Teoría

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadistíca multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. EStudio de Holzinger y Swineford (1939)

Contexto

Holdzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de las dos escuelas (Pasteur y Grand-White).

La base de datos estaá incluida como paquete en R, e incluye las siguentes columnas; * sex: Género (1 = male, 2 = female) * x1: Percepción visual * x2: Juego de cubos * x3: Juego con pastillas/espacial * x4: Comprensión de parrafos * x5: Completar oraciones * x6: Significado de palabras * x7: Sumas aceleradas * x8: Conteo acelerado de puntos * x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones enre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

Práctica: * verbigracia: ejemplo * ex libris: sello para libros * aquelarre: reunión de brujas * beodo: borracho * carpe diem:

Instalar Paquetes y Librerias

#install.packages("lavaan")
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
#install.packages("lavaanPlot")
library(lavaanPlot)
library(arules)
## Cargando paquete requerido: Matrix
## 
## Adjuntando el paquete: 'arules'
## The following object is masked from 'package:lavaan':
## 
##     inspect
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
library(readxl)

Tipos de Formulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y osbervadas (varianza entre si misma, covarianza entre otras)
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Codigo base del modelo: modelo <- #Regresiones # Variables Latentes # Varianzas y covarianzas # Intercepto

Generar el modelo

df1 <- HolzingerSwineford1939
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...

Modelo 1

modelo1 <-' # Regresiones
          # Variables Latentes
          visual =~ x1 +x2 +x3
          textual =~ x4 + x5 + x6
          velocidad =~ x7 + x8 + x9
          # Varianzas y covarianzas
          visual ~~ textual
          textual ~~ velocidad
          velocidad ~~ visual
          # Intercepto '
              
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
##   visual ~~                                           
##     velocidad         0.262    0.056    4.660    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(sem1, coef=TRUE, cov=TRUE)

Ejercicio 1. Democracia Política e Industrialización

La Base de datos contiene distintas mediciones sobre la democracia politica e industrializacion en países en desarrollo durante 1960 y 1965.

df2 <- PoliticalDemocracy
summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425

Modelo 2

modelo2 <-' # Regresiones
          # Variables Latentes
          democracia1960 =~ y1 + y2 + y3 + y4
          democracia1965 =~ y5 + y6 + y7 + y8
          industria1960 =~ x1 + x2 + x3
          # Varianzas y covarianzas
          democracia1960 ~~ democracia1965
          industria1960 ~~ democracia1960
          industria1960 ~~ democracia1965
          # Intercepto '
              
sem2 <- sem(modelo2, data=df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 =~                                    
##     y1                 1.000                           
##     y2                 1.354    0.175    7.755    0.000
##     y3                 1.044    0.150    6.961    0.000
##     y4                 1.300    0.138    9.412    0.000
##   democracia1965 =~                                    
##     y5                 1.000                           
##     y6                 1.258    0.164    7.651    0.000
##     y7                 1.282    0.158    8.137    0.000
##     y8                 1.310    0.154    8.529    0.000
##   industria1960 =~                                     
##     x1                 1.000                           
##     x2                 2.182    0.139   15.714    0.000
##     x3                 1.819    0.152   11.956    0.000
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 ~~                                    
##     democracia1965     4.487    0.911    4.924    0.000
##     industria1960      0.660    0.206    3.202    0.001
##   democracia1965 ~~                                    
##     industria1960      0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     democracia1960    4.845    1.088    4.453    0.000
##     democracia1965    4.345    1.051    4.134    0.000
##     industria1960     0.448    0.087    5.169    0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)

En conclusion, la industrializacion impulsa una democración más estable.

Actividad 3. Bienestar de Colaboradores

Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1 Experiencias de Recuperación

Modelo 3

df3 <- read_excel("C:\\Users\\Chema\\Downloads\\Datos_SEM_Eng.xlsx")

modelo3 <- ' # Regresiones
             # Variables Latentes 
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD09 + RPD10
             relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 +RRE07+ RRE10
             maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             # Varianzas y Covarianzas
             # Intercepto
             '
sem3 <- sem(modelo3, data=df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1033.143
##   Degrees of freedom                               399
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.202    0.078   15.376    0.000
##     RPD03             1.140    0.082   13.855    0.000
##     RPD05             1.307    0.082   15.888    0.000
##     RPD06             1.022    0.087   11.721    0.000
##     RPD07             1.211    0.082   14.772    0.000
##     RPD09             1.286    0.084   15.315    0.000
##     RPD10             1.315    0.085   15.449    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.119    0.065   17.262    0.000
##     RRE04             1.024    0.058   17.728    0.000
##     RRE05             1.055    0.056   18.792    0.000
##     RRE06             1.243    0.074   16.864    0.000
##     RRE07             1.115    0.071   15.692    0.000
##     RRE10             0.814    0.067   12.123    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.060    0.000
##     RMA04             1.179    0.089   13.267    0.000
##     RMA05             1.141    0.087   13.049    0.000
##     RMA06             0.647    0.075    8.618    0.000
##     RMA07             1.104    0.085   13.051    0.000
##     RMA08             1.109    0.085   12.985    0.000
##     RMA09             1.030    0.084   12.251    0.000
##     RMA10             1.056    0.088   12.039    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.234    0.000
##     RCO04             0.795    0.044   18.133    0.000
##     RCO05             0.816    0.043   18.985    0.000
##     RCO06             0.834    0.046   18.249    0.000
##     RCO07             0.834    0.046   18.081    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.152    0.165    6.985    0.000
##     maestria          0.709    0.158    4.496    0.000
##     control           1.345    0.203    6.631    0.000
##   relajacion ~~                                       
##     maestria          0.969    0.159    6.086    0.000
##     control           1.483    0.195    7.611    0.000
##   maestria ~~                                         
##     control           1.221    0.202    6.047    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.113    0.115    9.651    0.000
##    .RPD02             0.934    0.104    8.990    0.000
##    .RPD03             1.379    0.144    9.607    0.000
##    .RPD05             0.910    0.105    8.652    0.000
##    .RPD06             2.021    0.201   10.039    0.000
##    .RPD07             1.169    0.126    9.287    0.000
##    .RPD09             1.093    0.121    9.025    0.000
##    .RPD10             1.090    0.122    8.948    0.000
##    .RRE02             0.624    0.067    9.266    0.000
##    .RRE03             0.651    0.072    9.003    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.373    0.046    8.143    0.000
##    .RRE06             0.890    0.097    9.155    0.000
##    .RRE07             0.952    0.100    9.506    0.000
##    .RRE10             1.137    0.113   10.092    0.000
##    .RMA02             1.742    0.175    9.934    0.000
##    .RMA03             1.489    0.155    9.581    0.000
##    .RMA04             0.854    0.097    8.772    0.000
##    .RMA05             0.904    0.101    8.981    0.000
##    .RMA06             1.627    0.158   10.279    0.000
##    .RMA07             0.846    0.094    8.979    0.000
##    .RMA08             0.885    0.098    9.035    0.000
##    .RMA09             1.090    0.115    9.496    0.000
##    .RMA10             1.258    0.131    9.590    0.000
##    .RCO02             0.979    0.104    9.375    0.000
##    .RCO03             0.482    0.058    8.381    0.000
##    .RCO04             0.463    0.052    8.967    0.000
##    .RCO05             0.385    0.045    8.538    0.000
##    .RCO06             0.493    0.055    8.916    0.000
##    .RCO07             0.516    0.057    8.989    0.000
##     desapego          1.980    0.277    7.142    0.000
##     relajacion        1.625    0.207    7.844    0.000
##     maestria          1.978    0.317    6.242    0.000
##     control           2.661    0.335    7.931    0.000
lavaanPlot(sem3, coef = TRUE, cov = TRUE)

Parte 2 Experiencias de Recuperación

Modelo 4

modelo4 <- ' # Regresiones
             # Variables  
             energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
             # Varianzas y Covarianzas
             # Intercepto
             '
sem4 <- sem(modelo4, data=df3)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(sem4, coef = TRUE, cov = TRUE)

Modelo5

modelo5 <- ' # Regresiones
             # Variables Latentes 
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD09 + RPD10
             relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 +RRE07+ RRE10
             maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             
             energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
             
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02

             # Varianzas y Covarianzas
             # Intercepto
             '
sem5 <- sem(modelo5, data=df3)
summary(sem5)
## lavaan 0.6-19 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       118
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2104.654
##   Degrees of freedom                               917
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.202    0.078   15.418    0.000
##     RPD03             1.141    0.082   13.915    0.000
##     RPD05             1.308    0.082   15.948    0.000
##     RPD06             1.017    0.087   11.671    0.000
##     RPD07             1.211    0.082   14.801    0.000
##     RPD09             1.284    0.084   15.323    0.000
##     RPD10             1.312    0.085   15.433    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.279    0.000
##     RRE04             1.022    0.058   17.624    0.000
##     RRE05             1.054    0.056   18.730    0.000
##     RRE06             1.245    0.074   16.870    0.000
##     RRE07             1.119    0.071   15.760    0.000
##     RRE10             0.816    0.067   12.154    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.179    0.089   13.273    0.000
##     RMA05             1.140    0.087   13.046    0.000
##     RMA06             0.648    0.075    8.635    0.000
##     RMA07             1.103    0.085   13.056    0.000
##     RMA08             1.110    0.085   12.998    0.000
##     RMA09             1.031    0.084   12.268    0.000
##     RMA10             1.057    0.088   12.052    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.123    0.000
##     RCO04             0.794    0.044   18.062    0.000
##     RCO05             0.815    0.043   18.912    0.000
##     RCO06             0.838    0.045   18.421    0.000
##     RCO07             0.837    0.046   18.200    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.561    0.000
##     EN04              0.996    0.043   22.936    0.000
##     EN05              0.994    0.042   23.907    0.000
##     EN06              0.981    0.041   23.935    0.000
##     EN07              1.044    0.045   23.117    0.000
##     EN08              1.031    0.042   24.450    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.977    0.027   35.866    0.000
##     EVI03             0.991    0.048   20.696    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912    0.034   26.464    0.000
##     EDE03             0.576    0.037   15.708    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.655    0.052   12.558    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.151    0.165    6.983    0.000
##     maestria          0.709    0.158    4.495    0.000
##     control           1.346    0.203    6.632    0.000
##     energia           1.429    0.208    6.881    0.000
##     vigor             1.109    0.190    5.823    0.000
##     dedicacion        1.155    0.210    5.511    0.000
##     absorcion         0.901    0.184    4.891    0.000
##   relajacion ~~                                       
##     maestria          0.970    0.159    6.093    0.000
##     control           1.482    0.195    7.609    0.000
##     energia           1.372    0.188    7.290    0.000
##     vigor             0.957    0.168    5.690    0.000
##     dedicacion        1.039    0.187    5.553    0.000
##     absorcion         0.766    0.164    4.682    0.000
##   maestria ~~                                         
##     control           1.222    0.202    6.050    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.008    0.191    5.290    0.000
##     dedicacion        0.990    0.207    4.780    0.000
##     absorcion         0.883    0.187    4.725    0.000
##   control ~~                                          
##     energia           1.988    0.252    7.876    0.000
##     vigor             1.493    0.225    6.641    0.000
##     dedicacion        1.539    0.246    6.249    0.000
##     absorcion         1.221    0.216    5.647    0.000
##   energia ~~                                          
##     vigor             2.046    0.249    8.225    0.000
##     dedicacion        1.855    0.260    7.143    0.000
##     absorcion         1.382    0.223    6.189    0.000
##   vigor ~~                                            
##     dedicacion        2.771    0.294    9.435    0.000
##     absorcion         2.191    0.251    8.744    0.000
##   dedicacion ~~                                       
##     absorcion         2.797    0.296    9.442    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.109    0.115    9.655    0.000
##    .RPD02             0.930    0.103    8.995    0.000
##    .RPD03             1.368    0.142    9.603    0.000
##    .RPD05             0.901    0.104    8.645    0.000
##    .RPD06             2.038    0.203   10.052    0.000
##    .RPD07             1.167    0.126    9.296    0.000
##    .RPD09             1.098    0.121    9.048    0.000
##    .RPD10             1.102    0.123    8.986    0.000
##    .RRE02             0.626    0.068    9.272    0.000
##    .RRE03             0.647    0.072    8.990    0.000
##    .RRE04             0.490    0.055    8.837    0.000
##    .RRE05             0.377    0.046    8.176    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.940    0.099    9.487    0.000
##    .RRE10             1.133    0.112   10.089    0.000
##    .RMA02             1.742    0.175    9.938    0.000
##    .RMA03             1.501    0.156    9.600    0.000
##    .RMA04             0.854    0.097    8.786    0.000
##    .RMA05             0.907    0.101    9.001    0.000
##    .RMA06             1.624    0.158   10.280    0.000
##    .RMA07             0.846    0.094    8.992    0.000
##    .RMA08             0.883    0.098    9.041    0.000
##    .RMA09             1.086    0.114    9.498    0.000
##    .RMA10             1.255    0.131    9.594    0.000
##    .RCO02             0.981    0.104    9.398    0.000
##    .RCO03             0.496    0.058    8.496    0.000
##    .RCO04             0.470    0.052    9.027    0.000
##    .RCO05             0.392    0.046    8.620    0.000
##    .RCO06             0.476    0.054    8.871    0.000
##    .RCO07             0.504    0.056    8.970    0.000
##    .EN01              0.688    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.070    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.945    0.000
##    .EN06              0.368    0.041    8.934    0.000
##    .EN07              0.502    0.054    9.211    0.000
##    .EN08              0.358    0.041    8.715    0.000
##    .EVI01             0.176    0.036    4.904    0.000
##    .EVI02             0.244    0.038    6.346    0.000
##    .EVI03             1.219    0.124    9.825    0.000
##    .EDE01             0.386    0.064    6.026    0.000
##    .EDE02             0.494    0.065    7.611    0.000
##    .EDE03             0.849    0.086    9.918    0.000
##    .EAB01             0.375    0.122    3.067    0.002
##    .EAB02             1.150    0.120    9.587    0.000
##     desapego          1.983    0.277    7.152    0.000
##     relajacion        1.624    0.207    7.837    0.000
##     maestria          1.979    0.317    6.243    0.000
##     control           2.660    0.335    7.930    0.000
##     energia           2.824    0.327    8.624    0.000
##     vigor             2.860    0.289    9.904    0.000
##     dedicacion        3.467    0.367    9.451    0.000
##     absorcion         2.698    0.312    8.656    0.000
lavaanPlot(sem5, coef = TRUE, cov = TRUE)

Conclusiones

En conclusion las experiencias de recuperacion pueden entenderse como un conjunto de cuatro dominios: desapego, relajacion, maestria y control. Cada uno de ellos constribuye significativamente en la variable latente. La energia recuperada es unidimensional y sus variables tambien contribuyen significativamente. De manera global, tanto la energía como las experiencias de recuperación contribuyen significativamente en el engagement laboral, destacando la relación de la dedicación con la absorción del trabajo.