R code follows

#Data with added effect codes 
ScaledData <- read.csv(
  "C:/Users/woodph/OneDrive - University of Missouri/Documents/bartholow/May202025/ScaledVars.csv")
summary(ScaledData)
##      subid           ISD             Drink            ISA        
##  Min.   :8001   Min.   :0.0000   Min.   :  1.0   Min.   :0.0000  
##  1st Qu.:8203   1st Qu.:0.0000   1st Qu.:  1.0   1st Qu.:0.0000  
##  Median :8404   Median :0.0000   Median : 10.0   Median :0.0000  
##  Mean   :8403   Mean   :0.4928   Mean   : 37.3   Mean   :0.3357  
##  3rd Qu.:8601   3rd Qu.:1.0000   3rd Qu.:100.0   3rd Qu.:1.0000  
##  Max.   :8801   Max.   :1.0000   Max.   :100.0   Max.   :1.0000  
##                                                                  
##       ISC              ISP              ISE1             ISE2       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3401   Mean   :0.3242   Mean   :0.3256   Mean   :0.3372  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##                                                                     
##       ISE3             exp           Antisac1         Antisac2     
##  Min.   :0.0000   Min.   :1.000   Min.   : 6.981   Min.   : 7.372  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.: 9.173   1st Qu.: 9.252  
##  Median :0.0000   Median :2.000   Median : 9.878   Median :10.270  
##  Mean   :0.3372   Mean   :2.012   Mean   : 9.792   Mean   :10.113  
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:10.583   3rd Qu.:10.896  
##  Max.   :1.0000   Max.   :3.000   Max.   :11.914   Max.   :11.992  
##                                   NA's   :5        NA's   :502     
##     Antisac3         PerSSRT1         PerSSRT2         PerSSRT3     
##  Min.   : 7.395   Min.   : 7.266   Min.   : 7.386   Min.   : 8.168  
##  1st Qu.: 9.719   1st Qu.: 9.198   1st Qu.: 9.260   1st Qu.: 9.391  
##  Median :10.426   Median : 9.661   Median : 9.687   Median : 9.886  
##  Mean   :10.321   Mean   : 9.972   Mean   : 9.888   Mean   :10.104  
##  3rd Qu.:11.053   3rd Qu.:10.619   3rd Qu.:10.505   3rd Qu.:10.706  
##  Max.   :11.992   Max.   :13.136   Max.   :12.683   Max.   :12.959  
##  NA's   :314      NA's   :88       NA's   :528      NA's   :355     
##     Stroop1          Stroop2          Stroop3          Keeptrk1     
##  Min.   : 6.605   Min.   : 7.505   Min.   : 6.201   Min.   : 6.881  
##  1st Qu.: 9.315   1st Qu.: 9.626   1st Qu.: 9.579   1st Qu.: 9.223  
##  Median : 9.982   Median :10.242   Median :10.240   Median : 9.851  
##  Mean   : 9.875   Mean   :10.161   Mean   :10.144   Mean   : 9.846  
##  3rd Qu.:10.539   3rd Qu.:10.758   3rd Qu.:10.794   3rd Qu.:10.585  
##  Max.   :13.146   Max.   :12.524   Max.   :12.284   Max.   :12.053  
##  NA's   :3        NA's   :499      NA's   :315                      
##     Keeptrk2         Keeptrk3         Letmem1          Letmem2      
##  Min.   : 6.992   Min.   : 7.288   Min.   : 7.099   Min.   : 7.444  
##  1st Qu.: 9.422   1st Qu.: 9.718   1st Qu.: 9.244   1st Qu.: 9.370  
##  Median :10.090   Median :10.355   Median : 9.775   Median :10.079  
##  Mean   :10.014   Mean   :10.271   Mean   : 9.792   Mean   :10.120  
##  3rd Qu.:10.660   3rd Qu.:10.886   3rd Qu.:10.296   3rd Qu.:10.843  
##  Max.   :12.053   Max.   :12.478   Max.   :12.251   Max.   :12.251  
##  NA's   :500      NA's   :311                       NA's   :497     
##     Letmem3          Nback1           Nback2           Nback3      
##  Min.   : 7.54   Min.   : 7.350   Min.   : 8.026   Min.   : 7.519  
##  1st Qu.: 9.50   1st Qu.: 9.165   1st Qu.: 9.545   1st Qu.: 9.545  
##  Median :10.24   Median : 9.672   Median :10.178   Median :10.305  
##  Mean   :10.31   Mean   : 9.793   Mean   :10.173   Mean   :10.278  
##  3rd Qu.:10.84   3rd Qu.:10.432   3rd Qu.:10.906   3rd Qu.:11.065  
##  Max.   :12.25   Max.   :12.078   Max.   :12.078   Max.   :12.078  
##  NA's   :308     NA's   :14       NA's   :496      NA's   :311     
##     Catswt1          Catswt2          Catswt3          Colswt1      
##  Min.   : 6.633   Min.   : 6.915   Min.   : 6.940   Min.   : 6.386  
##  1st Qu.: 9.330   1st Qu.: 9.522   1st Qu.: 9.673   1st Qu.: 9.359  
##  Median :10.114   Median :10.352   Median :10.396   Median :10.048  
##  Mean   : 9.913   Mean   :10.051   Mean   :10.131   Mean   : 9.858  
##  3rd Qu.:10.670   3rd Qu.:10.779   3rd Qu.:10.816   3rd Qu.:10.585  
##  Max.   :11.873   Max.   :11.837   Max.   :12.251   Max.   :13.207  
##  NA's   :3        NA's   :500      NA's   :309      NA's   :3       
##     Colswt2          Colswt3          Numswt1          Numswt2      
##  Min.   : 7.132   Min.   : 7.332   Min.   : 6.237   Min.   : 7.210  
##  1st Qu.: 9.694   1st Qu.: 9.813   1st Qu.: 9.249   1st Qu.: 9.755  
##  Median :10.300   Median :10.367   Median : 9.924   Median :10.307  
##  Mean   :10.071   Mean   :10.215   Mean   : 9.794   Mean   :10.186  
##  3rd Qu.:10.705   3rd Qu.:10.794   3rd Qu.:10.548   3rd Qu.:10.810  
##  Max.   :12.013   Max.   :12.931   Max.   :11.635   Max.   :11.562  
##  NA's   :497      NA's   :302      NA's   :5        NA's   :504     
##     Numswt3      
##  Min.   : 6.947  
##  1st Qu.: 9.880  
##  Median :10.502  
##  Mean   :10.280  
##  3rd Qu.:10.925  
##  Max.   :12.228  
##  NA's   :313
#drink coded off of dummy vectors of beverage 
#100 is alcohol 10 is control 1 is placebo 
#grouping is drink (100 = a 10=c 1=p); 
#create group dummy codes
ScaledData$A <- 0
ScaledData$A <- 1*(ScaledData$Drink==100)
ScaledData$P <- 0
ScaledData$P <- 1*(ScaledData$Drink==1)
#ISD is zero if they did both arms, 1 if they did just descending 
ScaledData$Both <- 0
ScaledData$Both <- 1*(ScaledData$ISD==0)
ScaledData$IX <- ScaledData$A*ScaledData$Both

library(lavaan);
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
require(lavaan);
library(semTools)
## 
## ###############################################################################
## This is semTools 0.5-7
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
summary(ScaledData)
##      subid           ISD             Drink            ISA        
##  Min.   :8001   Min.   :0.0000   Min.   :  1.0   Min.   :0.0000  
##  1st Qu.:8203   1st Qu.:0.0000   1st Qu.:  1.0   1st Qu.:0.0000  
##  Median :8404   Median :0.0000   Median : 10.0   Median :0.0000  
##  Mean   :8403   Mean   :0.4928   Mean   : 37.3   Mean   :0.3357  
##  3rd Qu.:8601   3rd Qu.:1.0000   3rd Qu.:100.0   3rd Qu.:1.0000  
##  Max.   :8801   Max.   :1.0000   Max.   :100.0   Max.   :1.0000  
##                                                                  
##       ISC              ISP              ISE1             ISE2       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3401   Mean   :0.3242   Mean   :0.3256   Mean   :0.3372  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##                                                                     
##       ISE3             exp           Antisac1         Antisac2     
##  Min.   :0.0000   Min.   :1.000   Min.   : 6.981   Min.   : 7.372  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.: 9.173   1st Qu.: 9.252  
##  Median :0.0000   Median :2.000   Median : 9.878   Median :10.270  
##  Mean   :0.3372   Mean   :2.012   Mean   : 9.792   Mean   :10.113  
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:10.583   3rd Qu.:10.896  
##  Max.   :1.0000   Max.   :3.000   Max.   :11.914   Max.   :11.992  
##                                   NA's   :5        NA's   :502     
##     Antisac3         PerSSRT1         PerSSRT2         PerSSRT3     
##  Min.   : 7.395   Min.   : 7.266   Min.   : 7.386   Min.   : 8.168  
##  1st Qu.: 9.719   1st Qu.: 9.198   1st Qu.: 9.260   1st Qu.: 9.391  
##  Median :10.426   Median : 9.661   Median : 9.687   Median : 9.886  
##  Mean   :10.321   Mean   : 9.972   Mean   : 9.888   Mean   :10.104  
##  3rd Qu.:11.053   3rd Qu.:10.619   3rd Qu.:10.505   3rd Qu.:10.706  
##  Max.   :11.992   Max.   :13.136   Max.   :12.683   Max.   :12.959  
##  NA's   :314      NA's   :88       NA's   :528      NA's   :355     
##     Stroop1          Stroop2          Stroop3          Keeptrk1     
##  Min.   : 6.605   Min.   : 7.505   Min.   : 6.201   Min.   : 6.881  
##  1st Qu.: 9.315   1st Qu.: 9.626   1st Qu.: 9.579   1st Qu.: 9.223  
##  Median : 9.982   Median :10.242   Median :10.240   Median : 9.851  
##  Mean   : 9.875   Mean   :10.161   Mean   :10.144   Mean   : 9.846  
##  3rd Qu.:10.539   3rd Qu.:10.758   3rd Qu.:10.794   3rd Qu.:10.585  
##  Max.   :13.146   Max.   :12.524   Max.   :12.284   Max.   :12.053  
##  NA's   :3        NA's   :499      NA's   :315                      
##     Keeptrk2         Keeptrk3         Letmem1          Letmem2      
##  Min.   : 6.992   Min.   : 7.288   Min.   : 7.099   Min.   : 7.444  
##  1st Qu.: 9.422   1st Qu.: 9.718   1st Qu.: 9.244   1st Qu.: 9.370  
##  Median :10.090   Median :10.355   Median : 9.775   Median :10.079  
##  Mean   :10.014   Mean   :10.271   Mean   : 9.792   Mean   :10.120  
##  3rd Qu.:10.660   3rd Qu.:10.886   3rd Qu.:10.296   3rd Qu.:10.843  
##  Max.   :12.053   Max.   :12.478   Max.   :12.251   Max.   :12.251  
##  NA's   :500      NA's   :311                       NA's   :497     
##     Letmem3          Nback1           Nback2           Nback3      
##  Min.   : 7.54   Min.   : 7.350   Min.   : 8.026   Min.   : 7.519  
##  1st Qu.: 9.50   1st Qu.: 9.165   1st Qu.: 9.545   1st Qu.: 9.545  
##  Median :10.24   Median : 9.672   Median :10.178   Median :10.305  
##  Mean   :10.31   Mean   : 9.793   Mean   :10.173   Mean   :10.278  
##  3rd Qu.:10.84   3rd Qu.:10.432   3rd Qu.:10.906   3rd Qu.:11.065  
##  Max.   :12.25   Max.   :12.078   Max.   :12.078   Max.   :12.078  
##  NA's   :308     NA's   :14       NA's   :496      NA's   :311     
##     Catswt1          Catswt2          Catswt3          Colswt1      
##  Min.   : 6.633   Min.   : 6.915   Min.   : 6.940   Min.   : 6.386  
##  1st Qu.: 9.330   1st Qu.: 9.522   1st Qu.: 9.673   1st Qu.: 9.359  
##  Median :10.114   Median :10.352   Median :10.396   Median :10.048  
##  Mean   : 9.913   Mean   :10.051   Mean   :10.131   Mean   : 9.858  
##  3rd Qu.:10.670   3rd Qu.:10.779   3rd Qu.:10.816   3rd Qu.:10.585  
##  Max.   :11.873   Max.   :11.837   Max.   :12.251   Max.   :13.207  
##  NA's   :3        NA's   :500      NA's   :309      NA's   :3       
##     Colswt2          Colswt3          Numswt1          Numswt2      
##  Min.   : 7.132   Min.   : 7.332   Min.   : 6.237   Min.   : 7.210  
##  1st Qu.: 9.694   1st Qu.: 9.813   1st Qu.: 9.249   1st Qu.: 9.755  
##  Median :10.300   Median :10.367   Median : 9.924   Median :10.307  
##  Mean   :10.071   Mean   :10.215   Mean   : 9.794   Mean   :10.186  
##  3rd Qu.:10.705   3rd Qu.:10.794   3rd Qu.:10.548   3rd Qu.:10.810  
##  Max.   :12.013   Max.   :12.931   Max.   :11.635   Max.   :11.562  
##  NA's   :497      NA's   :302      NA's   :5        NA's   :504     
##     Numswt3             A                P               Both       
##  Min.   : 6.947   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.: 9.880   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :10.502   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :10.280   Mean   :0.3357   Mean   :0.3242   Mean   :0.5072  
##  3rd Qu.:10.925   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :12.228   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :313                                                        
##        IX        
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.1758  
##  3rd Qu.:0.0000  
##  Max.   :1.0000  
## 
data.frame(Column_Number = seq_along(ScaledData), Column_Name = names(ScaledData))
##    Column_Number Column_Name
## 1              1       subid
## 2              2         ISD
## 3              3       Drink
## 4              4         ISA
## 5              5         ISC
## 6              6         ISP
## 7              7        ISE1
## 8              8        ISE2
## 9              9        ISE3
## 10            10         exp
## 11            11    Antisac1
## 12            12    Antisac2
## 13            13    Antisac3
## 14            14    PerSSRT1
## 15            15    PerSSRT2
## 16            16    PerSSRT3
## 17            17     Stroop1
## 18            18     Stroop2
## 19            19     Stroop3
## 20            20    Keeptrk1
## 21            21    Keeptrk2
## 22            22    Keeptrk3
## 23            23     Letmem1
## 24            24     Letmem2
## 25            25     Letmem3
## 26            26      Nback1
## 27            27      Nback2
## 28            28      Nback3
## 29            29     Catswt1
## 30            30     Catswt2
## 31            31     Catswt3
## 32            32     Colswt1
## 33            33     Colswt2
## 34            34     Colswt3
## 35            35     Numswt1
## 36            36     Numswt2
## 37            37     Numswt3
## 38            38           A
## 39            39           P
## 40            40        Both
## 41            41          IX
rmat <- cor(ScaledData[ , 11:37], use = "pairwise.complete.obs")
round(rmat, 2)
##          Antisac1 Antisac2 Antisac3 PerSSRT1 PerSSRT2 PerSSRT3 Stroop1 Stroop2
## Antisac1     1.00     0.74     0.68    -0.03     0.03    -0.05    0.19    0.16
## Antisac2     0.74     1.00     0.85    -0.11     0.06    -0.18    0.08    0.18
## Antisac3     0.68     0.85     1.00    -0.05     0.02    -0.06    0.14    0.17
## PerSSRT1    -0.03    -0.11    -0.05     1.00     0.02     0.11   -0.06    0.11
## PerSSRT2     0.03     0.06     0.02     0.02     1.00     0.04    0.02    0.05
## PerSSRT3    -0.05    -0.18    -0.06     0.11     0.04     1.00   -0.05   -0.08
## Stroop1      0.19     0.08     0.14    -0.06     0.02    -0.05    1.00    0.51
## Stroop2      0.16     0.18     0.17     0.11     0.05    -0.08    0.51    1.00
## Stroop3      0.24     0.18     0.20    -0.05     0.12    -0.06    0.46    0.49
## Keeptrk1     0.10     0.08     0.14     0.00    -0.02     0.10    0.06    0.24
## Keeptrk2     0.20     0.39     0.35     0.09    -0.07     0.28    0.13    0.29
## Keeptrk3     0.20     0.36     0.38     0.08     0.01     0.15    0.08    0.20
## Letmem1      0.22     0.31     0.25    -0.01     0.09     0.05    0.13    0.11
## Letmem2      0.20     0.32     0.28    -0.06     0.08    -0.23    0.22    0.12
## Letmem3      0.22     0.27     0.21    -0.04     0.06    -0.02    0.15    0.02
## Nback1       0.25     0.18     0.22    -0.05     0.07     0.07    0.08   -0.04
## Nback2       0.21     0.36     0.35     0.08     0.00    -0.01    0.04    0.05
## Nback3       0.22     0.27     0.36     0.04     0.04     0.07    0.07    0.03
## Catswt1      0.20     0.13     0.18    -0.12     0.04    -0.02    0.15    0.10
## Catswt2      0.20     0.27     0.21    -0.11    -0.11     0.00    0.20    0.26
## Catswt3      0.24     0.34     0.36    -0.08    -0.08    -0.19    0.23    0.15
## Colswt1      0.16     0.13     0.15    -0.01    -0.01     0.03    0.11    0.13
## Colswt2      0.25     0.19     0.23     0.05     0.12    -0.01    0.12    0.11
## Colswt3      0.15     0.18     0.24     0.05     0.04    -0.10    0.18    0.18
## Numswt1      0.19     0.10     0.13    -0.05     0.06    -0.08    0.19    0.11
## Numswt2      0.30     0.40     0.40     0.03    -0.08    -0.01    0.15    0.16
## Numswt3      0.23     0.42     0.31    -0.06     0.05    -0.23    0.19   -0.03
##          Stroop3 Keeptrk1 Keeptrk2 Keeptrk3 Letmem1 Letmem2 Letmem3 Nback1
## Antisac1    0.24     0.10     0.20     0.20    0.22    0.20    0.22   0.25
## Antisac2    0.18     0.08     0.39     0.36    0.31    0.32    0.27   0.18
## Antisac3    0.20     0.14     0.35     0.38    0.25    0.28    0.21   0.22
## PerSSRT1   -0.05     0.00     0.09     0.08   -0.01   -0.06   -0.04  -0.05
## PerSSRT2    0.12    -0.02    -0.07     0.01    0.09    0.08    0.06   0.07
## PerSSRT3   -0.06     0.10     0.28     0.15    0.05   -0.23   -0.02   0.07
## Stroop1     0.46     0.06     0.13     0.08    0.13    0.22    0.15   0.08
## Stroop2     0.49     0.24     0.29     0.20    0.11    0.12    0.02  -0.04
## Stroop3     1.00     0.17     0.22     0.14    0.14    0.19    0.09   0.07
## Keeptrk1    0.17     1.00     0.60     0.48    0.31    0.30    0.25   0.19
## Keeptrk2    0.22     0.60     1.00     0.69    0.36    0.39    0.35   0.17
## Keeptrk3    0.14     0.48     0.69     1.00    0.31    0.39    0.29   0.14
## Letmem1     0.14     0.31     0.36     0.31    1.00    0.60    0.50   0.30
## Letmem2     0.19     0.30     0.39     0.39    0.60    1.00    0.66   0.30
## Letmem3     0.09     0.25     0.35     0.29    0.50    0.66    1.00   0.26
## Nback1      0.07     0.19     0.17     0.14    0.30    0.30    0.26   1.00
## Nback2      0.12     0.23     0.37     0.23    0.35    0.28    0.27   0.63
## Nback3      0.15     0.21     0.23     0.22    0.26    0.35    0.24   0.64
## Catswt1     0.19     0.08     0.10     0.11    0.07    0.04    0.09   0.07
## Catswt2     0.32     0.02     0.10     0.12    0.03    0.02    0.13   0.03
## Catswt3     0.20     0.07    -0.03     0.10    0.05    0.01    0.08   0.10
## Colswt1     0.07     0.06     0.06     0.06   -0.01    0.06    0.01   0.02
## Colswt2     0.26     0.02     0.07     0.04    0.00    0.04    0.08   0.05
## Colswt3     0.09     0.06     0.08     0.14   -0.02    0.10    0.06   0.08
## Numswt1     0.15     0.05     0.12     0.17    0.01    0.03    0.07   0.09
## Numswt2     0.31     0.04     0.15     0.19    0.02    0.04    0.12   0.16
## Numswt3     0.11     0.01     0.14     0.22   -0.01   -0.01    0.01   0.07
##          Nback2 Nback3 Catswt1 Catswt2 Catswt3 Colswt1 Colswt2 Colswt3 Numswt1
## Antisac1   0.21   0.22    0.20    0.20    0.24    0.16    0.25    0.15    0.19
## Antisac2   0.36   0.27    0.13    0.27    0.34    0.13    0.19    0.18    0.10
## Antisac3   0.35   0.36    0.18    0.21    0.36    0.15    0.23    0.24    0.13
## PerSSRT1   0.08   0.04   -0.12   -0.11   -0.08   -0.01    0.05    0.05   -0.05
## PerSSRT2   0.00   0.04    0.04   -0.11   -0.08   -0.01    0.12    0.04    0.06
## PerSSRT3  -0.01   0.07   -0.02    0.00   -0.19    0.03   -0.01   -0.10   -0.08
## Stroop1    0.04   0.07    0.15    0.20    0.23    0.11    0.12    0.18    0.19
## Stroop2    0.05   0.03    0.10    0.26    0.15    0.13    0.11    0.18    0.11
## Stroop3    0.12   0.15    0.19    0.32    0.20    0.07    0.26    0.09    0.15
## Keeptrk1   0.23   0.21    0.08    0.02    0.07    0.06    0.02    0.06    0.05
## Keeptrk2   0.37   0.23    0.10    0.10   -0.03    0.06    0.07    0.08    0.12
## Keeptrk3   0.23   0.22    0.11    0.12    0.10    0.06    0.04    0.14    0.17
## Letmem1    0.35   0.26    0.07    0.03    0.05   -0.01    0.00   -0.02    0.01
## Letmem2    0.28   0.35    0.04    0.02    0.01    0.06    0.04    0.10    0.03
## Letmem3    0.27   0.24    0.09    0.13    0.08    0.01    0.08    0.06    0.07
## Nback1     0.63   0.64    0.07    0.03    0.10    0.02    0.05    0.08    0.09
## Nback2     1.00   0.77    0.12    0.22    0.23    0.02    0.17    0.21    0.08
## Nback3     0.77   1.00    0.04    0.05    0.18    0.05    0.12    0.01   -0.02
## Catswt1    0.12   0.04    1.00    0.61    0.59    0.41    0.30    0.35    0.45
## Catswt2    0.22   0.05    0.61    1.00    0.55    0.44    0.42    0.45    0.41
## Catswt3    0.23   0.18    0.59    0.55    1.00    0.42    0.24    0.35    0.47
## Colswt1    0.02   0.05    0.41    0.44    0.42    1.00    0.49    0.50    0.39
## Colswt2    0.17   0.12    0.30    0.42    0.24    0.49    1.00    0.64    0.43
## Colswt3    0.21   0.01    0.35    0.45    0.35    0.50    0.64    1.00    0.49
## Numswt1    0.08  -0.02    0.45    0.41    0.47    0.39    0.43    0.49    1.00
## Numswt2    0.18   0.14    0.53    0.48    0.47    0.28    0.41    0.39    0.67
## Numswt3    0.10   0.00    0.41    0.49    0.48    0.34    0.45    0.56    0.71
##          Numswt2 Numswt3
## Antisac1    0.30    0.23
## Antisac2    0.40    0.42
## Antisac3    0.40    0.31
## PerSSRT1    0.03   -0.06
## PerSSRT2   -0.08    0.05
## PerSSRT3   -0.01   -0.23
## Stroop1     0.15    0.19
## Stroop2     0.16   -0.03
## Stroop3     0.31    0.11
## Keeptrk1    0.04    0.01
## Keeptrk2    0.15    0.14
## Keeptrk3    0.19    0.22
## Letmem1     0.02   -0.01
## Letmem2     0.04   -0.01
## Letmem3     0.12    0.01
## Nback1      0.16    0.07
## Nback2      0.18    0.10
## Nback3      0.14    0.00
## Catswt1     0.53    0.41
## Catswt2     0.48    0.49
## Catswt3     0.47    0.48
## Colswt1     0.28    0.34
## Colswt2     0.41    0.45
## Colswt3     0.39    0.56
## Numswt1     0.67    0.71
## Numswt2     1.00    0.73
## Numswt3     0.73    1.00
print(rmat)
##             Antisac1    Antisac2    Antisac3      PerSSRT1     PerSSRT2
## Antisac1  1.00000000  0.74391961  0.67883014 -0.0280017804  0.034063330
## Antisac2  0.74391961  1.00000000  0.85059804 -0.1093691298  0.055346061
## Antisac3  0.67883014  0.85059804  1.00000000 -0.0494645075  0.023736805
## PerSSRT1 -0.02800178 -0.10936913 -0.04946451  1.0000000000  0.024872734
## PerSSRT2  0.03406333  0.05534606  0.02373681  0.0248727336  1.000000000
## PerSSRT3 -0.05083305 -0.17605769 -0.05723182  0.1112674818  0.040420230
## Stroop1   0.19205727  0.08099529  0.14197408 -0.0596173660  0.021164329
## Stroop2   0.16182843  0.17543498  0.17072099  0.1089781140  0.047023469
## Stroop3   0.23911183  0.18114787  0.19642362 -0.0475661807  0.119483630
## Keeptrk1  0.09590240  0.08392529  0.14232808  0.0004494688 -0.016564326
## Keeptrk2  0.20421147  0.38534910  0.34888173  0.0903058480 -0.072669382
## Keeptrk3  0.20064941  0.36358999  0.38145298  0.0788578795  0.009239997
## Letmem1   0.21926807  0.30755378  0.24735969 -0.0147223319  0.092406434
## Letmem2   0.20244833  0.32269310  0.27513776 -0.0568958934  0.079104831
## Letmem3   0.21857116  0.26910162  0.21246316 -0.0361242260  0.060867649
## Nback1    0.25449721  0.17841281  0.22050982 -0.0516934733  0.066507628
## Nback2    0.20803363  0.35846665  0.34866843  0.0838596907 -0.001891785
## Nback3    0.22330311  0.27170163  0.35718899  0.0416187036  0.040531848
## Catswt1   0.19940749  0.12893591  0.18057127 -0.1179511340  0.037169000
## Catswt2   0.20187602  0.27135772  0.21459654 -0.1119825127 -0.105049419
## Catswt3   0.24480811  0.33818076  0.36143043 -0.0837090069 -0.082057273
## Colswt1   0.16296981  0.12982593  0.15143124 -0.0077426164 -0.009775657
## Colswt2   0.24860724  0.19445793  0.23169598  0.0487849757  0.122121559
## Colswt3   0.14976377  0.18303757  0.24054137  0.0533171810  0.043690416
## Numswt1   0.18527237  0.10225677  0.12649990 -0.0531196231  0.055915311
## Numswt2   0.30183457  0.39887065  0.39885420  0.0327865426 -0.075251048
## Numswt3   0.23314179  0.41517616  0.31013825 -0.0608691962  0.045428213
##              PerSSRT3     Stroop1     Stroop2     Stroop3      Keeptrk1
## Antisac1 -0.050833049  0.19205727  0.16182843  0.23911183  0.0959024007
## Antisac2 -0.176057688  0.08099529  0.17543498  0.18114787  0.0839252917
## Antisac3 -0.057231825  0.14197408  0.17072099  0.19642362  0.1423280767
## PerSSRT1  0.111267482 -0.05961737  0.10897811 -0.04756618  0.0004494688
## PerSSRT2  0.040420230  0.02116433  0.04702347  0.11948363 -0.0165643258
## PerSSRT3  1.000000000 -0.04745126 -0.07629676 -0.05889066  0.1014016469
## Stroop1  -0.047451262  1.00000000  0.51355730  0.45780809  0.0550457888
## Stroop2  -0.076296765  0.51355730  1.00000000  0.48764340  0.2410682186
## Stroop3  -0.058890665  0.45780809  0.48764340  1.00000000  0.1675925004
## Keeptrk1  0.101401647  0.05504579  0.24106822  0.16759250  1.0000000000
## Keeptrk2  0.279656058  0.12897541  0.29464011  0.21803949  0.6027757924
## Keeptrk3  0.153759172  0.08111108  0.20115008  0.14251431  0.4841399124
## Letmem1   0.053898959  0.12798672  0.10945253  0.13533987  0.3094702876
## Letmem2  -0.229625127  0.21609554  0.12261652  0.18646544  0.3009256227
## Letmem3  -0.021230660  0.14898145  0.02328405  0.08909035  0.2549630160
## Nback1    0.071839882  0.08180357 -0.03760695  0.06701946  0.1904195766
## Nback2   -0.009824291  0.04394208  0.04648467  0.12074790  0.2331297192
## Nback3    0.070089832  0.06963892  0.02791751  0.14857317  0.2143846137
## Catswt1  -0.024598507  0.15404381  0.10245774  0.18765170  0.0836629470
## Catswt2  -0.003459916  0.19695392  0.25950024  0.32193493  0.0194936558
## Catswt3  -0.186482606  0.22504289  0.15296196  0.20242567  0.0658332196
## Colswt1   0.026495381  0.10920756  0.13373069  0.07462849  0.0586335433
## Colswt2  -0.014412937  0.12467028  0.11108797  0.25946418  0.0178418606
## Colswt3  -0.099911998  0.18183264  0.18018461  0.09395503  0.0631856432
## Numswt1  -0.082305898  0.19038216  0.10877315  0.14573830  0.0509379647
## Numswt2  -0.008464722  0.15237340  0.16322360  0.30712628  0.0352832505
## Numswt3  -0.232126051  0.19224439 -0.02943070  0.10922793  0.0094828921
##             Keeptrk2    Keeptrk3      Letmem1      Letmem2      Letmem3
## Antisac1  0.20421147 0.200649411  0.219268073  0.202448325  0.218571159
## Antisac2  0.38534910 0.363589990  0.307553781  0.322693097  0.269101619
## Antisac3  0.34888173 0.381452975  0.247359688  0.275137757  0.212463161
## PerSSRT1  0.09030585 0.078857880 -0.014722332 -0.056895893 -0.036124226
## PerSSRT2 -0.07266938 0.009239997  0.092406434  0.079104831  0.060867649
## PerSSRT3  0.27965606 0.153759172  0.053898959 -0.229625127 -0.021230660
## Stroop1   0.12897541 0.081111078  0.127986720  0.216095543  0.148981455
## Stroop2   0.29464011 0.201150084  0.109452530  0.122616523  0.023284051
## Stroop3   0.21803949 0.142514308  0.135339874  0.186465439  0.089090348
## Keeptrk1  0.60277579 0.484139912  0.309470288  0.300925623  0.254963016
## Keeptrk2  1.00000000 0.693354418  0.364157346  0.390157453  0.346782016
## Keeptrk3  0.69335442 1.000000000  0.313960124  0.387417535  0.285428578
## Letmem1   0.36415735 0.313960124  1.000000000  0.602643545  0.497720398
## Letmem2   0.39015745 0.387417535  0.602643545  1.000000000  0.657945337
## Letmem3   0.34678202 0.285428578  0.497720398  0.657945337  1.000000000
## Nback1    0.17490692 0.141894475  0.295661661  0.301695179  0.255960014
## Nback2    0.36676192 0.233611699  0.347252056  0.282834623  0.272740788
## Nback3    0.23293064 0.220990151  0.263700465  0.353149100  0.238309687
## Catswt1   0.09622364 0.113945140  0.070066552  0.041435727  0.091932595
## Catswt2   0.09844831 0.120449692  0.025022730  0.016304483  0.133501073
## Catswt3  -0.03387565 0.104580713  0.052431387  0.011283507  0.075319912
## Colswt1   0.06460274 0.058937693 -0.008283719  0.055671085  0.007979003
## Colswt2   0.06528612 0.035318171  0.004930345  0.038846227  0.075047438
## Colswt3   0.08465626 0.136729994 -0.022029084  0.103314549  0.063454816
## Numswt1   0.11594717 0.174094558  0.006528441  0.033483266  0.072362712
## Numswt2   0.15185915 0.185441255  0.019237201  0.036544717  0.116694550
## Numswt3   0.14406380 0.222001647 -0.005771993 -0.005600785  0.010112642
##               Nback1       Nback2       Nback3     Catswt1      Catswt2
## Antisac1  0.25449721  0.208033633  0.223303112  0.19940749  0.201876016
## Antisac2  0.17841281  0.358466651  0.271701629  0.12893591  0.271357717
## Antisac3  0.22050982  0.348668435  0.357188988  0.18057127  0.214596542
## PerSSRT1 -0.05169347  0.083859691  0.041618704 -0.11795113 -0.111982513
## PerSSRT2  0.06650763 -0.001891785  0.040531848  0.03716900 -0.105049419
## PerSSRT3  0.07183988 -0.009824291  0.070089832 -0.02459851 -0.003459916
## Stroop1   0.08180357  0.043942078  0.069638922  0.15404381  0.196953916
## Stroop2  -0.03760695  0.046484667  0.027917509  0.10245774  0.259500236
## Stroop3   0.06701946  0.120747899  0.148573170  0.18765170  0.321934926
## Keeptrk1  0.19041958  0.233129719  0.214384614  0.08366295  0.019493656
## Keeptrk2  0.17490692  0.366761917  0.232930640  0.09622364  0.098448308
## Keeptrk3  0.14189448  0.233611699  0.220990151  0.11394514  0.120449692
## Letmem1   0.29566166  0.347252056  0.263700465  0.07006655  0.025022730
## Letmem2   0.30169518  0.282834623  0.353149100  0.04143573  0.016304483
## Letmem3   0.25596001  0.272740788  0.238309687  0.09193260  0.133501073
## Nback1    1.00000000  0.631415501  0.639382638  0.06800507  0.029282853
## Nback2    0.63141550  1.000000000  0.765289965  0.11578242  0.217553401
## Nback3    0.63938264  0.765289965  1.000000000  0.04084436  0.048054558
## Catswt1   0.06800507  0.115782418  0.040844358  1.00000000  0.606988795
## Catswt2   0.02928285  0.217553401  0.048054558  0.60698879  1.000000000
## Catswt3   0.10347510  0.227062282  0.177170509  0.59170453  0.550904428
## Colswt1   0.01511064  0.020944396  0.047077831  0.41049273  0.436872604
## Colswt2   0.05240629  0.165329823  0.118527405  0.30166747  0.420720121
## Colswt3   0.07708710  0.205624040  0.008330784  0.35423127  0.450616013
## Numswt1   0.09475154  0.075177679 -0.022146718  0.44578688  0.408479010
## Numswt2   0.15578271  0.183603752  0.142912084  0.53146047  0.475826587
## Numswt3   0.07096910  0.096610573  0.002952774  0.40616581  0.492872916
##              Catswt3      Colswt1      Colswt2      Colswt3      Numswt1
## Antisac1  0.24480811  0.162969810  0.248607236  0.149763771  0.185272367
## Antisac2  0.33818076  0.129825930  0.194457934  0.183037575  0.102256772
## Antisac3  0.36143043  0.151431241  0.231695978  0.240541372  0.126499902
## PerSSRT1 -0.08370901 -0.007742616  0.048784976  0.053317181 -0.053119623
## PerSSRT2 -0.08205727 -0.009775657  0.122121559  0.043690416  0.055915311
## PerSSRT3 -0.18648261  0.026495381 -0.014412937 -0.099911998 -0.082305898
## Stroop1   0.22504289  0.109207562  0.124670277  0.181832643  0.190382158
## Stroop2   0.15296196  0.133730691  0.111087967  0.180184609  0.108773154
## Stroop3   0.20242567  0.074628490  0.259464176  0.093955035  0.145738302
## Keeptrk1  0.06583322  0.058633543  0.017841861  0.063185643  0.050937965
## Keeptrk2 -0.03387565  0.064602740  0.065286118  0.084656256  0.115947166
## Keeptrk3  0.10458071  0.058937693  0.035318171  0.136729994  0.174094558
## Letmem1   0.05243139 -0.008283719  0.004930345 -0.022029084  0.006528441
## Letmem2   0.01128351  0.055671085  0.038846227  0.103314549  0.033483266
## Letmem3   0.07531991  0.007979003  0.075047438  0.063454816  0.072362712
## Nback1    0.10347510  0.015110636  0.052406292  0.077087104  0.094751539
## Nback2    0.22706228  0.020944396  0.165329823  0.205624040  0.075177679
## Nback3    0.17717051  0.047077831  0.118527405  0.008330784 -0.022146718
## Catswt1   0.59170453  0.410492731  0.301667469  0.354231268  0.445786879
## Catswt2   0.55090443  0.436872604  0.420720121  0.450616013  0.408479010
## Catswt3   1.00000000  0.421721459  0.238974939  0.353793151  0.466243395
## Colswt1   0.42172146  1.000000000  0.487234627  0.503440116  0.391765036
## Colswt2   0.23897494  0.487234627  1.000000000  0.639799313  0.425439140
## Colswt3   0.35379315  0.503440116  0.639799313  1.000000000  0.489078984
## Numswt1   0.46624339  0.391765036  0.425439140  0.489078984  1.000000000
## Numswt2   0.47203017  0.277358901  0.408500440  0.388019706  0.669532216
## Numswt3   0.48410947  0.342125187  0.447873088  0.564276975  0.710641248
##               Numswt2      Numswt3
## Antisac1  0.301834569  0.233141790
## Antisac2  0.398870654  0.415176161
## Antisac3  0.398854203  0.310138246
## PerSSRT1  0.032786543 -0.060869196
## PerSSRT2 -0.075251048  0.045428213
## PerSSRT3 -0.008464722 -0.232126051
## Stroop1   0.152373403  0.192244386
## Stroop2   0.163223600 -0.029430697
## Stroop3   0.307126285  0.109227934
## Keeptrk1  0.035283250  0.009482892
## Keeptrk2  0.151859155  0.144063800
## Keeptrk3  0.185441255  0.222001647
## Letmem1   0.019237201 -0.005771993
## Letmem2   0.036544717 -0.005600785
## Letmem3   0.116694550  0.010112642
## Nback1    0.155782705  0.070969098
## Nback2    0.183603752  0.096610573
## Nback3    0.142912084  0.002952774
## Catswt1   0.531460475  0.406165807
## Catswt2   0.475826587  0.492872916
## Catswt3   0.472030170  0.484109465
## Colswt1   0.277358901  0.342125187
## Colswt2   0.408500440  0.447873088
## Colswt3   0.388019706  0.564276975
## Numswt1   0.669532216  0.710641248
## Numswt2   1.000000000  0.729655205
## Numswt3   0.729655205  1.000000000
#library(corrplot)
#corrplot(rmat, method = "circle")

#ct <- corr.test(ScaledData)
#r_mat <- ct$r
#p_mat <- ct$p

# Step 2: Plot correlations, only showing significant ones
#corrplot(r_mat,
#         method = "circle",
#         type = "upper",
#         p.mat = p_mat,     # p-values matrix
#         sig.level = 0.05,  # significance threshold
#         insig = "blank")   # options: "blank", "pch", "n"

BevScreenData <- read.csv(
  "C:/Users/woodph/OneDrive - University of Missouri/Documents/bartholow/May202025/BeverageScreened.csv")
#rescale variables
BevScreenData$Antisac1= BevScreenData$Antisac1/.15;
BevScreenData$Antisac2= BevScreenData$Antisac2/.15; 
BevScreenData$Antisac3= BevScreenData$Antisac3/.15; 
BevScreenData$Stroop1 = -1*BevScreenData$Stroop1/60;
BevScreenData$Stroop2 = -1*BevScreenData$Stroop2/60;
BevScreenData$Stroop3 = -1*BevScreenData$Stroop3/60;
BevScreenData$PerSSRT1 = BevScreenData$PerSSRT1/100;
BevScreenData$PerSSRT2 = BevScreenData$PerSSRT2/100;
BevScreenData$PerSSRT3 = BevScreenData$PerSSRT3/100;
BevScreenData$Keeptrk1= BevScreenData$Keeptrk1/.1; 
BevScreenData$Keeptrk2= BevScreenData$Keeptrk2/.1; 
BevScreenData$Keeptrk3= BevScreenData$Keeptrk3/.1; 
BevScreenData$Letmem1= BevScreenData$Letmem1/.3;
BevScreenData$Letmem2= BevScreenData$Letmem2/.3; 
BevScreenData$Letmem3= BevScreenData$Letmem3/.3; 
BevScreenData$Nback1= BevScreenData$Nback1/.08; 
BevScreenData$Nback2= BevScreenData$Nback2/.08;
BevScreenData$Nback3= BevScreenData$Nback3/.08; 
BevScreenData$Catswt1= BevScreenData$Catswt1/120; 
BevScreenData$Catswt2= BevScreenData$Catswt2/120;  
BevScreenData$Catswt3= BevScreenData$Catswt3/120;  
BevScreenData$Colswt1= BevScreenData$Colswt1/150; 
BevScreenData$Colswt2= BevScreenData$Colswt2/150;
BevScreenData$Colswt3= BevScreenData$Colswt3/150; 
BevScreenData$Numswt1= BevScreenData$Numswt1/160; 
BevScreenData$Numswt2= BevScreenData$Numswt2/160; 
BevScreenData$Numswt3= BevScreenData$Numswt3/160; 
#drink coded off of dummy vectors of beverage 
#100 is alcohol 10 is control 1 is placebo 
#grouping is drink (100 = a 10=c 1=p); 
#create group dummy codes
BevScreenData$A <- 0
BevScreenData$A <- 1*(BevScreenData$Drink==100)
BevScreenData$P <- 0
BevScreenData$P <- 1*(BevScreenData$Drink==1)
#ISD is zero if they did both arms, 1 if they did just descending 
BevScreenData$Both <- 0
BevScreenData$Both <- 1*(BevScreenData$ISD==0)
BevScreenData$IX <- BevScreenData$A*BevScreenData$Both
#cor_mat <- cor(BevScreenData)
#p_mat <- cor.mtest(BevScreenData)  # from earlier example
summary(BevScreenData)
##      subid           ISD             Drink            ISA        
##  Min.   :8001   Min.   :0.0000   Min.   :  1.0   Min.   :0.0000  
##  1st Qu.:8203   1st Qu.:0.0000   1st Qu.:  1.0   1st Qu.:0.0000  
##  Median :8404   Median :0.0000   Median : 10.0   Median :0.0000  
##  Mean   :8403   Mean   :0.4928   Mean   : 37.3   Mean   :0.3357  
##  3rd Qu.:8601   3rd Qu.:1.0000   3rd Qu.:100.0   3rd Qu.:1.0000  
##  Max.   :8801   Max.   :1.0000   Max.   :100.0   Max.   :1.0000  
##                                                                  
##       ISC              ISP              ISE1             ISE2       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3401   Mean   :0.3242   Mean   :0.3256   Mean   :0.3372  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##                                                                     
##       ISE3             exp           Antisac1        Antisac2    
##  Min.   :0.0000   Min.   :1.000   Min.   :1.429   Min.   :1.825  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:3.651   1st Qu.:3.730  
##  Median :0.0000   Median :2.000   Median :4.365   Median :4.762  
##  Mean   :0.3372   Mean   :2.012   Mean   :4.278   Mean   :4.603  
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:5.079   3rd Qu.:5.397  
##  Max.   :1.0000   Max.   :3.000   Max.   :6.429   Max.   :6.508  
##                                   NA's   :5       NA's   :502    
##     Antisac3        PerSSRT1        PerSSRT2         PerSSRT3    
##  Min.   :1.848   Min.   :0.376   Min.   :0.5055   Min.   :1.347  
##  1st Qu.:4.204   1st Qu.:2.456   1st Qu.:2.5217   1st Qu.:2.663  
##  Median :4.921   Median :2.954   Median :2.9816   Median :3.195  
##  Mean   :4.814   Mean   :3.288   Mean   :3.1977   Mean   :3.430  
##  3rd Qu.:5.556   3rd Qu.:3.984   3rd Qu.:3.8616   3rd Qu.:4.077  
##  Max.   :6.508   Max.   :6.693   Max.   :6.2051   Max.   :6.502  
##  NA's   :314     NA's   :88      NA's   :528      NA's   :355    
##     Stroop1          Stroop2           Stroop3           Keeptrk1    
##  Min.   :-5.876   Min.   :-4.8918   Min.   :-6.3179   Min.   :4.140  
##  1st Qu.:-2.911   1st Qu.:-2.5711   1st Qu.:-2.6232   1st Qu.:6.593  
##  Median :-2.182   Median :-1.8974   Median :-1.9002   Median :7.250  
##  Mean   :-2.299   Mean   :-1.9859   Mean   :-2.0046   Mean   :7.245  
##  3rd Qu.:-1.573   3rd Qu.:-1.3334   3rd Qu.:-1.2941   3rd Qu.:8.019  
##  Max.   : 1.279   Max.   : 0.5987   Max.   : 0.3363   Max.   :9.556  
##  NA's   :3        NA's   :499       NA's   :315                      
##     Keeptrk2        Keeptrk3         Letmem1          Letmem2      
##  Min.   :4.256   Min.   : 4.566   Min.   :0.2228   Min.   :0.5582  
##  1st Qu.:6.801   1st Qu.: 7.111   1st Qu.:2.3102   1st Qu.:2.4324  
##  Median :7.500   Median : 7.778   Median :2.8269   Median :3.1220  
##  Mean   :7.421   Mean   : 7.690   Mean   :2.8434   Mean   :3.1625  
##  3rd Qu.:8.097   3rd Qu.: 8.333   3rd Qu.:3.3339   3rd Qu.:3.8655  
##  Max.   :9.556   Max.   :10.000   Max.   :5.2360   Max.   :5.2360  
##  NA's   :500     NA's   :311                       NA's   :497     
##     Letmem3           Nback1           Nback2           Nback3      
##  Min.   :0.6523   Min.   : 7.639   Min.   : 8.333   Min.   : 7.812  
##  1st Qu.:2.5588   1st Qu.: 9.505   1st Qu.: 9.896   1st Qu.: 9.896  
##  Median :3.2837   Median :10.026   Median :10.547   Median :10.677  
##  Mean   :3.3488   Mean   :10.150   Mean   :10.542   Mean   :10.650  
##  3rd Qu.:3.8655   3rd Qu.:10.807   3rd Qu.:11.296   3rd Qu.:11.458  
##  Max.   :5.2360   Max.   :12.500   Max.   :12.500   Max.   :12.500  
##  NA's   :308      NA's   :14       NA's   :496      NA's   :311     
##     Catswt1           Catswt2           Catswt3           Colswt1       
##  Min.   :-4.6981   Min.   :-4.4096   Min.   :-4.3835   Min.   :-5.3375  
##  1st Qu.:-1.9345   1st Qu.:-1.7380   1st Qu.:-1.5834   1st Qu.:-2.0493  
##  Median :-1.1317   Median :-0.8877   Median :-0.8429   Median :-1.2872  
##  Mean   :-1.3376   Mean   :-1.1960   Mean   :-1.1145   Mean   :-1.4975  
##  3rd Qu.:-0.5621   3rd Qu.:-0.4499   3rd Qu.:-0.4125   3rd Qu.:-0.6937  
##  Max.   : 0.6707   Max.   : 0.6340   Max.   : 1.0581   Max.   : 2.2062  
##  NA's   :3         NA's   :500       NA's   :309       NA's   :3        
##     Colswt2           Colswt3           Numswt1           Numswt2       
##  Min.   :-4.5118   Min.   :-4.2911   Min.   :-5.9078   Min.   :-4.8392  
##  1st Qu.:-1.6789   1st Qu.:-1.5471   1st Qu.:-2.6004   1st Qu.:-2.0448  
##  Median :-1.0083   Median :-0.9349   Median :-1.8589   Median :-1.4384  
##  Mean   :-1.2623   Mean   :-1.1028   Mean   :-2.0024   Mean   :-1.5713  
##  3rd Qu.:-0.5606   3rd Qu.:-0.4621   3rd Qu.:-1.1744   3rd Qu.:-0.8863  
##  Max.   : 0.8862   Max.   : 1.9011   Max.   : 0.0194   Max.   :-0.0607  
##  NA's   :497       NA's   :302       NA's   :5         NA's   :504      
##     Numswt3              A                P               Both       
##  Min.   :-5.1276   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:-1.9073   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :-1.2244   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :-1.4678   Mean   :0.3357   Mean   :0.3242   Mean   :0.5072  
##  3rd Qu.:-0.7596   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   : 0.6707   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :313                                                         
##        IX        
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.1758  
##  3rd Qu.:0.0000  
##  Max.   :1.0000  
## 
df_subset <- BevScreenData[, 11:37]

#ct <- corr.test(df_subset)
#r_mat <- ct$r
#p_mat <- ct$p

# Step 2: Plot correlations, only showing significant ones
#corrplot(r_mat,
#         method = "circle",
#         type = "upper",
#         p.mat = p_mat,     # p-values matrix
#         sig.level = 0.05,  # significance threshold
#         insig = "blank")   # options: "blank", "pch", "n"

#Implicit covariates "CFASuperFactorModel"
GrowthModel<-"
! regressions 
AS=~1.0*Antisac1+AN2*Antisac2+AN3*Antisac3
STR=~1.0*Stroop1+S2*Stroop2+S3*Stroop3
Keep=~1.0*Keeptrk1+K2*Keeptrk2+K3*Keeptrk3
Let=~1.0*Letmem1+L2*Letmem2+L3*Letmem3
NB=~1.0*Nback1+N2*Nback2+N3*Nback3
cat=~1.0*Catswt1+A2*Catswt2+A3*Catswt3
col=~1.0*Colswt1+O2*Colswt2+O3*Colswt3
Num=~1.0*Numswt1+U2*Numswt2+U3*Numswt3
EF1=~EFAntisac*Antisac1+EFStroop*Stroop1+EFKeeptrk*Keeptrk1+EFLetmem*Letmem1+EFNback*Nback1+
  EFCatswt*Catswt1+EFColswt*Colswt1+EFNumswt*Numswt1
EF2=~EFAntisac*Antisac2+EFStroop*Stroop2+EFKeeptrk*Keeptrk2+EFLetmem*Letmem2+EFNback*Nback2+
  EFCatswt*Catswt2+EFColswt*Colswt2+EFNumswt*Numswt2
EF3=~EFAntisac*Antisac3+EFStroop*Stroop3+EFKeeptrk*Keeptrk3+EFLetmem*Letmem3+EFNback*Nback3+
  EFCatswt*Catswt3+EFColswt*Colswt3+EFNumswt*Numswt3

UP1=~UPKeeptrk*Keeptrk1+start(0.38)*Keeptrk1+UPLetmem*Letmem1+UPNback*Nback1
UP2=~UPKeeptrk*Keeptrk2+start(0.65)*Keeptrk2+UPLetmem*Letmem2+UPNback*Nback2
UP3=~UPKeeptrk*Keeptrk3+UPLetmem*Letmem3+UPNback*Nback3

SW1=~SWCatswt*Catswt1+SWColswt*Colswt1+SWNumswt*Numswt1
SW2=~SWCatswt*Catswt2+SWColswt*Colswt2+SWNumswt*Numswt2
SW3=~SWCatswt*Catswt3+SWColswt*Colswt3+SWNumswt*Numswt3

EF1 ~ A__EF1*A
EF2 ~ A__EF2*A
EF3 ~ A__EF3*A
EF1 ~ P__EF1*P
EF2 ~ P__EF2*P
EF3 ~ P__EF3*P
EF3 ~ Both__EF3*Both
EF3 ~ IX__EF3*IX
UP1 ~ A__UP1*A
UP1 ~ P__UP1*P
UP2 ~ A__UP2*A
UP2 ~ P__UP2*P
UP3 ~ A__UP3*A
UP3 ~ P__UP3*P
UP3 ~ Both__UP3*Both
UP3 ~ IX__UP3*IX
SW1 ~ A__SW1*A
SW1 ~ P__SW1*P
SW2 ~ A__SW2*A
SW3 ~ P__SW3*P
SW2 ~ P__SW2*P
SW3 ~ A__SW3*A
SW3 ~ IX__SW3*IX
SW3 ~ Both__SW3*Both

# Adjust each observed variable for predictors A, P, Both, and IX
Antisac1 ~ A + P 
Stroop1  ~ A + P 
Keeptrk1 ~ A + P 
Letmem1  ~ A + P 
Nback1   ~ A + P 
Catswt1  ~ A + P 
Colswt1  ~ A + P 
Numswt1  ~ A + P 
! residuals, variances and covariances

!manifest variances
Antisac1 ~~ VAR_Antisac1*Antisac1
Antisac2 ~~ VAR_Antisac2*Antisac2
Antisac3 ~~ VAR_Antisac3*Antisac3
Stroop1 ~~ VAR_Stroop1*Stroop1
Stroop2 ~~ VAR_Stroop2*Stroop2
Stroop3 ~~ VAR_Stroop3*Stroop3
Keeptrk1 ~~ VAR_Keeptrk1*Keeptrk1
Keeptrk2 ~~ VAR_Keeptrk2*Keeptrk2
Keeptrk3 ~~ VAR_Keeptrk3*Keeptrk3
Letmem1 ~~ VAR_Letmem1*Letmem1
Letmem2 ~~ VAR_Letmem2*Letmem2
Letmem3 ~~ VAR_Letmem3*Letmem3
!Covariances of Letmem
!Letmem1 ~~ C_Letmem1_Letmem2*Letmem2
!Letmem1 ~~ C_Letmem1_Letmem3*Letmem3
!Letmem2 ~~ C_Letmem2_Letmem3*Letmem3
Nback1 ~~ VAR_Nback1*Nback1
Nback2 ~~ VAR_Nback2*Nback2
Nback3 ~~ VAR_Nback3*Nback3
Catswt1 ~~ VAR_Catswt1*Catswt1
Catswt2 ~~ VAR_Catswt2*Catswt2
Catswt3 ~~ VAR_Catswt3*Catswt3
Colswt1 ~~ VAR_Colswt1*Colswt1
Colswt2 ~~ VAR_Colswt2*Colswt2
Colswt3 ~~ VAR_Colswt3*Colswt3
Numswt1 ~~ VAR_Numswt1*Numswt1
Numswt2 ~~ VAR_Numswt2*Numswt2
Numswt3 ~~ VAR_Numswt3*Numswt3
!Task variances
AS ~~ VAR_AS*AS
STR ~~ VAR_STR*STR
Keep ~~ VAR_Keep*Keep
Let ~~ VAR_Let*Let
NB ~~ VAR_NB*NB
cat ~~ VAR_cat*cat
col ~~ VAR_col*col
Num ~~ VAR_Num*Num

!Superfactor Variances & Covariances
EF1 ~~ 1.0*EF1
EF2 ~~ 1.0*EF2
EF3 ~~ 1.0*EF3
EF1 ~~ 1*EF2
EF1 ~~ 1*EF3
EF2 ~~ 1*EF3
UP1 ~~ 1.0*UP1
UP2 ~~ 1.0*UP2
UP3 ~~ 1.0*UP3
UP1 ~~ 1*UP2
UP2 ~~ 1*UP3
UP1 ~~ 1*UP3
SW1 ~~ 1.0*SW1
SW2 ~~ 1.0*SW2
SW3 ~~ 1.0*SW3
SW1 ~~ 1*SW2
SW1 ~~ 1*SW3
SW2 ~~ 1*SW3
!Covariances of Updating with Switch
UP1 ~~ 0*SW1
UP2 ~~ 0*SW2
UP3 ~~ 0*SW3

! means

!Superfactor means for Ascending and Descending
!EF2~const__EF2*1
!EF3~const__EF3*1
!UP2~const__UP2*1
!UP3~const__UP3*1
!SW2~const__SW2*1
!SW3~const__SW3*1
!Task factor means
AS~NA*1
STR~NA*1
Keep~NA*1
Let~NA*1
NB~NA*1
cat~NA*1
col~NA*1
Num~NA*1

!First manifest variable free, others fixed to equality
Antisac1~IAntisac1*1;
Antisac2~0*1;
Antisac3~0*1;
Stroop1~IStroop1*1;
Stroop2~0*1;
Stroop3~0*1;
Keeptrk1~IKeeptrk1*1;
Keeptrk2~0*1;
Keeptrk3~0*1;
Letmem1~ILetmem1*1;
Letmem2~0*1;
Letmem3~0*1;
Nback1~INback1*1;
Nback2~0*1;
Nback3~0*1;
Catswt1~ICatswt1*1;
Catswt2~0*1;
Catswt3~0*1;
Colswt1~IColswt1*1;
Colswt2~0*1;
Colswt3~0*1;
Numswt1~INumswt1*1;
Numswt2~0*1;
Numswt3~0*1;
!Baseline superfactor means zeroed out
EF1~0*1;
EF2~0*1;
EF3~0*1;
UP1~0*1;
UP2~0*1;
UP3~0*1;
SW1~0*1;
SW2~0*1;
SW3~0*1;
";



GrowthModelResult<-lavaan(GrowthModel, data=ScaledData, fixed.x=TRUE, missing="FIML", 
                          control   = list(
                            optim.method = "NLMINB",        # try "NLMINB" if needed
                            optim.maxit  = 20000,         # raise iteration cap
                            rel.tol      = 1e-10,         # tighter convergence tolerance
                            ftol         = 1e-10          # function tolerance (if available in your lavaan)
                          ));
summary(GrowthModelResult, fit.measures=TRUE,standardized=TRUE);
## Warning in pchisq(X2, df = df, ncp = ncp): NaNs produced
## Warning in pchisq(X2, df = df, ncp = ncp): NaNs produced
## lavaan 0.6-19 ended normally after 1520 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       146
##   Number of equality constraints                    28
## 
##   Number of observations                           694
##   Number of missing patterns                       103
## 
## Model Test User Model:
##                                                       
##   Test statistic                               395.752
##   Degrees of freedom                               302
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4046.313
##   Degrees of freedom                               372
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.974
##   Tucker-Lewis Index (TLI)                       0.969
##                                                       
##   Robust Comparative Fit Index (CFI)             0.006
##   Robust Tucker-Lewis Index (TLI)               -0.224
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12347.940
##   Loglikelihood unrestricted model (H1)     -12150.064
##                                                       
##   Akaike (AIC)                               24931.880
##   Bayesian (BIC)                             25467.892
##   Sample-size adjusted Bayesian (SABIC)      25093.221
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.021
##   90 Percent confidence interval - lower         0.015
##   90 Percent confidence interval - upper         0.027
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
##                                                       
##   Robust RMSEA                                   2.490
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050               NaN
##   P-value H_0: Robust RMSEA >= 0.080               NaN
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AS =~                                                                 
##     Antisc1           1.000                               0.359    0.367
##     Antisc2  (AN2)    1.363    0.247    5.527    0.000    0.489    0.511
##     Antisc3  (AN3)    1.385    0.250    5.535    0.000    0.497    0.509
##   STR =~                                                                
##     Stroop1           1.000                               0.634    0.615
##     Stroop2   (S2)    0.887    0.133    6.671    0.000    0.563    0.648
##     Stroop3   (S3)    0.883    0.132    6.687    0.000    0.560    0.592
##   Keep =~                                                               
##     Keptrk1           1.000                               0.521    0.527
##     Keptrk2   (K2)    1.207    0.140    8.649    0.000    0.629    0.676
##     Keptrk3   (K3)    1.213    0.140    8.639    0.000    0.632    0.641
##   Let =~                                                                
##     Letmem1           1.000                               0.018    0.020
##     Letmem2   (L2)   18.713    0.098  191.798    0.000    0.342    0.340
##     Letmem3   (L3)   18.499    0.099  186.904    0.000    0.338    0.317
##   NB =~                                                                 
##     Nback1            1.000                               0.588    0.630
##     Nback2    (N2)    1.312    0.090   14.569    0.000    0.772    0.782
##     Nback3    (N3)    1.301    0.089   14.663    0.000    0.765    0.732
##   cat =~                                                                
##     Catswt1           1.000                               0.552    0.548
##     Catswt2   (A2)    0.544    0.238    2.291    0.022    0.300    0.305
##     Catswt3   (A3)    0.538    0.235    2.293    0.022    0.297    0.308
##   col =~                                                                
##     Colswt1           1.000                               0.280    0.268
##     Colswt2   (O2)    1.610    0.433    3.718    0.000    0.450    0.471
##     Colswt3   (O3)    1.606    0.431    3.722    0.000    0.449    0.503
##   Num =~                                                                
##     Numswt1           1.000                               0.466    0.461
##     Numswt2   (U2)    0.987    0.142    6.929    0.000    0.460    0.484
##     Numswt3   (U3)    0.978    0.142    6.906    0.000    0.455    0.481
##   EF1 =~                                                                
##     Antisc1 (EFAn)    0.706    0.064   11.086    0.000    1.606    1.643
##     Stroop1 (EFSt)    0.248    0.043    5.744    0.000    0.565    0.548
##     Keptrk1 (EFKp)    0.216    0.048    4.534    0.000    0.491    0.497
##     Letmem1 (EFLt)    0.284    0.042    6.702    0.000    0.645    0.716
##     Nback1  (EFNb)    0.334    0.044    7.557    0.000    0.761    0.815
##     Catswt1 (EFCt)    0.313    0.044    7.042    0.000    0.712    0.707
##     Colswt1 (EFCl)    0.196    0.042    4.697    0.000    0.446    0.428
##     Numswt1 (EFNm)    0.278    0.047    5.888    0.000    0.632    0.625
##   EF2 =~                                                                
##     Antisc2 (EFAn)    0.706    0.064   11.086    0.000    0.736    0.769
##     Stroop2 (EFSt)    0.248    0.043    5.744    0.000    0.259    0.298
##     Keptrk2 (EFKp)    0.216    0.048    4.534    0.000    0.225    0.242
##     Letmem2 (EFLt)    0.284    0.042    6.702    0.000    0.296    0.294
##     Nback2  (EFNb)    0.334    0.044    7.557    0.000    0.349    0.353
##     Catswt2 (EFCt)    0.313    0.044    7.042    0.000    0.326    0.332
##     Colswt2 (EFCl)    0.196    0.042    4.697    0.000    0.205    0.214
##     Numswt2 (EFNm)    0.278    0.047    5.888    0.000    0.290    0.305
##   EF3 =~                                                                
##     Antisc3 (EFAn)    0.706    0.064   11.086    0.000    0.747    0.765
##     Stroop3 (EFSt)    0.248    0.043    5.744    0.000    0.263    0.278
##     Keptrk3 (EFKp)    0.216    0.048    4.534    0.000    0.229    0.232
##     Letmem3 (EFLt)    0.284    0.042    6.702    0.000    0.300    0.282
##     Nback3  (EFNb)    0.334    0.044    7.557    0.000    0.354    0.338
##     Catswt3 (EFCt)    0.313    0.044    7.042    0.000    0.331    0.343
##     Colswt3 (EFCl)    0.196    0.042    4.697    0.000    0.208    0.233
##     Numswt3 (EFNm)    0.278    0.047    5.888    0.000    0.294    0.311
##   UP1 =~                                                                
##     Keptrk1 (UPKp)    0.360    0.043    8.333    0.000    0.427    0.432
##     Letmem1 (UPLt)    0.641    0.033   19.251    0.000    0.762    0.845
##     Nback1  (UPNb)    0.249    0.043    5.816    0.000    0.296    0.317
##   UP2 =~                                                                
##     Keptrk2 (UPKp)    0.360    0.043    8.333    0.000    0.380    0.408
##     Letmem2 (UPLt)    0.641    0.033   19.251    0.000    0.677    0.674
##     Nback2  (UPNb)    0.249    0.043    5.816    0.000    0.263    0.266
##   UP3 =~                                                                
##     Keptrk3 (UPKp)    0.360    0.043    8.333    0.000    0.382    0.388
##     Letmem3 (UPLt)    0.641    0.033   19.251    0.000    0.681    0.641
##     Nback3  (UPNb)    0.249    0.043    5.816    0.000    0.265    0.253
##   SW1 =~                                                                
##     Catswt1 (SWCt)    0.552    0.038   14.341    0.000    0.707    0.703
##     Colswt1 (SWCl)    0.555    0.038   14.669    0.000    0.711    0.681
##     Numswt1 (SWNm)    0.627    0.041   15.190    0.000    0.804    0.795
##   SW2 =~                                                                
##     Catswt2 (SWCt)    0.552    0.038   14.341    0.000    0.557    0.567
##     Colswt2 (SWCl)    0.555    0.038   14.669    0.000    0.560    0.587
##     Numswt2 (SWNm)    0.627    0.041   15.190    0.000    0.633    0.666
##   SW3 =~                                                                
##     Catswt3 (SWCt)    0.552    0.038   14.341    0.000    0.566    0.587
##     Colswt3 (SWCl)    0.555    0.038   14.669    0.000    0.569    0.638
##     Numswt3 (SWNm)    0.627    0.041   15.190    0.000    0.643    0.679
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EF1 ~                                                                 
##     A     (A__EF1)    3.709    0.099   37.394    0.000    1.631    0.770
##   EF2 ~                                                                 
##     A     (A__EF2)   -0.686    0.173   -3.968    0.000   -0.659   -0.311
##   EF3 ~                                                                 
##     A     (A__EF3)   -0.809    0.181   -4.463    0.000   -0.764   -0.361
##   EF1 ~                                                                 
##     P     (P__EF1)    4.746    0.117   40.442    0.000    2.087    0.977
##   EF2 ~                                                                 
##     P     (P__EF2)   -0.165    0.163   -1.009    0.313   -0.158   -0.074
##   EF3 ~                                                                 
##     P     (P__EF3)   -0.059    0.142   -0.418    0.676   -0.056   -0.026
##     Both    (B__E)    0.100    0.107    0.929    0.353    0.094    0.047
##     IX     (IX__E)    0.122    0.188    0.649    0.516    0.115    0.044
##   UP1 ~                                                                 
##     A     (A__UP1)   -1.309    0.123  -10.667    0.000   -1.102   -0.520
##     P     (P__UP1)   -1.399    0.149   -9.384    0.000   -1.177   -0.551
##   UP2 ~                                                                 
##     A     (A__UP2)   -0.699    0.209   -3.339    0.001   -0.662   -0.313
##     P     (P__UP2)    0.034    0.204    0.167    0.867    0.032    0.015
##   UP3 ~                                                                 
##     A     (A__UP3)   -0.333    0.233   -1.431    0.153   -0.313   -0.148
##     P     (P__UP3)    0.170    0.174    0.979    0.327    0.160    0.075
##     Both    (B__U)    0.597    0.156    3.825    0.000    0.562    0.281
##     IX     (IX__U)    0.038    0.259    0.145    0.884    0.035    0.013
##   SW1 ~                                                                 
##     A     (A__SW1)   -1.072    0.139   -7.691    0.000   -0.836   -0.395
##     P     (P__SW1)   -1.961    0.178  -11.026    0.000   -1.531   -0.717
##   SW2 ~                                                                 
##     A     (A__SW2)   -0.227    0.172   -1.318    0.188   -0.225   -0.106
##   SW3 ~                                                                 
##     P     (P__SW3)   -0.041    0.133   -0.306    0.760   -0.040   -0.019
##   SW2 ~                                                                 
##     P     (P__SW2)    0.109    0.162    0.668    0.504    0.107    0.050
##   SW3 ~                                                                 
##     A     (A__SW3)    0.232    0.175    1.324    0.186    0.226    0.107
##     IX     (IX__S)   -0.345    0.177   -1.956    0.050   -0.337   -0.128
##     Both    (B__S)    0.531    0.103    5.148    0.000    0.518    0.259
##   Antisac1 ~                                                            
##     A                -2.627    0.220  -11.937    0.000   -2.627   -1.269
##     P                -3.341    0.265  -12.628    0.000   -3.341   -1.600
##   Stroop1 ~                                                             
##     A                -0.938    0.187   -5.010    0.000   -0.938   -0.430
##     P                -1.174    0.223   -5.266    0.000   -1.174   -0.533
##   Keeptrk1 ~                                                            
##     A                -0.297    0.193   -1.535    0.125   -0.297   -0.142
##     P                -0.520    0.230   -2.259    0.024   -0.520   -0.246
##   Letmem1 ~                                                             
##     A                -0.211    0.125   -1.690    0.091   -0.211   -0.111
##     P                -0.394    0.151   -2.609    0.009   -0.394   -0.204
##   Nback1 ~                                                              
##     A                -0.907    0.187   -4.844    0.000   -0.907   -0.459
##     P                -1.223    0.223   -5.490    0.000   -1.223   -0.613
##   Catswt1 ~                                                             
##     A                -0.685    0.145   -4.706    0.000   -0.685   -0.321
##     P                -0.449    0.183   -2.455    0.014   -0.449   -0.209
##   Colswt1 ~                                                             
##     A                -0.182    0.142   -1.280    0.201   -0.182   -0.082
##     P                 0.088    0.178    0.494    0.621    0.088    0.039
##   Numswt1 ~                                                             
##     A                -0.289    0.145   -1.991    0.046   -0.289   -0.135
##     P                -0.084    0.186   -0.453    0.651   -0.084   -0.039
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .EF1 ~~                                                                
##    .EF2               1.000                               1.000    1.000
##    .EF3               1.000                               1.000    1.000
##  .EF2 ~~                                                                
##    .EF3               1.000                               1.000    1.000
##  .UP1 ~~                                                                
##    .UP2               1.000                               1.000    1.000
##  .UP2 ~~                                                                
##    .UP3               1.000                               1.000    1.000
##  .UP1 ~~                                                                
##    .UP3               1.000                               1.000    1.000
##  .SW1 ~~                                                                
##    .SW2               1.000                               1.000    1.000
##    .SW3               1.000                               1.000    1.000
##  .SW2 ~~                                                                
##    .SW3               1.000                               1.000    1.000
##  .UP1 ~~                                                                
##    .SW1               0.000                               0.000    0.000
##  .UP2 ~~                                                                
##    .SW2               0.000                               0.000    0.000
##  .UP3 ~~                                                                
##    .SW3               0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     AS                7.535    1.362    5.533    0.000   20.996   20.996
##     STR              11.544    1.726    6.687    0.000   18.203   18.203
##     Keep              8.427    0.977    8.625    0.000   16.181   16.181
##     Let               0.554    0.004  138.720    0.000   30.328   30.328
##     NB                7.931    0.543   14.612    0.000   13.482   13.482
##     cat              18.677    8.143    2.294    0.022   33.847   33.847
##     col               6.290    1.691    3.720    0.000   22.502   22.502
##     Num              10.416    1.509    6.902    0.000   22.358   22.358
##    .Antisc1 (IAn1)    2.253    1.363    1.653    0.098    2.253    2.305
##    .Antisc2           0.000                               0.000    0.000
##    .Antisc3           0.000                               0.000    0.000
##    .Stroop1 (ISt1)   -1.663    1.726   -0.964    0.335   -1.663   -1.614
##    .Stroop2           0.000                               0.000    0.000
##    .Stroop3           0.000                               0.000    0.000
##    .Keptrk1 (IKp1)    1.407    0.981    1.435    0.151    1.407    1.424
##    .Keptrk2           0.000                               0.000    0.000
##    .Keptrk3           0.000                               0.000    0.000
##    .Letmem1 (ILt1)    9.220    0.057  162.332    0.000    9.220   10.230
##    .Letmem2           0.000                               0.000    0.000
##    .Letmem3           0.000                               0.000    0.000
##    .Nback1  (INb1)    1.846    0.544    3.394    0.001    1.846    1.978
##    .Nback2            0.000                               0.000    0.000
##    .Nback3            0.000                               0.000    0.000
##    .Catswt1 (ICt1)   -8.708    8.143   -1.069    0.285   -8.708   -8.651
##    .Catswt2           0.000                               0.000    0.000
##    .Catswt3           0.000                               0.000    0.000
##    .Colswt1 (ICl1)    3.610    1.692    2.133    0.033    3.610    3.458
##    .Colswt2           0.000                               0.000    0.000
##    .Colswt3           0.000                               0.000    0.000
##    .Numswt1 (INm1)   -0.650    1.509   -0.431    0.666   -0.650   -0.643
##    .Numswt2           0.000                               0.000    0.000
##    .Numswt3           0.000                               0.000    0.000
##    .EF1               0.000                               0.000    0.000
##    .EF2               0.000                               0.000    0.000
##    .EF3               0.000                               0.000    0.000
##    .UP1               0.000                               0.000    0.000
##    .UP2               0.000                               0.000    0.000
##    .UP3               0.000                               0.000    0.000
##    .SW1               0.000                               0.000    0.000
##    .SW2               0.000                               0.000    0.000
##    .SW3               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Ant1  (VAR_A1)    0.328    0.030   11.064    0.000    0.328    0.343
##    .Ant2  (VAR_A2)    0.136    0.025    5.408    0.000    0.136    0.148
##    .Ant3  (VAR_A3)    0.149    0.024    6.177    0.000    0.149    0.156
##    .Str1  (VAR_S1)    0.598    0.077    7.745    0.000    0.598    0.563
##    .Str2  (VAR_S2)    0.371    0.057    6.549    0.000    0.371    0.492
##    .Str3  (VAR_S3)    0.512    0.057    9.024    0.000    0.512    0.572
##    .Kpt1  (VAR_K1)    0.530    0.050   10.637    0.000    0.530    0.542
##    .Kpt2  (VAR_K2)    0.260    0.044    5.898    0.000    0.260    0.301
##    .Kpt3  (VAR_K3)    0.361    0.045    8.070    0.000    0.361    0.372
##    .Ltm1  (VAR_L1)    0.320    0.035    9.206    0.000    0.320    0.394
##    .Ltm2  (VAR_L2)    0.312    0.051    6.123    0.000    0.312    0.309
##    .Ltm3  (VAR_L3)    0.434    0.051    8.498    0.000    0.434    0.383
##    .Nbc1 (VAR_Nb1)    0.352    0.033   10.811    0.000    0.352    0.403
##    .Nbc2 (VAR_Nb2)    0.173    0.035    4.987    0.000    0.173    0.177
##    .Nbc3 (VAR_Nb3)    0.299    0.036    8.279    0.000    0.299    0.273
##    .Cts1 (VAR_Ct1)    0.304    0.132    2.298    0.022    0.304    0.300
##    .Cts2 (VAR_Ct2)    0.448    0.059    7.592    0.000    0.448    0.463
##    .Cts3 (VAR_Ct3)    0.412    0.047    8.727    0.000    0.412    0.443
##    .Cls1 (VAR_Cl1)    0.664    0.047   14.115    0.000    0.664    0.610
##    .Cls2 (VAR_Cl2)    0.346    0.048    7.261    0.000    0.346    0.379
##    .Cls3 (VAR_Cl3)    0.227    0.037    6.086    0.000    0.227    0.285
##    .Nms1 (VAR_Nm1)    0.333    0.037    9.107    0.000    0.333    0.326
##    .Nms2 (VAR_Nm2)    0.195    0.030    6.452    0.000    0.195    0.216
##    .Nms3 (VAR_Nm3)    0.189    0.029    6.560    0.000    0.189    0.211
##     AS    (VAR_AS)    0.129    0.081    1.593    0.111    1.000    1.000
##     STR   (VAR_ST)    0.402    0.085    4.723    0.000    1.000    1.000
##     Keep  (VAR_Kp)    0.271    0.055    4.965    0.000    1.000    1.000
##     Let   (VAR_Lt)    0.000    0.000    2.378    0.017    1.000    1.000
##     NB    (VAR_NB)    0.346    0.044    7.784    0.000    1.000    1.000
##     cat   (VAR_ct)    0.304    0.137    2.220    0.026    1.000    1.000
##     col   (VAR_cl)    0.078    0.041    1.923    0.054    1.000    1.000
##     Num   (VAR_Nm)    0.217    0.054    4.042    0.000    1.000    1.000
##    .EF1               1.000                               0.193    0.193
##    .EF2               1.000                               0.920    0.920
##    .EF3               1.000                               0.893    0.893
##    .UP1               1.000                               0.708    0.708
##    .UP2               1.000                               0.897    0.897
##    .UP3               1.000                               0.885    0.885
##    .SW1               1.000                               0.609    0.609
##    .SW2               1.000                               0.981    0.981
##    .SW3               1.000                               0.951    0.951
clipboard(GrowthModelResult)
## File saved in the clipboard; please paste it in any program you wish.
clipboard(GrowthModelResult,
          what = "est",       # <- estimates, not matrices
          standardized = TRUE,
          digits = 3, ci = TRUE)
## File saved in the clipboard; please paste it in any program you wish.
clipboard(GrowthModelResult,
          what = "est",         # estimates
          standardized = TRUE,  # include standardized columns
          ci = TRUE,            # optional: confidence intervals
          digits = 2)           # rounding
## File saved in the clipboard; please paste it in any program you wish.
clipboard(GrowthModelResult, "fit", "coef", standardized=TRUE)
## Warning in pchisq(X2, df = df, ncp = ncp): NaNs produced
## Warning in pchisq(X2, df = df, ncp = ncp): NaNs produced
## File saved in the clipboard; please paste it in any program you wish.
clipboard(GrowthModelResult, "coef", standardized=TRUE)
## File saved in the clipboard; please paste it in any program you wish.