Teoría

Los modelos de ecuaciones estructurales (SEM) es une técnica de análisis de estadística multivariada que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validad modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7º y 8º de dos escuelas (Pasteur y Grand-White).

La base de datos esá incluida como paquete en R, e incluye las siguientes columnas:

  • sex: Género (1=male, 2=female)
  • x1: Percepción visual
  • x2: Juego de cubos
  • x3: Juegos con pastillas/espacial
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Significado de palabras
  • x7: sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas reectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

Práctica:

  • verbigracia: ejemplo.
  • ex libris: Sello para libros.
  • aquelarre: reunión.
  • beodo: borracho.
  • carpe diem: Aprovecha el día.

Instalas paquetes y llamar librerías

#install.packages("lavaan")
library(lavaan)
#análisis de variables latentes
#install.packages("igraph", type = "binary")
#install.packages("DiagrammeR")
#install.packages("lavaanPlot")
library(lavaanPlot)
library(readxl)

Tipos de fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y observadas. (Varianza entre sí misma, Covarianza entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero. modelo <- ‘# Regresiones # Variables Latentes # Varianzas y Covarianzas # Intercepto’

Generar el modelo

df1 <- HolzingerSwineford1939
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- ' #Regresiones
              #Variables Latentes
              visual =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              velocidad =~ x7 + x8 + x9
              #Varianzas y Covarianzas
              visual ~~ textual
              textual ~~ velocidad
              velocidad ~~ visual
              #Intercepto
              '

sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
##   visual ~~                                           
##     velocidad         0.262    0.056    4.660    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(sem1, coef=TRUE, cov=TRUE)

En conclusión, la inteligencia de los adolescentes está compuesta por un grupo de factores que no se reducen a un sólo número.

Ejercicio 1. Democracia Política e Industrialización

Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización de países en desarrollo durante 1060 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposición política en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Libertad de la oposición política en 1965
  • y6: Libertad de la oposición política en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la fuerza laboral en la industria en 1960

Generar el modelo

df2 <- PoliticalDemocracy

df2 <- PoliticalDemocracy
summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...
modelo2 <- '# Regresiones
            # Variables Latentes
            democracia1960 =~ y1 + y2 + y3 + y4
            democracia1965 =~ y5 + y6 + y7 + y8
            industria =~ x1 + x2 + x3
            # Varianzas y Covarianzas
            democracia1960 ~~ industria
            democracia1965 ~~ industria
            democracia1965 ~~ democracia1965
            democracia1965 ~~ democracia1960
            #Intercepto
           '

sem2 <- sem(modelo2, data=df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 =~                                    
##     y1                 1.000                           
##     y2                 1.354    0.175    7.755    0.000
##     y3                 1.044    0.150    6.961    0.000
##     y4                 1.300    0.138    9.412    0.000
##   democracia1965 =~                                    
##     y5                 1.000                           
##     y6                 1.258    0.164    7.651    0.000
##     y7                 1.282    0.158    8.137    0.000
##     y8                 1.310    0.154    8.529    0.000
##   industria =~                                         
##     x1                 1.000                           
##     x2                 2.182    0.139   15.714    0.000
##     x3                 1.819    0.152   11.956    0.000
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 ~~                                    
##     industria          0.660    0.206    3.202    0.001
##   democracia1965 ~~                                    
##     industria          0.774    0.208    3.715    0.000
##   democracia1960 ~~                                    
##     democracia1965     4.487    0.911    4.924    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     democracia1965    4.345    1.051    4.134    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     democracia1960    4.845    1.088    4.453    0.000
##     industria         0.448    0.087    5.169    0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)

En conclusión, la industrialización impulsa la democracia, y una democracia estable, tiende a seguir estándolo.

Actividad 3. Bienestar de colaboradores

Contexto

Uno de los retos más importnates de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1. Esperiencias de Recuperación

df3 <- read_excel("/Users/hugoenrique/Desktop/Universidad/8vo Semestre/Generación de Escenarios/M1/Act3/Datos_SEM_Eng.xlsx")
modelo3 <- '# Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            # Varianzas y Covarianzas
            #Intercepto
           '
sem3 <- sem(modelo3, data=df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1215.404
##   Degrees of freedom                               428
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.081   14.786    0.000
##     RPD03             1.143    0.085   13.420    0.000
##     RPD05             1.310    0.086   15.269    0.000
##     RPD06             1.086    0.088   12.282    0.000
##     RPD07             1.227    0.085   14.451    0.000
##     RPD08             1.163    0.086   13.487    0.000
##     RPD09             1.315    0.087   15.175    0.000
##     RPD10             1.345    0.088   15.290    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.268    0.000
##     RRE04             1.024    0.058   17.732    0.000
##     RRE05             1.055    0.056   18.798    0.000
##     RRE06             1.243    0.074   16.857    0.000
##     RRE07             1.115    0.071   15.687    0.000
##     RRE10             0.815    0.067   12.135    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.060    0.000
##     RMA04             1.179    0.089   13.267    0.000
##     RMA05             1.141    0.087   13.049    0.000
##     RMA06             0.647    0.075    8.618    0.000
##     RMA07             1.104    0.085   13.050    0.000
##     RMA08             1.109    0.085   12.985    0.000
##     RMA09             1.030    0.084   12.251    0.000
##     RMA10             1.056    0.088   12.039    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.230    0.000
##     RCO04             0.795    0.044   18.125    0.000
##     RCO05             0.817    0.043   18.981    0.000
##     RCO06             0.834    0.046   18.247    0.000
##     RCO07             0.834    0.046   18.078    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.155    0.164    7.023    0.000
##     maestria          0.696    0.155    4.477    0.000
##     control           1.319    0.200    6.584    0.000
##   relajacion ~~                                       
##     maestria          0.969    0.159    6.085    0.000
##     control           1.483    0.195    7.610    0.000
##   maestria ~~                                         
##     control           1.221    0.202    6.047    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.778    0.000
##    .RPD02             1.005    0.109    9.240    0.000
##    .RPD03             1.434    0.147    9.728    0.000
##    .RPD05             0.989    0.110    8.969    0.000
##    .RPD06             1.817    0.182    9.968    0.000
##    .RPD07             1.177    0.125    9.391    0.000
##    .RPD08             1.454    0.150    9.710    0.000
##    .RPD09             1.035    0.115    9.028    0.000
##    .RPD10             1.033    0.115    8.956    0.000
##    .RRE02             0.624    0.067    9.269    0.000
##    .RRE03             0.651    0.072    9.005    0.000
##    .RRE04             0.481    0.055    8.798    0.000
##    .RRE05             0.373    0.046    8.147    0.000
##    .RRE06             0.891    0.097    9.162    0.000
##    .RRE07             0.953    0.100    9.511    0.000
##    .RRE10             1.136    0.113   10.092    0.000
##    .RMA02             1.742    0.175    9.934    0.000
##    .RMA03             1.489    0.155    9.581    0.000
##    .RMA04             0.854    0.097    8.772    0.000
##    .RMA05             0.904    0.101    8.981    0.000
##    .RMA06             1.627    0.158   10.279    0.000
##    .RMA07             0.846    0.094    8.980    0.000
##    .RMA08             0.885    0.098    9.035    0.000
##    .RMA09             1.090    0.115    9.496    0.000
##    .RMA10             1.258    0.131    9.590    0.000
##    .RCO02             0.980    0.105    9.375    0.000
##    .RCO03             0.482    0.057    8.379    0.000
##    .RCO04             0.463    0.052    8.967    0.000
##    .RCO05             0.385    0.045    8.536    0.000
##    .RCO06             0.493    0.055    8.915    0.000
##    .RCO07             0.516    0.057    8.987    0.000
##     desapego          1.925    0.275    7.002    0.000
##     relajacion        1.625    0.207    7.845    0.000
##     maestria          1.978    0.317    6.241    0.000
##     control           2.660    0.335    7.930    0.000
lavaanPlot(sem3, coef=TRUE, cov=TRUE)

Parte 2. Energía recuperada

modelo4 <- '# Regresiones
           # Variables Latentes
           energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
           # Varianzas y Covarianzas
           # Intercepto
          '

sem4 <- sem(modelo4, data=df3)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(sem4, coef=TRUE, cov=TRUE)

Parte 3. Engagement Laboral

df3 <- read_excel("/Users/hugoenrique/Desktop/Universidad/8vo Semestre/Generación de Escenarios/M1/Act3/Datos_SEM_Eng.xlsx")

modelo5 <- '# Regresiones
            # Variables Latentes
            #Parte 1
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            #Parte 2
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            #Parte 3
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02
            # Varianzas y Covarianzas
            #Intercepto
           '

sem5 <- sem(modelo5, data=df3)
summary(sem5)
## lavaan 0.6-19 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       120
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2313.998
##   Degrees of freedom                               961
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.081   14.854    0.000
##     RPD03             1.144    0.085   13.492    0.000
##     RPD05             1.311    0.085   15.353    0.000
##     RPD06             1.080    0.088   12.240    0.000
##     RPD07             1.226    0.085   14.502    0.000
##     RPD08             1.157    0.086   13.445    0.000
##     RPD09             1.313    0.086   15.205    0.000
##     RPD10             1.341    0.088   15.302    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.282    0.000
##     RRE04             1.022    0.058   17.629    0.000
##     RRE05             1.054    0.056   18.736    0.000
##     RRE06             1.245    0.074   16.864    0.000
##     RRE07             1.119    0.071   15.754    0.000
##     RRE10             0.817    0.067   12.165    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.179    0.089   13.273    0.000
##     RMA05             1.140    0.087   13.046    0.000
##     RMA06             0.648    0.075    8.634    0.000
##     RMA07             1.103    0.085   13.056    0.000
##     RMA08             1.110    0.085   12.997    0.000
##     RMA09             1.031    0.084   12.268    0.000
##     RMA10             1.057    0.088   12.052    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.120    0.000
##     RCO04             0.794    0.044   18.058    0.000
##     RCO05             0.815    0.043   18.910    0.000
##     RCO06             0.838    0.045   18.422    0.000
##     RCO07             0.837    0.046   18.200    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.552    0.000
##     EN04              0.996    0.043   22.929    0.000
##     EN05              0.994    0.042   23.900    0.000
##     EN06              0.981    0.041   23.931    0.000
##     EN07              1.044    0.045   23.110    0.000
##     EN08              1.031    0.042   24.444    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.863    0.000
##     EVI03             0.991    0.048   20.695    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912    0.034   26.456    0.000
##     EDE03             0.576    0.037   15.716    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.655    0.052   12.563    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.155    0.164    7.022    0.000
##     maestria          0.697    0.156    4.477    0.000
##     control           1.321    0.201    6.588    0.000
##     energia           1.387    0.204    6.785    0.000
##     vigor             1.051    0.186    5.635    0.000
##     dedicacion        1.096    0.205    5.336    0.000
##     absorcion         0.860    0.181    4.755    0.000
##   relajacion ~~                                       
##     maestria          0.970    0.159    6.093    0.000
##     control           1.482    0.195    7.609    0.000
##     energia           1.372    0.188    7.290    0.000
##     vigor             0.957    0.168    5.690    0.000
##     dedicacion        1.038    0.187    5.553    0.000
##     absorcion         0.766    0.164    4.682    0.000
##   maestria ~~                                         
##     control           1.222    0.202    6.050    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.008    0.191    5.290    0.000
##     dedicacion        0.990    0.207    4.779    0.000
##     absorcion         0.883    0.187    4.725    0.000
##   control ~~                                          
##     energia           1.988    0.252    7.875    0.000
##     vigor             1.492    0.225    6.641    0.000
##     dedicacion        1.539    0.246    6.248    0.000
##     absorcion         1.221    0.216    5.647    0.000
##   energia ~~                                          
##     vigor             2.046    0.249    8.225    0.000
##     dedicacion        1.854    0.260    7.142    0.000
##     absorcion         1.382    0.223    6.189    0.000
##   vigor ~~                                            
##     dedicacion        2.770    0.294    9.434    0.000
##     absorcion         2.191    0.251    8.744    0.000
##   dedicacion ~~                                       
##     absorcion         2.797    0.296    9.442    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.162    0.119    9.778    0.000
##    .RPD02             0.997    0.108    9.236    0.000
##    .RPD03             1.422    0.146    9.722    0.000
##    .RPD05             0.976    0.109    8.953    0.000
##    .RPD06             1.836    0.184    9.983    0.000
##    .RPD07             1.173    0.125    9.393    0.000
##    .RPD08             1.475    0.151    9.734    0.000
##    .RPD09             1.038    0.115    9.046    0.000
##    .RPD10             1.043    0.116    8.986    0.000
##    .RRE02             0.626    0.067    9.275    0.000
##    .RRE03             0.647    0.072    8.994    0.000
##    .RRE04             0.490    0.055    8.840    0.000
##    .RRE05             0.377    0.046    8.179    0.000
##    .RRE06             0.888    0.097    9.156    0.000
##    .RRE07             0.941    0.099    9.492    0.000
##    .RRE10             1.131    0.112   10.089    0.000
##    .RMA02             1.742    0.175    9.938    0.000
##    .RMA03             1.500    0.156    9.600    0.000
##    .RMA04             0.854    0.097    8.786    0.000
##    .RMA05             0.907    0.101    9.001    0.000
##    .RMA06             1.624    0.158   10.280    0.000
##    .RMA07             0.846    0.094    8.993    0.000
##    .RMA08             0.883    0.098    9.042    0.000
##    .RMA09             1.086    0.114    9.498    0.000
##    .RMA10             1.255    0.131    9.594    0.000
##    .RCO02             0.981    0.104    9.399    0.000
##    .RCO03             0.496    0.058    8.496    0.000
##    .RCO04             0.470    0.052    9.028    0.000
##    .RCO05             0.392    0.046    8.620    0.000
##    .RCO06             0.475    0.054    8.870    0.000
##    .RCO07             0.503    0.056    8.969    0.000
##    .EN01              0.689    0.071    9.662    0.000
##    .EN02              0.439    0.048    9.070    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.944    0.000
##    .EN06              0.368    0.041    8.933    0.000
##    .EN07              0.502    0.054    9.211    0.000
##    .EN08              0.358    0.041    8.714    0.000
##    .EVI01             0.176    0.036    4.910    0.000
##    .EVI02             0.244    0.038    6.341    0.000
##    .EVI03             1.219    0.124    9.824    0.000
##    .EDE01             0.387    0.064    6.037    0.000
##    .EDE02             0.494    0.065    7.606    0.000
##    .EDE03             0.848    0.086    9.917    0.000
##    .EAB01             0.376    0.122    3.075    0.002
##    .EAB02             1.150    0.120    9.588    0.000
##     desapego          1.931    0.275    7.018    0.000
##     relajacion        1.624    0.207    7.838    0.000
##     maestria          1.979    0.317    6.243    0.000
##     control           2.659    0.335    7.930    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.860    0.289    9.903    0.000
##     dedicacion        3.466    0.367    9.448    0.000
##     absorcion         2.697    0.312    8.655    0.000
lavaanPlot(sem5, coef=TRUE, cov=TRUE)

Conclusión

Las experiencias de recuperación pueden entenderse como un conjunto de 4 dominios: desapego, relajación, mestría y control. Cada uno de ellos contribuye significativamente en la variable latente.
La energía recuperada es unidimensiona, y sus variables también contribuyen significativamente. De manera global, tanto la energía como las experiencias de recuperación contribuyen significativamente en el engagement laboral, destacando la relación con la absorción del trabajo.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDMiCmF1dGhvcjogIkh1Z28gRW5yaXF1ZSBFc3Byb25jZWRhIEFuYXlhIC8gQTAxMjg0ODI3IgpkYXRlOiAiMjAyNS0wOC0xMiIKb3V0cHV0OiAKIGh0bWxfZG9jdW1lbnQ6CiAgIHRvYzogVFJVRQogICB0b2NfZmxvYXQ6IFRydWUKICAgY29kZV9kb3dubG9hZDogVHJ1ZQogICB0aGVtZTogeWV0aQotLS0gCiFbXShodHRwczovL21lZGlhMS50ZW5vci5jb20vbS9ZdWszWF9BaWtHQUFBQUFDL3NpbXBzb25zLWJhcnQuZ2lmKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPiBUZW9yw61hIDwvc3Bhbj4KCkxvcyAqKm1vZGVsb3MgZGUgZWN1YWNpb25lcyBlc3RydWN0dXJhbGVzIChTRU0pKiogZXMgdW5lIHTDqWNuaWNhIGRlIGFuw6FsaXNpcyBkZSBlc3RhZMOtc3RpY2EgbXVsdGl2YXJpYWRhIHF1ZSBwZXJtaXRlIGFuYWxpemFyIHBhdHJvbmVzIGNvbXBsZWpvcyBkZSByZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcywgcmVhbGl6YXIgY29tcGFyYWNpb25lcyBlbnRyZSBlIGludHJhZ3J1cG9zLCB5IHZhbGlkYWQgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLiAgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+IEVqZW1wbG8gMS4gRXN0dWRpbyBkZSBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpIDwvc3Bhbj4KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gQ29udGV4dG8gPC9zcGFuPgpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3wrogeSA4wrogZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpLiAgCgpMYSBiYXNlIGRlIGRhdG9zIGVzw6EgaW5jbHVpZGEgY29tbyBwYXF1ZXRlIGVuIFIsIGUgaW5jbHV5ZSBsYXMgc2lndWllbnRlcyBjb2x1bW5hczogCgoqIHNleDogR8OpbmVybyAoMT1tYWxlLCAyPWZlbWFsZSkKKiB4MTogUGVyY2VwY2nDs24gdmlzdWFsCiogeDI6IEp1ZWdvIGRlIGN1Ym9zCiogeDM6IEp1ZWdvcyBjb24gcGFzdGlsbGFzL2VzcGFjaWFsCiogeDQ6IENvbXByZW5zacOzbiBkZSBww6FycmFmb3MKKiB4NTogQ29tcGxldGFyIG9yYWNpb25lcwoqIHg2OiBTaWduaWZpY2FkbyBkZSBwYWxhYnJhcwoqIHg3OiBzdW1hcyBhY2VsZXJhZGFzCiogeDg6IENvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zCiogeDk6IERpc2NyaW1pbmFjacOzbiBhY2VsZXJhZGEgZGUgbWF5w7pzY3VsYXMgcmVlY3RhcyB5IGN1cnZhcwoKU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEsIHgyLCB4MyksIHRleHR1YWwgKHg0LCB4NSwgeDYpIHkgdmVsb2NpZGFkICh4NywgeDgsIHg5KSBkZSBsb3MgYWRvbGVzY2VudGVzLgoKUHLDoWN0aWNhOgoKKiB2ZXJiaWdyYWNpYTogZWplbXBsby4gCiogZXggbGlicmlzOiBTZWxsbyBwYXJhIGxpYnJvcy4gCiogYXF1ZWxhcnJlOiByZXVuacOzbi4gCiogYmVvZG86IGJvcnJhY2hvLiAKKiBjYXJwZSBkaWVtOiBBcHJvdmVjaGEgZWwgZMOtYS4KCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gSW5zdGFsYXMgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KI2luc3RhbGwucGFja2FnZXMoImxhdmFhbiIpCmxpYnJhcnkobGF2YWFuKQojYW7DoWxpc2lzIGRlIHZhcmlhYmxlcyBsYXRlbnRlcwojaW5zdGFsbC5wYWNrYWdlcygiaWdyYXBoIiwgdHlwZSA9ICJiaW5hcnkiKQojaW5zdGFsbC5wYWNrYWdlcygiRGlhZ3JhbW1lUiIpCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW5QbG90IikKbGlicmFyeShsYXZhYW5QbG90KQpsaWJyYXJ5KHJlYWR4bCkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPiBUaXBvcyBkZSBmw7NybXVsYXMgPC9zcGFuPgoxLiBSZWdyZXNpw7NuICh+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcy4KMi4gVmFyaWFibGVzIGxhdGVudGVzICg9fikgTm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZS4KMy4gVmFyaWFuemFzIHkgY292YXJpYW56YXMgKH5+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYXMuCihWYXJpYW56YSBlbnRyZSBzw60gbWlzbWEsIENvdmFyaWFuemEgZW50cmUgb3RyYXMpLgo0LiBJbnRlcmNlcHRvICh+MSkgVmFsb3IgZXNwZXJhZG8gY3VhbmRvIGxhcyBkZW3DoXMgdmFyaWFibGVzIHNvbiBjZXJvLgptb2RlbG8gPC0gJyMgUmVncmVzaW9uZXMKICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICcKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+IEdlbmVyYXIgZWwgbW9kZWxvPC9zcGFuPgpgYGB7cn0KZGYxIDwtIEhvbHppbmdlclN3aW5lZm9yZDE5MzkKc3VtbWFyeShkZjEpCnN0cihkZjEpCm1vZGVsbzEgPC0gJyAjUmVncmVzaW9uZXMKICAgICAgICAgICAgICAjVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgICAgdmlzdWFsID1+IHgxICsgeDIgKyB4MwogICAgICAgICAgICAgIHRleHR1YWwgPX4geDQgKyB4NSArIHg2CiAgICAgICAgICAgICAgdmVsb2NpZGFkID1+IHg3ICsgeDggKyB4OQogICAgICAgICAgICAgICNWYXJpYW56YXMgeSBDb3ZhcmlhbnphcwogICAgICAgICAgICAgIHZpc3VhbCB+fiB0ZXh0dWFsCiAgICAgICAgICAgICAgdGV4dHVhbCB+fiB2ZWxvY2lkYWQKICAgICAgICAgICAgICB2ZWxvY2lkYWQgfn4gdmlzdWFsCiAgICAgICAgICAgICAgI0ludGVyY2VwdG8KICAgICAgICAgICAgICAnCgpzZW0xIDwtIHNlbShtb2RlbG8xLCBkYXRhPWRmMSkKc3VtbWFyeShzZW0xKQpsYXZhYW5QbG90KHNlbTEsIGNvZWY9VFJVRSwgY292PVRSVUUpCmBgYAoKRW4gY29uY2x1c2nDs24sIGxhIGludGVsaWdlbmNpYSBkZSBsb3MgYWRvbGVzY2VudGVzIGVzdMOhIGNvbXB1ZXN0YSBwb3IgdW4gZ3J1cG8gZGUgZmFjdG9yZXMgcXVlIG5vIHNlIHJlZHVjZW4gYSB1biBzw7NsbyBuw7ptZXJvLgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPiBFamVyY2ljaW8gMS4gRGVtb2NyYWNpYSBQb2zDrXRpY2EgZSBJbmR1c3RyaWFsaXphY2nDs24gPC9zcGFuPgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gQ29udGV4dG8gPC9zcGFuPgpMYSBiYXNlIGRlIGRhdG9zIGNvbnRpZW5lIGRpc3RpbnRhcyBtZWRpY2lvbmVzIHNvYnJlIGxhIGRlbW9jcmFjaWEgcG9sw610aWNhIGUgaW5kdXN0cmlhbGl6YWNpw7NuIGRlIHBhw61zZXMgZW4gZGVzYXJyb2xsbyBkdXJhbnRlIDEwNjAgeSAxOTY1LiAKCkxhIHRhYmxhIGluY2x1eWUgbG9zIHNpZ3VpZW50ZXMgZGF0b3M6CgoqIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MAoqIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTYwCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwCiogeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwCiogeTU6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjUKKiB5NjogTGliZXJ0YWQgZGUgbGEgb3Bvc2ljacOzbiBwb2zDrXRpY2EgZW4gMTk2NQoqIHk3OiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2NQoqIHk4OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2NQoqIHgxOiBQSUIgcGVyIGPDoXBpdGEgZW4gMTk2MAoqIHgyOiBDb25zdW1vIGRlIGVuZXJnw61hIGluYW5pbWFkYSBwZXIgY8OhcGl0YSBlbiAxOTYwCiogeDM6IFBvcmNlbnRhamUgZGUgbGEgZnVlcnphIGxhYm9yYWwgZW4gbGEgaW5kdXN0cmlhIGVuIDE5NjAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+IEdlbmVyYXIgZWwgbW9kZWxvIDwvc3Bhbj4KCmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kKCmBgYHtyfQpkZjIgPC0gUG9saXRpY2FsRGVtb2NyYWN5CnN1bW1hcnkoZGYyKQpzdHIoZGYyKQptb2RlbG8yIDwtICcjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgIGRlbW9jcmFjaWExOTYwID1+IHkxICsgeTIgKyB5MyArIHk0CiAgICAgICAgICAgIGRlbW9jcmFjaWExOTY1ID1+IHk1ICsgeTYgKyB5NyArIHk4CiAgICAgICAgICAgIGluZHVzdHJpYSA9fiB4MSArIHgyICsgeDMKICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphcwogICAgICAgICAgICBkZW1vY3JhY2lhMTk2MCB+fiBpbmR1c3RyaWEKICAgICAgICAgICAgZGVtb2NyYWNpYTE5NjUgfn4gaW5kdXN0cmlhCiAgICAgICAgICAgIGRlbW9jcmFjaWExOTY1IH5+IGRlbW9jcmFjaWExOTY1CiAgICAgICAgICAgIGRlbW9jcmFjaWExOTY1IH5+IGRlbW9jcmFjaWExOTYwCiAgICAgICAgICAgICNJbnRlcmNlcHRvCiAgICAgICAgICAgJwoKc2VtMiA8LSBzZW0obW9kZWxvMiwgZGF0YT1kZjIpCnN1bW1hcnkoc2VtMikKbGF2YWFuUGxvdChzZW0yLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCkVuIGNvbmNsdXNpw7NuLCBsYSBpbmR1c3RyaWFsaXphY2nDs24gaW1wdWxzYSBsYSBkZW1vY3JhY2lhLCB5IHVuYSBkZW1vY3JhY2lhIGVzdGFibGUsIHRpZW5kZSBhIHNlZ3VpciBlc3TDoW5kb2xvLgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPiBBY3RpdmlkYWQgMy4gQmllbmVzdGFyIGRlIGNvbGFib3JhZG9yZXMgPC9zcGFuPgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gQ29udGV4dG8gPC9zcGFuPgoKVW5vIGRlIGxvcyByZXRvcyBtw6FzIGltcG9ydG5hdGVzIGRlIGxhcyBvcmdhbml6YWNpb25lcyBlcyBlbnRlbmRlciBlbCBlc3RhZG8geSBiaWVuZXN0YXIgZGUgbG9zIGNvbGFib3JhZG9yZXMsIHlhIHF1ZSBwdWVkZSBpbXBhY3RhciBkaXJlY3RhbWVudGUgZW4gZWwgZGVzZW1wZcOxbyB5IGVsIGxvZ3JvIGRlIGxvcyBvYmpldGl2b3MuCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPiBQYXJ0ZSAxLiBFc3BlcmllbmNpYXMgZGUgUmVjdXBlcmFjacOzbjwvc3Bhbj4KYGBge3J9CmRmMyA8LSByZWFkX2V4Y2VsKCIvVXNlcnMvaHVnb2VucmlxdWUvRGVza3RvcC9Vbml2ZXJzaWRhZC84dm8gU2VtZXN0cmUvR2VuZXJhY2lvzIFuIGRlIEVzY2VuYXJpb3MvTTEvQWN0My9EYXRvc19TRU1fRW5nLnhsc3giKQptb2RlbG8zIDwtICcjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMAogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgIG1hZXN0cmlhID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMAogICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNwogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICAgICNJbnRlcmNlcHRvCiAgICAgICAgICAgJwpzZW0zIDwtIHNlbShtb2RlbG8zLCBkYXRhPWRmMykKc3VtbWFyeShzZW0zKQpsYXZhYW5QbG90KHNlbTMsIGNvZWY9VFJVRSwgY292PVRSVUUpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gUGFydGUgMi4gRW5lcmfDrWEgcmVjdXBlcmFkYSA8L3NwYW4+CmBgYHtyfQptb2RlbG80IDwtICcjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMKICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgKICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAnCgpzZW00IDwtIHNlbShtb2RlbG80LCBkYXRhPWRmMykKc3VtbWFyeShzZW00KQpsYXZhYW5QbG90KHNlbTQsIGNvZWY9VFJVRSwgY292PVRSVUUpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij4gUGFydGUgMy4gRW5nYWdlbWVudCBMYWJvcmFsIDwvc3Bhbj4KYGBge3J9CmRmMyA8LSByZWFkX2V4Y2VsKCIvVXNlcnMvaHVnb2VucmlxdWUvRGVza3RvcC9Vbml2ZXJzaWRhZC84dm8gU2VtZXN0cmUvR2VuZXJhY2lvzIFuIGRlIEVzY2VuYXJpb3MvTTEvQWN0My9EYXRvc19TRU1fRW5nLnhsc3giKQoKbW9kZWxvNSA8LSAnIyBSZWdyZXNpb25lcwogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICAjUGFydGUgMQogICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTAKICAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMAogICAgICAgICAgICBtYWVzdHJpYSA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAKICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcKICAgICAgICAgICAgI1BhcnRlIDIKICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4CiAgICAgICAgICAgICNQYXJ0ZSAzCiAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMwogICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMwogICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMgogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICAgICNJbnRlcmNlcHRvCiAgICAgICAgICAgJwoKc2VtNSA8LSBzZW0obW9kZWxvNSwgZGF0YT1kZjMpCnN1bW1hcnkoc2VtNSkKbGF2YWFuUGxvdChzZW01LCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+IENvbmNsdXNpw7NuIDwvc3Bhbj4KTGFzIGV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuIHB1ZWRlbiBlbnRlbmRlcnNlIGNvbW8gdW4gY29uanVudG8gZGUgNCBkb21pbmlvczogZGVzYXBlZ28sIHJlbGFqYWNpw7NuLCBtZXN0csOtYSB5IGNvbnRyb2wuIENhZGEgdW5vIGRlIGVsbG9zIGNvbnRyaWJ1eWUgc2lnbmlmaWNhdGl2YW1lbnRlIGVuIGxhIHZhcmlhYmxlIGxhdGVudGUuICAKTGEgZW5lcmfDrWEgcmVjdXBlcmFkYSBlcyB1bmlkaW1lbnNpb25hLCB5IHN1cyB2YXJpYWJsZXMgdGFtYmnDqW4gY29udHJpYnV5ZW4gc2lnbmlmaWNhdGl2YW1lbnRlLiAKRGUgbWFuZXJhIGdsb2JhbCwgdGFudG8gbGEgZW5lcmfDrWEgY29tbyBsYXMgZXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24gY29udHJpYnV5ZW4gc2lnbmlmaWNhdGl2YW1lbnRlIGVuIGVsIGVuZ2FnZW1lbnQgbGFib3JhbCwgZGVzdGFjYW5kbyBsYSByZWxhY2nDs24gY29uIGxhIGFic29yY2nDs24gZGVsIHRyYWJham8uCgoK