Los modelos de ecuaciones estructurales (SEM) es une técnica de análisis de estadística multivariada que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validad modelos teóricos y empíricos.
Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7º y 8º de dos escuelas (Pasteur y Grand-White).
La base de datos esá incluida como paquete en R, e incluye las siguientes columnas:
Se busca identificar las relaciones entre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.
Práctica:
#install.packages("lavaan")
library(lavaan)
#análisis de variables latentes
#install.packages("igraph", type = "binary")
#install.packages("DiagrammeR")
#install.packages("lavaanPlot")
library(lavaanPlot)
library(readxl)
df1 <- HolzingerSwineford1939
summary(df1)
## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##
str(df1)
## 'data.frame': 301 obs. of 15 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 11 ...
## $ sex : int 1 2 2 1 2 2 1 2 2 2 ...
## $ ageyr : int 13 13 13 13 12 14 12 12 13 12 ...
## $ agemo : int 1 7 1 2 2 1 1 2 0 5 ...
## $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ grade : int 7 7 7 7 7 7 7 7 7 7 ...
## $ x1 : num 3.33 5.33 4.5 5.33 4.83 ...
## $ x2 : num 7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
## $ x3 : num 0.375 2.125 1.875 3 0.875 ...
## $ x4 : num 2.33 1.67 1 2.67 2.67 ...
## $ x5 : num 5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
## $ x6 : num 1.286 1.286 0.429 2.429 2.571 ...
## $ x7 : num 3.39 3.78 3.26 3 3.7 ...
## $ x8 : num 5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
## $ x9 : num 6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- ' #Regresiones
#Variables Latentes
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
velocidad =~ x7 + x8 + x9
#Varianzas y Covarianzas
visual ~~ textual
textual ~~ velocidad
velocidad ~~ visual
#Intercepto
'
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
## visual ~~
## velocidad 0.262 0.056 4.660 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
lavaanPlot(sem1, coef=TRUE, cov=TRUE)
En conclusión, la inteligencia de los adolescentes está compuesta por un grupo de factores que no se reducen a un sólo número.
La base de datos contiene distintas mediciones sobre la democracia política e industrialización de países en desarrollo durante 1060 y 1965.
La tabla incluye los siguientes datos:
df2 <- PoliticalDemocracy
df2 <- PoliticalDemocracy
summary(df2)
## y1 y2 y3 y4
## Min. : 1.250 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 2.900 1st Qu.: 0.000 1st Qu.: 3.767 1st Qu.: 1.581
## Median : 5.400 Median : 3.333 Median : 6.667 Median : 3.333
## Mean : 5.465 Mean : 4.256 Mean : 6.563 Mean : 4.453
## 3rd Qu.: 7.500 3rd Qu.: 8.283 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## y5 y6 y7 y8
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 3.692 1st Qu.: 0.000 1st Qu.: 3.478 1st Qu.: 1.301
## Median : 5.000 Median : 2.233 Median : 6.667 Median : 3.333
## Mean : 5.136 Mean : 2.978 Mean : 6.196 Mean : 4.043
## 3rd Qu.: 7.500 3rd Qu.: 4.207 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## x1 x2 x3
## Min. :3.784 Min. :1.386 Min. :1.002
## 1st Qu.:4.477 1st Qu.:3.663 1st Qu.:2.300
## Median :5.075 Median :4.963 Median :3.568
## Mean :5.054 Mean :4.792 Mean :3.558
## 3rd Qu.:5.515 3rd Qu.:5.830 3rd Qu.:4.523
## Max. :6.737 Max. :7.872 Max. :6.425
str(df2)
## 'data.frame': 75 obs. of 11 variables:
## $ y1: num 2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
## $ y2: num 0 0 8.8 8.8 3.33 ...
## $ y3: num 3.33 3.33 10 10 10 ...
## $ y4: num 0 0 9.2 9.2 6.67 ...
## $ y5: num 1.25 6.25 8.75 8.91 7.5 ...
## $ y6: num 0 1.1 8.09 8.13 3.33 ...
## $ y7: num 3.73 6.67 10 10 10 ...
## $ y8: num 3.333 0.737 8.212 4.615 6.667 ...
## $ x1: num 4.44 5.38 5.96 6.29 5.86 ...
## $ x2: num 3.64 5.06 6.26 7.57 6.82 ...
## $ x3: num 2.56 3.57 5.22 6.27 4.57 ...
modelo2 <- '# Regresiones
# Variables Latentes
democracia1960 =~ y1 + y2 + y3 + y4
democracia1965 =~ y5 + y6 + y7 + y8
industria =~ x1 + x2 + x3
# Varianzas y Covarianzas
democracia1960 ~~ industria
democracia1965 ~~ industria
democracia1965 ~~ democracia1965
democracia1965 ~~ democracia1960
#Intercepto
'
sem2 <- sem(modelo2, data=df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 25
##
## Number of observations 75
##
## Model Test User Model:
##
## Test statistic 72.462
## Degrees of freedom 41
## P-value (Chi-square) 0.002
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## democracia1960 =~
## y1 1.000
## y2 1.354 0.175 7.755 0.000
## y3 1.044 0.150 6.961 0.000
## y4 1.300 0.138 9.412 0.000
## democracia1965 =~
## y5 1.000
## y6 1.258 0.164 7.651 0.000
## y7 1.282 0.158 8.137 0.000
## y8 1.310 0.154 8.529 0.000
## industria =~
## x1 1.000
## x2 2.182 0.139 15.714 0.000
## x3 1.819 0.152 11.956 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## democracia1960 ~~
## industria 0.660 0.206 3.202 0.001
## democracia1965 ~~
## industria 0.774 0.208 3.715 0.000
## democracia1960 ~~
## democracia1965 4.487 0.911 4.924 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## democracia1965 4.345 1.051 4.134 0.000
## .y1 1.942 0.395 4.910 0.000
## .y2 6.490 1.185 5.479 0.000
## .y3 5.340 0.943 5.662 0.000
## .y4 2.887 0.610 4.731 0.000
## .y5 2.390 0.447 5.351 0.000
## .y6 4.343 0.796 5.456 0.000
## .y7 3.510 0.668 5.252 0.000
## .y8 2.940 0.586 5.019 0.000
## .x1 0.082 0.020 4.180 0.000
## .x2 0.118 0.070 1.689 0.091
## .x3 0.467 0.090 5.174 0.000
## democracia1960 4.845 1.088 4.453 0.000
## industria 0.448 0.087 5.169 0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)
En conclusión, la industrialización impulsa la democracia, y una democracia estable, tiende a seguir estándolo.
Uno de los retos más importnates de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.
df3 <- read_excel("/Users/hugoenrique/Desktop/Universidad/8vo Semestre/Generación de Escenarios/M1/Act3/Datos_SEM_Eng.xlsx")
modelo3 <- '# Regresiones
# Variables Latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
# Varianzas y Covarianzas
#Intercepto
'
sem3 <- sem(modelo3, data=df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 56 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 68
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1215.404
## Degrees of freedom 428
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.204 0.081 14.786 0.000
## RPD03 1.143 0.085 13.420 0.000
## RPD05 1.310 0.086 15.269 0.000
## RPD06 1.086 0.088 12.282 0.000
## RPD07 1.227 0.085 14.451 0.000
## RPD08 1.163 0.086 13.487 0.000
## RPD09 1.315 0.087 15.175 0.000
## RPD10 1.345 0.088 15.290 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.120 0.065 17.268 0.000
## RRE04 1.024 0.058 17.732 0.000
## RRE05 1.055 0.056 18.798 0.000
## RRE06 1.243 0.074 16.857 0.000
## RRE07 1.115 0.071 15.687 0.000
## RRE10 0.815 0.067 12.135 0.000
## maestria =~
## RMA02 1.000
## RMA03 1.155 0.096 12.060 0.000
## RMA04 1.179 0.089 13.267 0.000
## RMA05 1.141 0.087 13.049 0.000
## RMA06 0.647 0.075 8.618 0.000
## RMA07 1.104 0.085 13.050 0.000
## RMA08 1.109 0.085 12.985 0.000
## RMA09 1.030 0.084 12.251 0.000
## RMA10 1.056 0.088 12.039 0.000
## control =~
## RCO02 1.000
## RCO03 0.948 0.049 19.230 0.000
## RCO04 0.795 0.044 18.125 0.000
## RCO05 0.817 0.043 18.981 0.000
## RCO06 0.834 0.046 18.247 0.000
## RCO07 0.834 0.046 18.078 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## desapego ~~
## relajacion 1.155 0.164 7.023 0.000
## maestria 0.696 0.155 4.477 0.000
## control 1.319 0.200 6.584 0.000
## relajacion ~~
## maestria 0.969 0.159 6.085 0.000
## control 1.483 0.195 7.610 0.000
## maestria ~~
## control 1.221 0.202 6.047 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.168 0.119 9.778 0.000
## .RPD02 1.005 0.109 9.240 0.000
## .RPD03 1.434 0.147 9.728 0.000
## .RPD05 0.989 0.110 8.969 0.000
## .RPD06 1.817 0.182 9.968 0.000
## .RPD07 1.177 0.125 9.391 0.000
## .RPD08 1.454 0.150 9.710 0.000
## .RPD09 1.035 0.115 9.028 0.000
## .RPD10 1.033 0.115 8.956 0.000
## .RRE02 0.624 0.067 9.269 0.000
## .RRE03 0.651 0.072 9.005 0.000
## .RRE04 0.481 0.055 8.798 0.000
## .RRE05 0.373 0.046 8.147 0.000
## .RRE06 0.891 0.097 9.162 0.000
## .RRE07 0.953 0.100 9.511 0.000
## .RRE10 1.136 0.113 10.092 0.000
## .RMA02 1.742 0.175 9.934 0.000
## .RMA03 1.489 0.155 9.581 0.000
## .RMA04 0.854 0.097 8.772 0.000
## .RMA05 0.904 0.101 8.981 0.000
## .RMA06 1.627 0.158 10.279 0.000
## .RMA07 0.846 0.094 8.980 0.000
## .RMA08 0.885 0.098 9.035 0.000
## .RMA09 1.090 0.115 9.496 0.000
## .RMA10 1.258 0.131 9.590 0.000
## .RCO02 0.980 0.105 9.375 0.000
## .RCO03 0.482 0.057 8.379 0.000
## .RCO04 0.463 0.052 8.967 0.000
## .RCO05 0.385 0.045 8.536 0.000
## .RCO06 0.493 0.055 8.915 0.000
## .RCO07 0.516 0.057 8.987 0.000
## desapego 1.925 0.275 7.002 0.000
## relajacion 1.625 0.207 7.845 0.000
## maestria 1.978 0.317 6.241 0.000
## control 2.660 0.335 7.930 0.000
lavaanPlot(sem3, coef=TRUE, cov=TRUE)
modelo4 <- '# Regresiones
# Variables Latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Varianzas y Covarianzas
# Intercepto
'
sem4 <- sem(modelo4, data=df3)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.029 0.044 23.192 0.000
## EN04 0.999 0.044 22.583 0.000
## EN05 0.999 0.042 23.649 0.000
## EN06 0.986 0.042 23.722 0.000
## EN07 1.049 0.046 22.856 0.000
## EN08 1.036 0.043 24.173 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .EN01 0.711 0.074 9.651 0.000
## .EN02 0.444 0.049 9.012 0.000
## .EN04 0.481 0.052 9.214 0.000
## .EN05 0.375 0.042 8.830 0.000
## .EN06 0.359 0.041 8.798 0.000
## .EN07 0.499 0.055 9.129 0.000
## .EN08 0.353 0.041 8.580 0.000
## energia 2.801 0.327 8.565 0.000
lavaanPlot(sem4, coef=TRUE, cov=TRUE)
df3 <- read_excel("/Users/hugoenrique/Desktop/Universidad/8vo Semestre/Generación de Escenarios/M1/Act3/Datos_SEM_Eng.xlsx")
modelo5 <- '# Regresiones
# Variables Latentes
#Parte 1
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
#Parte 2
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
#Parte 3
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorcion =~ EAB01 + EAB02
# Varianzas y Covarianzas
#Intercepto
'
sem5 <- sem(modelo5, data=df3)
summary(sem5)
## lavaan 0.6-19 ended normally after 103 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 120
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2313.998
## Degrees of freedom 961
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.204 0.081 14.854 0.000
## RPD03 1.144 0.085 13.492 0.000
## RPD05 1.311 0.085 15.353 0.000
## RPD06 1.080 0.088 12.240 0.000
## RPD07 1.226 0.085 14.502 0.000
## RPD08 1.157 0.086 13.445 0.000
## RPD09 1.313 0.086 15.205 0.000
## RPD10 1.341 0.088 15.302 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.121 0.065 17.282 0.000
## RRE04 1.022 0.058 17.629 0.000
## RRE05 1.054 0.056 18.736 0.000
## RRE06 1.245 0.074 16.864 0.000
## RRE07 1.119 0.071 15.754 0.000
## RRE10 0.817 0.067 12.165 0.000
## maestria =~
## RMA02 1.000
## RMA03 1.152 0.096 12.038 0.000
## RMA04 1.179 0.089 13.273 0.000
## RMA05 1.140 0.087 13.046 0.000
## RMA06 0.648 0.075 8.634 0.000
## RMA07 1.103 0.085 13.056 0.000
## RMA08 1.110 0.085 12.997 0.000
## RMA09 1.031 0.084 12.268 0.000
## RMA10 1.057 0.088 12.052 0.000
## control =~
## RCO02 1.000
## RCO03 0.945 0.049 19.120 0.000
## RCO04 0.794 0.044 18.058 0.000
## RCO05 0.815 0.043 18.910 0.000
## RCO06 0.838 0.045 18.422 0.000
## RCO07 0.837 0.046 18.200 0.000
## energia =~
## EN01 1.000
## EN02 1.026 0.044 23.552 0.000
## EN04 0.996 0.043 22.929 0.000
## EN05 0.994 0.042 23.900 0.000
## EN06 0.981 0.041 23.931 0.000
## EN07 1.044 0.045 23.110 0.000
## EN08 1.031 0.042 24.444 0.000
## vigor =~
## EVI01 1.000
## EVI02 0.978 0.027 35.863 0.000
## EVI03 0.991 0.048 20.695 0.000
## dedicacion =~
## EDE01 1.000
## EDE02 0.912 0.034 26.456 0.000
## EDE03 0.576 0.037 15.716 0.000
## absorcion =~
## EAB01 1.000
## EAB02 0.655 0.052 12.563 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## desapego ~~
## relajacion 1.155 0.164 7.022 0.000
## maestria 0.697 0.156 4.477 0.000
## control 1.321 0.201 6.588 0.000
## energia 1.387 0.204 6.785 0.000
## vigor 1.051 0.186 5.635 0.000
## dedicacion 1.096 0.205 5.336 0.000
## absorcion 0.860 0.181 4.755 0.000
## relajacion ~~
## maestria 0.970 0.159 6.093 0.000
## control 1.482 0.195 7.609 0.000
## energia 1.372 0.188 7.290 0.000
## vigor 0.957 0.168 5.690 0.000
## dedicacion 1.038 0.187 5.553 0.000
## absorcion 0.766 0.164 4.682 0.000
## maestria ~~
## control 1.222 0.202 6.050 0.000
## energia 1.326 0.209 6.355 0.000
## vigor 1.008 0.191 5.290 0.000
## dedicacion 0.990 0.207 4.779 0.000
## absorcion 0.883 0.187 4.725 0.000
## control ~~
## energia 1.988 0.252 7.875 0.000
## vigor 1.492 0.225 6.641 0.000
## dedicacion 1.539 0.246 6.248 0.000
## absorcion 1.221 0.216 5.647 0.000
## energia ~~
## vigor 2.046 0.249 8.225 0.000
## dedicacion 1.854 0.260 7.142 0.000
## absorcion 1.382 0.223 6.189 0.000
## vigor ~~
## dedicacion 2.770 0.294 9.434 0.000
## absorcion 2.191 0.251 8.744 0.000
## dedicacion ~~
## absorcion 2.797 0.296 9.442 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.162 0.119 9.778 0.000
## .RPD02 0.997 0.108 9.236 0.000
## .RPD03 1.422 0.146 9.722 0.000
## .RPD05 0.976 0.109 8.953 0.000
## .RPD06 1.836 0.184 9.983 0.000
## .RPD07 1.173 0.125 9.393 0.000
## .RPD08 1.475 0.151 9.734 0.000
## .RPD09 1.038 0.115 9.046 0.000
## .RPD10 1.043 0.116 8.986 0.000
## .RRE02 0.626 0.067 9.275 0.000
## .RRE03 0.647 0.072 8.994 0.000
## .RRE04 0.490 0.055 8.840 0.000
## .RRE05 0.377 0.046 8.179 0.000
## .RRE06 0.888 0.097 9.156 0.000
## .RRE07 0.941 0.099 9.492 0.000
## .RRE10 1.131 0.112 10.089 0.000
## .RMA02 1.742 0.175 9.938 0.000
## .RMA03 1.500 0.156 9.600 0.000
## .RMA04 0.854 0.097 8.786 0.000
## .RMA05 0.907 0.101 9.001 0.000
## .RMA06 1.624 0.158 10.280 0.000
## .RMA07 0.846 0.094 8.993 0.000
## .RMA08 0.883 0.098 9.042 0.000
## .RMA09 1.086 0.114 9.498 0.000
## .RMA10 1.255 0.131 9.594 0.000
## .RCO02 0.981 0.104 9.399 0.000
## .RCO03 0.496 0.058 8.496 0.000
## .RCO04 0.470 0.052 9.028 0.000
## .RCO05 0.392 0.046 8.620 0.000
## .RCO06 0.475 0.054 8.870 0.000
## .RCO07 0.503 0.056 8.969 0.000
## .EN01 0.689 0.071 9.662 0.000
## .EN02 0.439 0.048 9.070 0.000
## .EN04 0.475 0.051 9.263 0.000
## .EN05 0.380 0.043 8.944 0.000
## .EN06 0.368 0.041 8.933 0.000
## .EN07 0.502 0.054 9.211 0.000
## .EN08 0.358 0.041 8.714 0.000
## .EVI01 0.176 0.036 4.910 0.000
## .EVI02 0.244 0.038 6.341 0.000
## .EVI03 1.219 0.124 9.824 0.000
## .EDE01 0.387 0.064 6.037 0.000
## .EDE02 0.494 0.065 7.606 0.000
## .EDE03 0.848 0.086 9.917 0.000
## .EAB01 0.376 0.122 3.075 0.002
## .EAB02 1.150 0.120 9.588 0.000
## desapego 1.931 0.275 7.018 0.000
## relajacion 1.624 0.207 7.838 0.000
## maestria 1.979 0.317 6.243 0.000
## control 2.659 0.335 7.930 0.000
## energia 2.823 0.327 8.623 0.000
## vigor 2.860 0.289 9.903 0.000
## dedicacion 3.466 0.367 9.448 0.000
## absorcion 2.697 0.312 8.655 0.000
lavaanPlot(sem5, coef=TRUE, cov=TRUE)
Las experiencias de recuperación pueden entenderse como un conjunto
de 4 dominios: desapego, relajación, mestría y control. Cada uno de
ellos contribuye significativamente en la variable latente.
La energía recuperada es unidimensiona, y sus variables también
contribuyen significativamente. De manera global, tanto la energía como
las experiencias de recuperación contribuyen significativamente en el
engagement laboral, destacando la relación con la absorción del
trabajo.