^2): 7.95 
## 
## Conditional model:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  9.0705     0.7966  11.386   <2e-16 ***
## StatusInvaded                1.9826     1.0220   1.940   0.0524 .  
## SeasonSpring                -0.8295     1.1751  -0.706   0.4802    
## SeasonWinter                 2.0181     0.9587   2.105   0.0353 *  
## RegionCF                    -5.2176     0.8796  -5.932    3e-09 ***
## StatusInvaded:SeasonSpring  -2.6436     1.6192  -1.633   0.1025    
## StatusInvaded:SeasonWinter  -1.8378     1.4837  -1.239   0.2155    
## StatusInvaded:RegionCF       0.4283     1.3785   0.311   0.7560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_soil_moisture
##                  Chisq Df Pr(>Chisq)    
## (Intercept)   129.6486  1    < 2e-16 ***
## Status          3.7636  1    0.05238 .  
## Season          6.0657  2    0.04818 *  
## Region         35.1837  1      3e-09 ***
## Status:Season   3.2218  2    0.19971    
## Status:Region   0.0965  1    0.75604    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Soil Moisture

GLMM Veg Height

Model Comparison

## Some of the nested models seem to be identical and probably only vary in
##   their random effects.
## # Comparison of Model Performance Indices
## 
## Name                 |   Model |  RMSE | Sigma | AIC weights | AICc weights
## ---------------------------------------------------------------------------
## VegH_model_lognormal | glmmTMB | 0.138 | 0.157 |       0.932 |        0.939
## VegH_model_gaussian  | glmmTMB | 0.091 | 0.128 |    2.72e-07 |     2.74e-07
## VegH_model_student   | glmmTMB | 0.182 | 0.123 |       0.068 |        0.061
## VegH_model_gamma     | glmmTMB | 0.167 | 0.427 |    4.10e-14 |     4.13e-14
## 
## Name                 | BIC weights | Performance-Score
## ------------------------------------------------------
## VegH_model_lognormal |       0.985 |            87.37%
## VegH_model_gaussian  |    2.87e-07 |            39.65%
## VegH_model_student   |       0.015 |            23.05%
## VegH_model_gamma     |    4.33e-14 |             3.19%

Veg Height Summary Table

##  Family: t  ( identity )
## Formula:          avg_height ~ Status * Season + Status * Region + (1 | Plot)
## Data: merged_sites
## 
##       AIC       BIC    logLik -2*log(L)  df.resid 
##    -110.2     -74.9      66.1    -132.2       172 
## 
## Random effects:
## 
## Conditional model:
##  Groups Name        Variance  Std.Dev.
##  Plot   (Intercept) 0.0003042 0.01744 
## Number of obs: 183, groups:  Plot, 183
## 
## Dispersion estimate for t family (sigma^2): 0.0151 
## 
## Conditional model:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 0.224913   0.024634   9.130  < 2e-16 ***
## StatusInvaded               0.479359   0.035934  13.340  < 2e-16 ***
## SeasonSpring                0.098124   0.039048   2.513  0.01197 *  
## SeasonWinter               -0.023158   0.038322  -0.604  0.54565    
## RegionCF                    0.043416   0.031111   1.396  0.16285    
## StatusInvaded:SeasonSpring -0.163873   0.055447  -2.955  0.00312 ** 
## StatusInvaded:SeasonWinter  0.008513   0.055334   0.154  0.87773    
## StatusInvaded:RegionCF      0.227708   0.045494   5.005 5.58e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: avg_height
##                  Chisq Df Pr(>Chisq)    
## (Intercept)    83.3619  1  < 2.2e-16 ***
## Status        177.9569  1  < 2.2e-16 ***
## Season          8.1046  2   0.017382 *  
## Region          1.9476  1   0.162851    
## Status:Season  10.1211  2   0.006342 ** 
## Status:Region  25.0525  1  5.579e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conditional Effects Veg Height