Teoría

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7 y 8 de dos escuelas (Pasteur y Grand-White).

sex: Género (1=male, 2=female)
x1: Percepción visual
x2: Juego de cubos
x3: Juego con pastillas/espacial
x4: Comprensión de párrafos
x5: Completar oraciones
x6: Significado de palabras
x7: Sumas aceleradas
x8: Conteo acelerado de puntos
x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1, x2,x3), y textual (x4, x5 y x6) y velocidad (x7, x8 y x9) de los adolescente.

Práctica: * verbigracia: ejemplo * ex libris: sello paralibros * aquelarre: reunión de brujas * Beodo: borracho * Carpe diem: vive mientras puedas

Práctica Clase

Instalar paquetes y llamar librerías

library(lavaan)
library(lavaanPlot)

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables Latentes (=~) No se observa, se infiere.
  3. Relaciones entre variables (~~) Relaciones entre variables latentes y observadas (varianza entre sí misma, covarianza entre otras). modelo1 <- ’ # Regresiones # Variables Latentes visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 velocidad =~ x7 + x8 + x9 # Varianzas y covarianzas # Intercepto

Generar el Modelo

df1 <- HolzingerSwineford1939
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- '# Regresiones
            # Variables Latentes
            visual =~ x1 + x2 + x3
            textual =~ x4 + x5 + x6
            velocidad =~ x7 + x8 + x9
            # Varianzas y covarianzas
            # Intercepto
            '
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(sem1, coef=TRUE, cov=TRUE)

En conclusión, la inteligencia de los adolescentes está compuesta por un grupo de factores que no conducen a un solo número.

Actividad. Democracia Política e Industrialización

# Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

y1: Calificaciones sobre libertad de prensa en 1960
y2: Libertad de la oposición política en 1960
y3: Imparcialidad de elecciones en 1960
y4: Eficacia de la legislatura electa en 1960
y5: Calificaciones sobre libertad de prensa en 1965
y6: Libertad de la oposición política en 1965
y7: Imparcialidad de elecciones en 1965
y8: Eficacia de la legislatura electa en 1965
x1: PIB per cápita en 1960
x2: Consumo de energía inanimada per cápita en 1960
x3: Porcentaje de la fuerza laboral en la industria en 1960

Generar el modelo

df2 <- PoliticalDemocracy
modelo2 <- '
  # Variables Latentes
  democracia1960 =~ y1 + y2 + y3 + y4
  democracia1965 =~ y5 + y6 + y7 + y8
  industrializacion1960 =~ x1 + x2 + x3
  
  # Varianzas y Covarianzas
  democracia1965 ~~ democracia1960
  democracia1960 ~~ industrializacion1960
  democracia1965 ~~ industrializacion1960
  
  # Intercepto
'

# Estimación del modelo
sem2 <- sem(modelo2, data=df2)

# Resumen
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                            Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 =~                                           
##     y1                        1.000                           
##     y2                        1.354    0.175    7.755    0.000
##     y3                        1.044    0.150    6.961    0.000
##     y4                        1.300    0.138    9.412    0.000
##   democracia1965 =~                                           
##     y5                        1.000                           
##     y6                        1.258    0.164    7.651    0.000
##     y7                        1.282    0.158    8.137    0.000
##     y8                        1.310    0.154    8.529    0.000
##   industrializacion1960 =~                                    
##     x1                        1.000                           
##     x2                        2.182    0.139   15.714    0.000
##     x3                        1.819    0.152   11.956    0.000
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   democracia1960 ~~                                    
##     democracia1965     4.487    0.911    4.924    0.000
##     indstrlzcn1960     0.660    0.206    3.202    0.001
##   democracia1965 ~~                                    
##     indstrlzcn1960     0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     democracia1960    4.845    1.088    4.453    0.000
##     democracia1965    4.345    1.051    4.134    0.000
##     indstrlzcn1960    0.448    0.087    5.169    0.000
# Gráfico del modelo
lavaanPlot(sem2, coefs=TRUE, covs=TRUE)

En Conclusión, la industrializacion impulsa la democracia, y una democracia estable tiende a seguir estable.

Actividad 3. Bienestar de colaboradores

Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1, Experiencias de recuperación

library(readxl)
df3 <- read_excel("~/Datos_SEM_Eng.xlsx")
modelo3 <- '
  # Regresiones
  # Variables Latentes
  desapego   =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
  relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
  maestria   =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
  control    =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07

  # Varianzas y covarianzas
  # Intercepto
'

sem3 <- sem(modelo3, data = df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        68
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1215.404
##   Degrees of freedom                               428
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.081   14.786    0.000
##     RPD03             1.143    0.085   13.420    0.000
##     RPD05             1.310    0.086   15.269    0.000
##     RPD06             1.086    0.088   12.282    0.000
##     RPD07             1.227    0.085   14.451    0.000
##     RPD08             1.163    0.086   13.487    0.000
##     RPD09             1.315    0.087   15.175    0.000
##     RPD10             1.345    0.088   15.290    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.268    0.000
##     RRE04             1.024    0.058   17.732    0.000
##     RRE05             1.055    0.056   18.798    0.000
##     RRE06             1.243    0.074   16.857    0.000
##     RRE07             1.115    0.071   15.687    0.000
##     RRE10             0.815    0.067   12.135    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.060    0.000
##     RMA04             1.179    0.089   13.267    0.000
##     RMA05             1.141    0.087   13.049    0.000
##     RMA06             0.647    0.075    8.618    0.000
##     RMA07             1.104    0.085   13.050    0.000
##     RMA08             1.109    0.085   12.985    0.000
##     RMA09             1.030    0.084   12.251    0.000
##     RMA10             1.056    0.088   12.039    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.230    0.000
##     RCO04             0.795    0.044   18.125    0.000
##     RCO05             0.817    0.043   18.981    0.000
##     RCO06             0.834    0.046   18.247    0.000
##     RCO07             0.834    0.046   18.078    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.155    0.164    7.023    0.000
##     maestria          0.696    0.155    4.477    0.000
##     control           1.319    0.200    6.584    0.000
##   relajacion ~~                                       
##     maestria          0.969    0.159    6.085    0.000
##     control           1.483    0.195    7.610    0.000
##   maestria ~~                                         
##     control           1.221    0.202    6.047    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.778    0.000
##    .RPD02             1.005    0.109    9.240    0.000
##    .RPD03             1.434    0.147    9.728    0.000
##    .RPD05             0.989    0.110    8.969    0.000
##    .RPD06             1.817    0.182    9.968    0.000
##    .RPD07             1.177    0.125    9.391    0.000
##    .RPD08             1.454    0.150    9.710    0.000
##    .RPD09             1.035    0.115    9.028    0.000
##    .RPD10             1.033    0.115    8.956    0.000
##    .RRE02             0.624    0.067    9.269    0.000
##    .RRE03             0.651    0.072    9.005    0.000
##    .RRE04             0.481    0.055    8.798    0.000
##    .RRE05             0.373    0.046    8.147    0.000
##    .RRE06             0.891    0.097    9.162    0.000
##    .RRE07             0.953    0.100    9.511    0.000
##    .RRE10             1.136    0.113   10.092    0.000
##    .RMA02             1.742    0.175    9.934    0.000
##    .RMA03             1.489    0.155    9.581    0.000
##    .RMA04             0.854    0.097    8.772    0.000
##    .RMA05             0.904    0.101    8.981    0.000
##    .RMA06             1.627    0.158   10.279    0.000
##    .RMA07             0.846    0.094    8.980    0.000
##    .RMA08             0.885    0.098    9.035    0.000
##    .RMA09             1.090    0.115    9.496    0.000
##    .RMA10             1.258    0.131    9.590    0.000
##    .RCO02             0.980    0.105    9.375    0.000
##    .RCO03             0.482    0.057    8.379    0.000
##    .RCO04             0.463    0.052    8.967    0.000
##    .RCO05             0.385    0.045    8.536    0.000
##    .RCO06             0.493    0.055    8.915    0.000
##    .RCO07             0.516    0.057    8.987    0.000
##     desapego          1.925    0.275    7.002    0.000
##     relajacion        1.625    0.207    7.845    0.000
##     maestria          1.978    0.317    6.241    0.000
##     control           2.660    0.335    7.930    0.000
lavaanPlot(sem3, coef = TRUE, cov = TRUE)

Parte 2, Energía recuperada

modelo4 <- '# Regresiones
            # Variables Latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08

            # Varianzas y Covarianzas
            # Intercepto
            '

sem4 <- sem(modelo4, data = df3)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(sem4, coef = TRUE, cov = TRUE)

Parte 3, Engagement

modelo5 <- '
  # Regresiones
  # Variables Latentes

  # Parte 1
  desapego   =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
  relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
  maestria   =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
  control    =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07

  # Parte 2
  energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08

  # Parte 3
  vigor       =~ EVI01 + EVI02 + EVI03
  dedicacion  =~ EDE01 + EDE02 + EDE03
  absorcion   =~ EAB01 + EAB02

  # Varianzas y Covarianzas
  # Intercepto
'
sem_5 <- sem(modelo5, data=df3)
summary(sem_5)
## lavaan 0.6-19 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       120
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2313.998
##   Degrees of freedom                               961
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.081   14.854    0.000
##     RPD03             1.144    0.085   13.492    0.000
##     RPD05             1.311    0.085   15.353    0.000
##     RPD06             1.080    0.088   12.240    0.000
##     RPD07             1.226    0.085   14.502    0.000
##     RPD08             1.157    0.086   13.445    0.000
##     RPD09             1.313    0.086   15.205    0.000
##     RPD10             1.341    0.088   15.302    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.282    0.000
##     RRE04             1.022    0.058   17.629    0.000
##     RRE05             1.054    0.056   18.736    0.000
##     RRE06             1.245    0.074   16.864    0.000
##     RRE07             1.119    0.071   15.754    0.000
##     RRE10             0.817    0.067   12.165    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.179    0.089   13.273    0.000
##     RMA05             1.140    0.087   13.046    0.000
##     RMA06             0.648    0.075    8.634    0.000
##     RMA07             1.103    0.085   13.056    0.000
##     RMA08             1.110    0.085   12.997    0.000
##     RMA09             1.031    0.084   12.268    0.000
##     RMA10             1.057    0.088   12.052    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.120    0.000
##     RCO04             0.794    0.044   18.058    0.000
##     RCO05             0.815    0.043   18.910    0.000
##     RCO06             0.838    0.045   18.422    0.000
##     RCO07             0.837    0.046   18.200    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.552    0.000
##     EN04              0.996    0.043   22.929    0.000
##     EN05              0.994    0.042   23.900    0.000
##     EN06              0.981    0.041   23.931    0.000
##     EN07              1.044    0.045   23.110    0.000
##     EN08              1.031    0.042   24.444    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.863    0.000
##     EVI03             0.991    0.048   20.695    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912    0.034   26.456    0.000
##     EDE03             0.576    0.037   15.716    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.655    0.052   12.563    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.155    0.164    7.022    0.000
##     maestria          0.697    0.156    4.477    0.000
##     control           1.321    0.201    6.588    0.000
##     energia           1.387    0.204    6.785    0.000
##     vigor             1.051    0.186    5.635    0.000
##     dedicacion        1.096    0.205    5.336    0.000
##     absorcion         0.860    0.181    4.755    0.000
##   relajacion ~~                                       
##     maestria          0.970    0.159    6.093    0.000
##     control           1.482    0.195    7.609    0.000
##     energia           1.372    0.188    7.290    0.000
##     vigor             0.957    0.168    5.690    0.000
##     dedicacion        1.038    0.187    5.553    0.000
##     absorcion         0.766    0.164    4.682    0.000
##   maestria ~~                                         
##     control           1.222    0.202    6.050    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.008    0.191    5.290    0.000
##     dedicacion        0.990    0.207    4.779    0.000
##     absorcion         0.883    0.187    4.725    0.000
##   control ~~                                          
##     energia           1.988    0.252    7.875    0.000
##     vigor             1.492    0.225    6.641    0.000
##     dedicacion        1.539    0.246    6.248    0.000
##     absorcion         1.221    0.216    5.647    0.000
##   energia ~~                                          
##     vigor             2.046    0.249    8.225    0.000
##     dedicacion        1.854    0.260    7.142    0.000
##     absorcion         1.382    0.223    6.189    0.000
##   vigor ~~                                            
##     dedicacion        2.770    0.294    9.434    0.000
##     absorcion         2.191    0.251    8.744    0.000
##   dedicacion ~~                                       
##     absorcion         2.797    0.296    9.442    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.162    0.119    9.778    0.000
##    .RPD02             0.997    0.108    9.236    0.000
##    .RPD03             1.422    0.146    9.722    0.000
##    .RPD05             0.976    0.109    8.953    0.000
##    .RPD06             1.836    0.184    9.983    0.000
##    .RPD07             1.173    0.125    9.393    0.000
##    .RPD08             1.475    0.151    9.734    0.000
##    .RPD09             1.038    0.115    9.046    0.000
##    .RPD10             1.043    0.116    8.986    0.000
##    .RRE02             0.626    0.067    9.275    0.000
##    .RRE03             0.647    0.072    8.994    0.000
##    .RRE04             0.490    0.055    8.840    0.000
##    .RRE05             0.377    0.046    8.179    0.000
##    .RRE06             0.888    0.097    9.156    0.000
##    .RRE07             0.941    0.099    9.492    0.000
##    .RRE10             1.131    0.112   10.089    0.000
##    .RMA02             1.742    0.175    9.938    0.000
##    .RMA03             1.500    0.156    9.600    0.000
##    .RMA04             0.854    0.097    8.786    0.000
##    .RMA05             0.907    0.101    9.001    0.000
##    .RMA06             1.624    0.158   10.280    0.000
##    .RMA07             0.846    0.094    8.993    0.000
##    .RMA08             0.883    0.098    9.042    0.000
##    .RMA09             1.086    0.114    9.498    0.000
##    .RMA10             1.255    0.131    9.594    0.000
##    .RCO02             0.981    0.104    9.399    0.000
##    .RCO03             0.496    0.058    8.496    0.000
##    .RCO04             0.470    0.052    9.028    0.000
##    .RCO05             0.392    0.046    8.620    0.000
##    .RCO06             0.475    0.054    8.870    0.000
##    .RCO07             0.503    0.056    8.969    0.000
##    .EN01              0.689    0.071    9.662    0.000
##    .EN02              0.439    0.048    9.070    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.944    0.000
##    .EN06              0.368    0.041    8.933    0.000
##    .EN07              0.502    0.054    9.211    0.000
##    .EN08              0.358    0.041    8.714    0.000
##    .EVI01             0.176    0.036    4.910    0.000
##    .EVI02             0.244    0.038    6.341    0.000
##    .EVI03             1.219    0.124    9.824    0.000
##    .EDE01             0.387    0.064    6.037    0.000
##    .EDE02             0.494    0.065    7.606    0.000
##    .EDE03             0.848    0.086    9.917    0.000
##    .EAB01             0.376    0.122    3.075    0.002
##    .EAB02             1.150    0.120    9.588    0.000
##     desapego          1.931    0.275    7.018    0.000
##     relajacion        1.624    0.207    7.838    0.000
##     maestria          1.979    0.317    6.243    0.000
##     control           2.659    0.335    7.930    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.860    0.289    9.903    0.000
##     dedicacion        3.466    0.367    9.448    0.000
##     absorcion         2.697    0.312    8.655    0.000
lavaanPlot(model=sem_5, coefs=TRUE, covs=TRUE)

Conclusiones

En conclusión las experiencias de recuperación pueden entenderse como un conjunto de 4 dominios: desapego, relajación, maestría y control.
Cada uno de ellos contribuye significativamente en la variable latente.

La energía recuperada es unidimensional, y sus variables tambien contribuyen significativamente.

De manera global, tanto la enegiía como como las experiencias de recuperación contribuyen significativamente al engagement laboral, destacando la relación de la dedicación con la absorción del trabajo.

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIg0KYXV0aG9yOiAiTHVpcyBGZWxpcGUgRnJhbmNvIFJvZHLDrWd1ZXoiDQpkYXRlOiAiMjAyNS0wOC0xOCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiB5ZXRpDQotLS0NCiFbXShodHRwczovL2kucGluaW1nLmNvbS9vcmlnaW5hbHMvNTAvYzkvMjIvNTBjOTIyMWU0YzgxYmM2Njc1ZjE0MDJhMTMzYWI2Y2QuZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IFRlb3LDrWEgPC9zcGFuPiANCg0KTG9zICoqTW9kZWxvcyBkZSBFY3VhY2lvbmVzIEVzdHJ1Y3R1cmFsZXMgKFNFTSkqKiBlcyB1bmEgdMOpY25pY2EgZGUgYW7DoWxpc2lzIA0KZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIA0KcmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMsIHJlYWxpemFyIGNvbXBhcmFjaW9uZXMgZW50cmUgZSBpbnRyYWdydXBvcywgeSANCnZhbGlkYXIgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLiAgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOm5hdnk7Ij4gRWplbXBsbyAxLiBFc3R1ZGlvIGRlIEhvbHppbmdlciB5IFN3aW5lZm9yZCA8L3NwYW4+ICANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm5hdnk7Ij4gQ29udGV4dG8gPC9zcGFuPg0KSG9semluZ2VyIHkgU3dpbmVmb3JkIHJlYWxpemFyb24gZXjDoW1lbmVzIGRlIGhhYmlsaWRhZCBtZW50YWwgYSBhZG9sZXNjZW50ZXMgZGUgNyB5IDggZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpLg0KDQpzZXg6IEfDqW5lcm8gKDE9bWFsZSwgMj1mZW1hbGUpICANCngxOiBQZXJjZXBjacOzbiB2aXN1YWwgIA0KeDI6IEp1ZWdvIGRlIGN1Ym9zICANCngzOiBKdWVnbyBjb24gcGFzdGlsbGFzL2VzcGFjaWFsICANCng0OiBDb21wcmVuc2nDs24gZGUgcMOhcnJhZm9zICANCng1OiBDb21wbGV0YXIgb3JhY2lvbmVzICANCng2OiBTaWduaWZpY2FkbyBkZSBwYWxhYnJhcyAgDQp4NzogU3VtYXMgYWNlbGVyYWRhcyAgDQp4ODogQ29udGVvIGFjZWxlcmFkbyBkZSBwdW50b3MgIA0KeDk6IERpc2NyaW1pbmFjacOzbiBhY2VsZXJhZGEgZGUgbWF5w7pzY3VsYXMgcmVjdGFzIHkgY3VydmFzICANCg0KU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEsIHgyLHgzKSwgeSB0ZXh0dWFsICh4NCwgeDUgeSB4NikgeSB2ZWxvY2lkYWQgKHg3LCB4OCB5IHg5KSBkZSBsb3MgYWRvbGVzY2VudGUuDQoNClByw6FjdGljYToNCiogdmVyYmlncmFjaWE6IGVqZW1wbG8NCiogZXggbGlicmlzOiBzZWxsbyBwYXJhbGlicm9zDQoqIGFxdWVsYXJyZTogcmV1bmnDs24gZGUgYnJ1amFzDQoqIEJlb2RvOiBib3JyYWNobw0KKiBDYXJwZSBkaWVtOiB2aXZlIG1pZW50cmFzIHB1ZWRhcw0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IFByw6FjdGljYSBDbGFzZSA8L3NwYW4+DQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkobGF2YWFuKQ0KbGlicmFyeShsYXZhYW5QbG90KQ0KYGBgDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6bmF2eTsiPiBUaXBvcyBkZSBGw7NybXVsYXMgPC9zcGFuPg0KMS4gUmVncmVzacOzbiAofikgVmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYXMuDQoyLiBWYXJpYWJsZXMgTGF0ZW50ZXMgKD1+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlLg0KMy4gUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgKH5+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYXMNCiAgICAodmFyaWFuemEgZW50cmUgc8OtIG1pc21hLCBjb3ZhcmlhbnphIGVudHJlIG90cmFzKS4NCm1vZGVsbzEgPC0gJw0KICAjIFJlZ3Jlc2lvbmVzDQogICMgVmFyaWFibGVzIExhdGVudGVzDQogIHZpc3VhbCA9fiB4MSArIHgyICsgeDMNCiAgdGV4dHVhbCA9fiB4NCArIHg1ICsgeDYNCiAgdmVsb2NpZGFkID1+IHg3ICsgeDggKyB4OQ0KICAjIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzDQogICMgSW50ZXJjZXB0bw0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6bmF2eTsiPiBHZW5lcmFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7cn0NCmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5DQpzdW1tYXJ5KGRmMSkNCnN0cihkZjEpDQptb2RlbG8xIDwtICcjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgdmlzdWFsID1+IHgxICsgeDIgKyB4Mw0KICAgICAgICAgICAgdGV4dHVhbCA9fiB4NCArIHg1ICsgeDYNCiAgICAgICAgICAgIHZlbG9jaWRhZCA9fiB4NyArIHg4ICsgeDkNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgY292YXJpYW56YXMNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICAgJw0Kc2VtMSA8LSBzZW0obW9kZWxvMSwgZGF0YT1kZjEpDQpzdW1tYXJ5KHNlbTEpDQpsYXZhYW5QbG90KHNlbTEsIGNvZWY9VFJVRSwgY292PVRSVUUpDQoNCmBgYA0KRW4gY29uY2x1c2nDs24sIGxhIGludGVsaWdlbmNpYSBkZSBsb3MgYWRvbGVzY2VudGVzIGVzdMOhIGNvbXB1ZXN0YSBwb3IgdW4gZ3J1cG8gZGUgZmFjdG9yZXMgcXVlIG5vIGNvbmR1Y2VuIGEgdW4gc29sbyBuw7ptZXJvLg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IEFjdGl2aWRhZC4gRGVtb2NyYWNpYSBQb2zDrXRpY2EgZSBJbmR1c3RyaWFsaXphY2nDs24gPC9zcGFuPg0KDQojIyAjIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IENvbnRleHRvIDwvc3Bhbj4NCkxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgZGVtb2NyYWNpYSBwb2zDrXRpY2EgZSBpbmR1c3RyaWFsaXphY2nDs24gZW4gcGHDrXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuDQoNCkxhIHRhYmxhIGluY2x1eWUgbG9zIHNpZ3VpZW50ZXMgZGF0b3M6DQoNCnkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MCAgDQp5MjogTGliZXJ0YWQgZGUgbGEgb3Bvc2ljacOzbiBwb2zDrXRpY2EgZW4gMTk2MCAgDQp5MzogSW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIGVuIDE5NjAgIA0KeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwICANCnk1OiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2NSAgDQp5NjogTGliZXJ0YWQgZGUgbGEgb3Bvc2ljacOzbiBwb2zDrXRpY2EgZW4gMTk2NSAgDQp5NzogSW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIGVuIDE5NjUgIA0KeTg6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTY1ICANCngxOiBQSUIgcGVyIGPDoXBpdGEgZW4gMTk2MCAgDQp4MjogQ29uc3VtbyBkZSBlbmVyZ8OtYSBpbmFuaW1hZGEgcGVyIGPDoXBpdGEgZW4gMTk2MCAgDQp4MzogUG9yY2VudGFqZSBkZSBsYSBmdWVyemEgbGFib3JhbCBlbiBsYSBpbmR1c3RyaWEgZW4gMTk2MCAgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IEdlbmVyYXIgZWwgbW9kZWxvIDwvc3Bhbj4NCmBgYHtyfQ0KZGYyIDwtIFBvbGl0aWNhbERlbW9jcmFjeQ0KbW9kZWxvMiA8LSAnDQogICMgVmFyaWFibGVzIExhdGVudGVzDQogIGRlbW9jcmFjaWExOTYwID1+IHkxICsgeTIgKyB5MyArIHk0DQogIGRlbW9jcmFjaWExOTY1ID1+IHk1ICsgeTYgKyB5NyArIHk4DQogIGluZHVzdHJpYWxpemFjaW9uMTk2MCA9fiB4MSArIHgyICsgeDMNCiAgDQogICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgZGVtb2NyYWNpYTE5NjUgfn4gZGVtb2NyYWNpYTE5NjANCiAgZGVtb2NyYWNpYTE5NjAgfn4gaW5kdXN0cmlhbGl6YWNpb24xOTYwDQogIGRlbW9jcmFjaWExOTY1IH5+IGluZHVzdHJpYWxpemFjaW9uMTk2MA0KICANCiAgIyBJbnRlcmNlcHRvDQonDQoNCiMgRXN0aW1hY2nDs24gZGVsIG1vZGVsbw0Kc2VtMiA8LSBzZW0obW9kZWxvMiwgZGF0YT1kZjIpDQoNCiMgUmVzdW1lbg0Kc3VtbWFyeShzZW0yKQ0KDQojIEdyw6FmaWNvIGRlbCBtb2RlbG8NCmxhdmFhblBsb3Qoc2VtMiwgY29lZnM9VFJVRSwgY292cz1UUlVFKQ0KYGBgDQoNCkVuIENvbmNsdXNpw7NuLCBsYSBpbmR1c3RyaWFsaXphY2lvbiBpbXB1bHNhIGxhIGRlbW9jcmFjaWEsIHkgdW5hIGRlbW9jcmFjaWEgZXN0YWJsZSB0aWVuZGUgYSBzZWd1aXIgZXN0YWJsZS4NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6bmF2eTsiPiBBY3RpdmlkYWQgMy4gQmllbmVzdGFyIGRlIGNvbGFib3JhZG9yZXMgPC9zcGFuPg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6bmF2eTsiPiBDb250ZXh0byA8L3NwYW4+DQpVbm8gZGUgbG9zIHJldG9zIG3DoXMgaW1wb3J0YW50ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjdGFyIGRpcmVjdGFtZW50ZSBlbiBlbCBkZXNlbXBlw7FvIHkgZWwgbG9ncm8gZGUgbG9zIG9iamV0aXZvcy4gDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IFBhcnRlIDEsIEV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuIDwvc3Bhbj4NCmBgYHtyfQ0KbGlicmFyeShyZWFkeGwpDQpkZjMgPC0gcmVhZF9leGNlbCgifi9EYXRvc19TRU1fRW5nLnhsc3giKQ0KbW9kZWxvMyA8LSAnDQogICMgUmVncmVzaW9uZXMNCiAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgZGVzYXBlZ28gICA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICBtYWVzdHJpYSAgID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICBjb250cm9sICAgID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KDQogICMgVmFyaWFuemFzIHkgY292YXJpYW56YXMNCiAgIyBJbnRlcmNlcHRvDQonDQoNCnNlbTMgPC0gc2VtKG1vZGVsbzMsIGRhdGEgPSBkZjMpDQpzdW1tYXJ5KHNlbTMpDQpsYXZhYW5QbG90KHNlbTMsIGNvZWYgPSBUUlVFLCBjb3YgPSBUUlVFKQ0KYGBgDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6bmF2eTsiPiBQYXJ0ZSAyLCBFbmVyZ8OtYSByZWN1cGVyYWRhIDwvc3Bhbj4NCg0KYGBge3J9DQptb2RlbG80IDwtICcjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQoNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICAgJw0KDQpzZW00IDwtIHNlbShtb2RlbG80LCBkYXRhID0gZGYzKQ0Kc3VtbWFyeShzZW00KQ0KbGF2YWFuUGxvdChzZW00LCBjb2VmID0gVFJVRSwgY292ID0gVFJVRSkNCg0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpuYXZ5OyI+IFBhcnRlIDMsIEVuZ2FnZW1lbnQgPC9zcGFuPg0KYGBge3J9DQptb2RlbG81IDwtICcNCiAgIyBSZWdyZXNpb25lcw0KICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KDQogICMgUGFydGUgMQ0KICBkZXNhcGVnbyAgID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogIG1hZXN0cmlhICAgPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwDQogIGNvbnRyb2wgICAgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQoNCiAgIyBQYXJ0ZSAyDQogIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOA0KDQogICMgUGFydGUgMw0KICB2aWdvciAgICAgICA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgZGVkaWNhY2lvbiAgPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogIGFic29yY2lvbiAgID1+IEVBQjAxICsgRUFCMDINCg0KICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICMgSW50ZXJjZXB0bw0KJw0Kc2VtXzUgPC0gc2VtKG1vZGVsbzUsIGRhdGE9ZGYzKQ0Kc3VtbWFyeShzZW1fNSkNCmxhdmFhblBsb3QobW9kZWw9c2VtXzUsIGNvZWZzPVRSVUUsIGNvdnM9VFJVRSkNCmBgYA0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOnJlZDsiPiBDb25jbHVzaW9uZXMgPC9zcGFuPg0KDQpFbiBjb25jbHVzacOzbiBsYXMgZXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24gcHVlZGVuIGVudGVuZGVyc2UgY29tbyB1biBjb25qdW50byBkZSA0IGRvbWluaW9zOiBkZXNhcGVnbywgcmVsYWphY2nDs24sIG1hZXN0csOtYSB5IGNvbnRyb2wuICANCkNhZGEgdW5vIGRlIGVsbG9zIGNvbnRyaWJ1eWUgc2lnbmlmaWNhdGl2YW1lbnRlIGVuIGxhIHZhcmlhYmxlIGxhdGVudGUuICANCg0KTGEgZW5lcmfDrWEgcmVjdXBlcmFkYSBlcyB1bmlkaW1lbnNpb25hbCwgeSBzdXMgdmFyaWFibGVzIHRhbWJpZW4gY29udHJpYnV5ZW4gc2lnbmlmaWNhdGl2YW1lbnRlLg0KDQpEZSBtYW5lcmEgZ2xvYmFsLCB0YW50byBsYSBlbmVnacOtYSBjb21vIGNvbW8gbGFzIGV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuIGNvbnRyaWJ1eWVuIHNpZ25pZmljYXRpdmFtZW50ZSBhbCBlbmdhZ2VtZW50IGxhYm9yYWwsIGRlc3RhY2FuZG8gbGEgcmVsYWNpw7NuIGRlIGxhIGRlZGljYWNpw7NuIGNvbiBsYSBhYnNvcmNpw7NuIGRlbCB0cmFiYWpvLg0KDQoNCg==