Teoria

Los Modelos de Ecuaciones Estructurales SEM es una tecnica de analisis de estadistica multivariada, que permite analizar patrones complejos de relacion entre variables, realizar comparaciones entre e intragrupos y validad modelos teoricos y empiricos.

Ejemplo 1. Estudio de Holzinger y Swineford 1939

contexto

Holdzinger y Swineford realizaron examenes de habilidad mental a adolescentes de 7to y 8vo de dos escuerlas (Pesteur y Grand-White)

La base de datos esta incluida como paqueteria en R, e incluye las siguentes columnas:

  • sex: genero (1=male, 2=female)
  • x1: percepcion visual
  • x2: juego de cubos
  • x3: Juego con pastillas/espacial
  • x4: compresion de parrafos
  • x5: completar oraciones
  • x6: significado de palabras
  • x7: sumas aceleradas
  • x8: conteo acelerado de puntos
  • x9: Discriminacion acelerada de mayusculas rectas y curvas

Se busca Identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7, x8 y x9) de los adolescentes

Practica:

  • verbigracia: ejemplo
  • ex libris: Sello
  • aquelarre: reunion de brujas
  • beodo: borracho
  • carpe diem: aprovecha el dia

instalar paquetes y llamar Librerias

#install.packages("forecast")
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(plm)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::between() masks plm::between()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks plm::lag(), stats::lag()
## ✖ dplyr::lead()    masks plm::lead()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(WDI)
library(wbstats)
library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
library(readxl)
# install.packages("lavaanPlot")
library(lavaanPlot)
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
#install.packages("readxl")
library('readxl')

Generar el Modelo

  1. Regresion (~) Variable que depende de otra.
  2. Variables Latentes (=~) No se observar, se infiere.
  3. Varianza y covarianzas (~~) Relaciones entre variables latentes y observadas (Varianza entre si misma, covarianza entre otras).
  4. Intercepto (~1) valor esperado cuando las demas variables son cero.

modelo1 <- ’ # Regresiones # varibales Latentes # Varianza y Covarianzas # Intercepto ## Generar el Modelo

df1 <- HolzingerSwineford1939
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- ' # Regresiones
              # varibales Latentes
              visual=~ x1 + x2 + x3
              textual=~ x4 + x5 + x6
              velocidad =~ x7 + x8 + x9
              # Varianza y Covarianzas 
              visual~~ textual
              textual ~~velocidad
              velocidad~~ visual
              # Intercepto
              '
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
##   visual ~~                                           
##     velocidad         0.262    0.056    4.660    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(sem1, coef=TRUE, cov= TRUE)

Conclusion: l modelo factorial confirma la existencia de tres factores latentes (visual, textual y velocidad) bien definidos, con cargas significativas en sus indicadores. Además, los factores están moderadamente correlacionados entre sí. Aunque la prueba Chi-cuadrado indica que el ajuste global no es perfecto (p < 0.001), los resultados muestran que la estructura propuesta es válida y los constructos están sólidamente representados por sus variables.

La inteligencia de los adolescentes esta compueta por un grupo de factcores que no se reduce a un solo numbero.

Ejercicio 2. Democracia Politica e Industrializacion

Contexto

La base de datos contiene distintas mediocoines sobre la democracia politica e industralizacion en paises de desarrollo durante 1960 y 1965.

La tabla incluye los siguentes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposicion politicas en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre libertad de prensa en 1965
  • y6: Libertad de la oposicion politicas en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per capita en 1960
  • x2: Consumo de energia inamiada per capita en 1960
  • x3: porcentaje de la fuerza laboral en la industria en 1960

Generar el Modelo

df2 <- PoliticalDemocracy
summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...
modelo2 <- '# Variables Latentes
              dem60 =~ y1 + y2 + y3 + y4
              dem65 =~ y5 + y6 + y7 + y8
              ind60 =~ x1 + x2 + x3
              # Vanrianza y Covarianza
              dem65 ~~ dem60
              dem60 ~~ ind60
              dem65 ~~ ind60
     '
sem2 <- sem(modelo2, data=df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dem60 =~                                            
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   dem65 =~                                            
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
##   ind60 =~                                            
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dem60 ~~                                            
##     dem65             4.487    0.911    4.924    0.000
##     ind60             0.660    0.206    3.202    0.001
##   dem65 ~~                                            
##     ind60             0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     dem60             4.845    1.088    4.453    0.000
##     dem65             4.345    1.051    4.134    0.000
##     ind60             0.448    0.087    5.169    0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)

En conclusion, la industralizacion impulsa la democracia, y una democracia estable , tiende a seguir estandolo.

Actividad 3. Bienestar

Uno de los retos mas importnates de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impacar directamente en el desempeno y el logro de los objetivos.

Parte 1. Experiencias de Recuperacion

df3<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo3 <- '# Regresiones
              #Variables Latentes
              desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10 
              relajacion =~ + RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RPD10 
              maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
              control =~ RCO02 +  RCO03 +  RCO04 +  RCO05 +  RCO06 +  RCO07
              # Vanrianza y Covarianza
              # Intercepto
     '
sem3 <- sem(modelo3, data=df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 57 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        67
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1170.372
##   Degrees of freedom                               398
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.081   14.875    0.000
##     RPD03             1.144    0.085   13.462    0.000
##     RPD05             1.310    0.086   15.322    0.000
##     RPD06             1.083    0.088   12.266    0.000
##     RPD07             1.229    0.085   14.527    0.000
##     RPD08             1.160    0.086   13.472    0.000
##     RPD09             1.310    0.087   15.141    0.000
##     RPD10             1.284    0.099   12.973    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.112    0.064   17.340    0.000
##     RRE04             1.023    0.057   18.013    0.000
##     RRE05             1.053    0.055   19.107    0.000
##     RRE06             1.233    0.073   16.887    0.000
##     RRE07             1.103    0.071   15.616    0.000
##     RPD10             0.093    0.080    1.162    0.245
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.061    0.000
##     RMA04             1.179    0.089   13.269    0.000
##     RMA05             1.141    0.087   13.050    0.000
##     RMA06             0.647    0.075    8.617    0.000
##     RMA07             1.104    0.085   13.052    0.000
##     RMA08             1.109    0.085   12.987    0.000
##     RMA09             1.030    0.084   12.249    0.000
##     RMA10             1.056    0.088   12.036    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.228    0.000
##     RCO04             0.795    0.044   18.126    0.000
##     RCO05             0.817    0.043   18.987    0.000
##     RCO06             0.834    0.046   18.249    0.000
##     RCO07             0.834    0.046   18.078    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.141    0.164    6.952    0.000
##     maestria          0.690    0.155    4.441    0.000
##     control           1.312    0.200    6.556    0.000
##   relajacion ~~                                       
##     maestria          0.962    0.159    6.045    0.000
##     control           1.482    0.195    7.597    0.000
##   maestria ~~                                         
##     control           1.221    0.202    6.047    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.163    0.119    9.763    0.000
##    .RPD02             0.987    0.107    9.189    0.000
##    .RPD03             1.427    0.147    9.710    0.000
##    .RPD05             0.980    0.110    8.928    0.000
##    .RPD06             1.825    0.183    9.965    0.000
##    .RPD07             1.161    0.124    9.351    0.000
##    .RPD08             1.463    0.151    9.707    0.000
##    .RPD09             1.052    0.116    9.042    0.000
##    .RPD10             1.049    0.116    9.049    0.000
##    .RRE02             0.608    0.066    9.170    0.000
##    .RRE03             0.659    0.073    8.971    0.000
##    .RRE04             0.468    0.054    8.660    0.000
##    .RRE05             0.360    0.045    7.942    0.000
##    .RRE06             0.907    0.099    9.142    0.000
##    .RRE07             0.979    0.103    9.513    0.000
##    .RMA02             1.742    0.175    9.933    0.000
##    .RMA03             1.489    0.155    9.581    0.000
##    .RMA04             0.853    0.097    8.770    0.000
##    .RMA05             0.904    0.101    8.980    0.000
##    .RMA06             1.627    0.158   10.279    0.000
##    .RMA07             0.845    0.094    8.978    0.000
##    .RMA08             0.885    0.098    9.034    0.000
##    .RMA09             1.091    0.115    9.496    0.000
##    .RMA10             1.259    0.131    9.591    0.000
##    .RCO02             0.980    0.105    9.374    0.000
##    .RCO03             0.482    0.058    8.381    0.000
##    .RCO04             0.463    0.052    8.967    0.000
##    .RCO05             0.385    0.045    8.533    0.000
##    .RCO06             0.493    0.055    8.914    0.000
##    .RCO07             0.516    0.057    8.987    0.000
##     desapego          1.929    0.275    7.012    0.000
##     relajacion        1.641    0.208    7.901    0.000
##     maestria          1.978    0.317    6.242    0.000
##     control           2.660    0.335    7.930    0.000
lavaanPlot(sem3, coef=TRUE, cov=TRUE)

Parte 2. Energias Recuperadas

df4<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo4 <- '# Regresiones
              #Variables Latentes
              energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
              # Intercepto
     '
sem4 <- sem(modelo4, data=df4)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(sem4, coef=TRUE, cov=TRUE)

Parte 3. Engagement laboral

df5<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo5 <- '# Regresiones
              #Variables Latentes
              # Parte 1
              desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10 
              relajacion =~ + RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RPD10 
              maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
              control =~ RCO02 +  RCO03 +  RCO04 +  RCO05 +  RCO06 +  RCO07
              # Parte 2
              #Variables Latentes
              energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
              
              # Parte 3
              vigor =~ EVI01 + EVI02 + EVI03
              dedicacion =~ EDE01 + EDE02 + EDE03
              absorcion =~ EAB01 + EAB02
              # Vanrianza y Covarianza
              # Intercepto
     '
sem5<- sem(modelo5, data=df5)
summary(sem5)
## lavaan 0.6-19 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       119
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2248.536
##   Degrees of freedom                               916
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.081   14.943    0.000
##     RPD03             1.145    0.085   13.533    0.000
##     RPD05             1.311    0.085   15.406    0.000
##     RPD06             1.077    0.088   12.223    0.000
##     RPD07             1.228    0.084   14.579    0.000
##     RPD08             1.154    0.086   13.429    0.000
##     RPD09             1.308    0.086   15.169    0.000
##     RPD10             1.278    0.099   12.964    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.114    0.064   17.367    0.000
##     RRE04             1.021    0.057   17.924    0.000
##     RRE05             1.053    0.055   19.060    0.000
##     RRE06             1.235    0.073   16.906    0.000
##     RRE07             1.106    0.071   15.689    0.000
##     RPD10             0.096    0.080    1.190    0.234
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.179    0.089   13.274    0.000
##     RMA05             1.140    0.087   13.047    0.000
##     RMA06             0.648    0.075    8.634    0.000
##     RMA07             1.104    0.085   13.057    0.000
##     RMA08             1.110    0.085   12.999    0.000
##     RMA09             1.030    0.084   12.267    0.000
##     RMA10             1.057    0.088   12.050    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.116    0.000
##     RCO04             0.794    0.044   18.057    0.000
##     RCO05             0.815    0.043   18.915    0.000
##     RCO06             0.838    0.045   18.425    0.000
##     RCO07             0.837    0.046   18.201    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.555    0.000
##     EN04              0.996    0.043   22.930    0.000
##     EN05              0.994    0.042   23.903    0.000
##     EN06              0.981    0.041   23.932    0.000
##     EN07              1.044    0.045   23.113    0.000
##     EN08              1.031    0.042   24.446    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.865    0.000
##     EVI03             0.991    0.048   20.692    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912    0.034   26.453    0.000
##     EDE03             0.576    0.037   15.712    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.052   12.563    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego ~~                                         
##     relajacion        1.141    0.164    6.951    0.000
##     maestria          0.691    0.156    4.441    0.000
##     control           1.314    0.200    6.560    0.000
##     energia           1.383    0.204    6.770    0.000
##     vigor             1.048    0.187    5.620    0.000
##     dedicacion        1.092    0.205    5.315    0.000
##     absorcion         0.857    0.181    4.734    0.000
##   relajacion ~~                                       
##     maestria          0.964    0.159    6.053    0.000
##     control           1.481    0.195    7.596    0.000
##     energia           1.364    0.188    7.248    0.000
##     vigor             0.958    0.169    5.674    0.000
##     dedicacion        1.035    0.188    5.516    0.000
##     absorcion         0.763    0.164    4.647    0.000
##   maestria ~~                                         
##     control           1.222    0.202    6.050    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.008    0.191    5.290    0.000
##     dedicacion        0.990    0.207    4.780    0.000
##     absorcion         0.883    0.187    4.725    0.000
##   control ~~                                          
##     energia           1.988    0.252    7.876    0.000
##     vigor             1.492    0.225    6.641    0.000
##     dedicacion        1.539    0.246    6.250    0.000
##     absorcion         1.221    0.216    5.647    0.000
##   energia ~~                                          
##     vigor             2.046    0.249    8.224    0.000
##     dedicacion        1.855    0.260    7.143    0.000
##     absorcion         1.382    0.223    6.189    0.000
##   vigor ~~                                            
##     dedicacion        2.771    0.294    9.435    0.000
##     absorcion         2.191    0.251    8.744    0.000
##   dedicacion ~~                                       
##     absorcion         2.797    0.296    9.442    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.158    0.119    9.763    0.000
##    .RPD02             0.979    0.107    9.184    0.000
##    .RPD03             1.415    0.146    9.705    0.000
##    .RPD05             0.967    0.108    8.912    0.000
##    .RPD06             1.844    0.185    9.980    0.000
##    .RPD07             1.156    0.124    9.353    0.000
##    .RPD08             1.484    0.152    9.732    0.000
##    .RPD09             1.056    0.117    9.060    0.000
##    .RPD10             1.058    0.117    9.082    0.000
##    .RRE02             0.609    0.066    9.174    0.000
##    .RRE03             0.654    0.073    8.957    0.000
##    .RRE04             0.476    0.055    8.702    0.000
##    .RRE05             0.364    0.046    7.973    0.000
##    .RRE06             0.903    0.099    9.134    0.000
##    .RRE07             0.967    0.102    9.494    0.000
##    .RMA02             1.742    0.175    9.938    0.000
##    .RMA03             1.501    0.156    9.600    0.000
##    .RMA04             0.854    0.097    8.784    0.000
##    .RMA05             0.907    0.101    9.000    0.000
##    .RMA06             1.625    0.158   10.280    0.000
##    .RMA07             0.845    0.094    8.991    0.000
##    .RMA08             0.882    0.098    9.040    0.000
##    .RMA09             1.087    0.114    9.499    0.000
##    .RMA10             1.256    0.131    9.595    0.000
##    .RCO02             0.981    0.104    9.398    0.000
##    .RCO03             0.497    0.058    8.499    0.000
##    .RCO04             0.470    0.052    9.028    0.000
##    .RCO05             0.392    0.045    8.617    0.000
##    .RCO06             0.475    0.054    8.869    0.000
##    .RCO07             0.503    0.056    8.969    0.000
##    .EN01              0.689    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.070    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.944    0.000
##    .EN06              0.368    0.041    8.933    0.000
##    .EN07              0.502    0.054    9.210    0.000
##    .EN08              0.358    0.041    8.714    0.000
##    .EVI01             0.176    0.036    4.912    0.000
##    .EVI02             0.243    0.038    6.334    0.000
##    .EVI03             1.219    0.124    9.824    0.000
##    .EDE01             0.386    0.064    6.020    0.000
##    .EDE02             0.495    0.065    7.613    0.000
##    .EDE03             0.849    0.086    9.917    0.000
##    .EAB01             0.376    0.122    3.076    0.002
##    .EAB02             1.150    0.120    9.587    0.000
##     desapego          1.935    0.275    7.028    0.000
##     relajacion        1.640    0.208    7.898    0.000
##     maestria          1.979    0.317    6.244    0.000
##     control           2.660    0.335    7.930    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.859    0.289    9.902    0.000
##     dedicacion        3.467    0.367    9.451    0.000
##     absorcion         2.697    0.312    8.654    0.000
lavaanPlot(sem5, coef=TRUE, cov=TRUE)

Conclusiones

En conclusion las experiencias de recuperacion pueden entenderse como un conjunto de 4 dominios: desapego, relajacion, maestria y control. Cada uno de ellos contribuye significativamente en la variable latente.

La energia es unidemensional, y sus variables tambien contribuyen significativamente.

De manera global, tanto la enegeria como las experiencias de recuperacion contribuyen significativamente en el engament laboral, destacando la relacion de la dedicacion con la absorcion del trabajo.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDMiCmF1dGhvcjogIlNlYmFzdGlhbiBFc3Bpbm96YSBBMDA4MzM3MDQiCmRhdGU6ICIyMDI1LTA4LTE4IgpvdXRwdXQ6IAogaHRtbF9kb2N1bWVudDogCiAgdG9jOiBUUlVFCiAgdG9jX2Zsb2F0OiBUUlVFCiAgY29kZV9kb3dubG9hZDogVFJVRQogIHRoZW1lOiB5ZXRpCi0tLQoKIVtdKGh0dHBzOi8vaS5waW5pbWcuY29tL29yaWdpbmFscy9kNi9iMy85Yy9kNmIzOWNmNGQ2YzdmYmVlNzI0YmQ1NTQyYTdkY2ZjYS5naWYpIAoKIyA8c3BhbiBzdHlsZT0nY29sb3I6cmVkOyc+ICBUZW9yaWEgIDwvc3Bhbj4KCkxvcyAqKk1vZGVsb3MgZGUgRWN1YWNpb25lcyBFc3RydWN0dXJhbGVzIFNFTSoqIGVzIHVuYSB0ZWNuaWNhIGRlIGFuYWxpc2lzIGRlIGVzdGFkaXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uIGVudHJlIHZhcmlhYmxlcywgcmVhbGl6YXIgY29tcGFyYWNpb25lcyBlbnRyZSBlIGludHJhZ3J1cG9zIHkgdmFsaWRhZCBtb2RlbG9zIHRlb3JpY29zICB5IGVtcGlyaWNvcy4gCgoKIyA8c3BhbiBzdHlsZT0nY29sb3I6cmVkOyc+ICBFamVtcGxvIDEuIEVzdHVkaW8gZGUgSG9semluZ2VyIHkgU3dpbmVmb3JkIDE5MzkgPC9zcGFuPgoKIyMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgY29udGV4dG8gPC9zcGFuPgoKSG9sZHppbmdlciB5IFN3aW5lZm9yZCByZWFsaXphcm9uIGV4YW1lbmVzIGRlIGhhYmlsaWRhZCBtZW50YWwgYSBhZG9sZXNjZW50ZXMgZGUgN3RvIHkgOHZvIGRlIGRvcyBlc2N1ZXJsYXMgKFBlc3RldXIgeSBHcmFuZC1XaGl0ZSkKCkxhIGJhc2UgZGUgZGF0b3MgZXN0YSBpbmNsdWlkYSBjb21vIHBhcXVldGVyaWEgZW4gUiwgZSBpbmNsdXllIGxhcyBzaWd1ZW50ZXMgY29sdW1uYXM6IAoKKiBzZXg6IGdlbmVybyAoMT1tYWxlLCAyPWZlbWFsZSkKKiB4MTogcGVyY2VwY2lvbiB2aXN1YWwKKiB4MjoganVlZ28gZGUgY3Vib3MKKiB4MzogSnVlZ28gY29uIHBhc3RpbGxhcy9lc3BhY2lhbAoqIHg0OiBjb21wcmVzaW9uIGRlIHBhcnJhZm9zCiogeDU6IGNvbXBsZXRhciBvcmFjaW9uZXMgCiogeDY6IHNpZ25pZmljYWRvIGRlIHBhbGFicmFzIAoqIHg3OiBzdW1hcyBhY2VsZXJhZGFzCiogeDg6IGNvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zCiogeDk6IERpc2NyaW1pbmFjaW9uIGFjZWxlcmFkYSBkZSBtYXl1c2N1bGFzIHJlY3RhcyB5IGN1cnZhcwoKU2UgYnVzY2EgSWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEseDIseDMpLCB0ZXh0dWFsICh4NCx4NSx4NikgeSB2ZWxvY2lkYWQgKHg3LCB4OCB5IHg5KSBkZSBsb3MgYWRvbGVzY2VudGVzCgpQcmFjdGljYTogCgoqIHZlcmJpZ3JhY2lhOiBlamVtcGxvCiogZXggbGlicmlzOiBTZWxsbwoqIGFxdWVsYXJyZTogcmV1bmlvbiBkZSBicnVqYXMKKiBiZW9kbzogYm9ycmFjaG8KKiBjYXJwZSBkaWVtOiBhcHJvdmVjaGEgZWwgZGlhCgojIyA8c3BhbiBzdHlsZT0nY29sb3I6cmVkOyc+ICBpbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBMaWJyZXJpYXMgIDwvc3Bhbj4KYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJmb3JlY2FzdCIpCmxpYnJhcnkoZm9yZWNhc3QpCmxpYnJhcnkocGxtKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShXREkpCmxpYnJhcnkod2JzdGF0cykKbGlicmFyeShncGxvdHMpCmxpYnJhcnkocmVhZHhsKQojIGluc3RhbGwucGFja2FnZXMoImxhdmFhblBsb3QiKQpsaWJyYXJ5KGxhdmFhblBsb3QpCmxpYnJhcnkobGF2YWFuKQojaW5zdGFsbC5wYWNrYWdlcygicmVhZHhsIikKbGlicmFyeSgncmVhZHhsJykKYGBgCiMjIDxzcGFuIHN0eWxlPSdjb2xvcjpyZWQ7Jz4gIEdlbmVyYXIgZWwgTW9kZWxvICA8L3NwYW4+CjEuIFJlZ3Jlc2lvbiAofikgVmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYS4KMi4gVmFyaWFibGVzIExhdGVudGVzICg9fikgTm8gc2Ugb2JzZXJ2YXIsIHNlIGluZmllcmUuCjMuIFZhcmlhbnphIHkgY292YXJpYW56YXMgKH5+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYXMgKFZhcmlhbnphIGVudHJlIHNpIG1pc21hLCBjb3ZhcmlhbnphIGVudHJlIG90cmFzKS4gCjQuIEludGVyY2VwdG8gKH4xKSB2YWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbWFzIHZhcmlhYmxlcyBzb24gY2Vyby4KCm1vZGVsbzEgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAgIyB2YXJpYmFsZXMgTGF0ZW50ZXMKICAgICAgICAgICAgICAjIFZhcmlhbnphIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgICAjIEludGVyY2VwdG8KIyMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgR2VuZXJhciBlbCBNb2RlbG8gIDwvc3Bhbj4KYGBge3J9CmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5CnN1bW1hcnkoZGYxKQpzdHIoZGYxKQptb2RlbG8xIDwtICcgIyBSZWdyZXNpb25lcwogICAgICAgICAgICAgICMgdmFyaWJhbGVzIExhdGVudGVzCiAgICAgICAgICAgICAgdmlzdWFsPX4geDEgKyB4MiArIHgzCiAgICAgICAgICAgICAgdGV4dHVhbD1+IHg0ICsgeDUgKyB4NgogICAgICAgICAgICAgIHZlbG9jaWRhZCA9fiB4NyArIHg4ICsgeDkKICAgICAgICAgICAgICAjIFZhcmlhbnphIHkgQ292YXJpYW56YXMgCiAgICAgICAgICAgICAgdmlzdWFsfn4gdGV4dHVhbAogICAgICAgICAgICAgIHRleHR1YWwgfn52ZWxvY2lkYWQKICAgICAgICAgICAgICB2ZWxvY2lkYWR+fiB2aXN1YWwKICAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgICAnCnNlbTEgPC0gc2VtKG1vZGVsbzEsIGRhdGE9ZGYxKQpzdW1tYXJ5KHNlbTEpCmxhdmFhblBsb3Qoc2VtMSwgY29lZj1UUlVFLCBjb3Y9IFRSVUUpCiAgICAgICAgICAgICAgICAgICAgCmBgYAoKQ29uY2x1c2lvbjogbCBtb2RlbG8gZmFjdG9yaWFsIGNvbmZpcm1hIGxhIGV4aXN0ZW5jaWEgZGUgdHJlcyBmYWN0b3JlcyBsYXRlbnRlcyAodmlzdWFsLCB0ZXh0dWFsIHkgdmVsb2NpZGFkKSBiaWVuIGRlZmluaWRvcywgY29uIGNhcmdhcyBzaWduaWZpY2F0aXZhcyBlbiBzdXMgaW5kaWNhZG9yZXMuIEFkZW3DoXMsIGxvcyBmYWN0b3JlcyBlc3TDoW4gbW9kZXJhZGFtZW50ZSBjb3JyZWxhY2lvbmFkb3MgZW50cmUgc8OtLiBBdW5xdWUgbGEgcHJ1ZWJhIENoaS1jdWFkcmFkbyBpbmRpY2EgcXVlIGVsIGFqdXN0ZSBnbG9iYWwgbm8gZXMgcGVyZmVjdG8gKHAgPCAwLjAwMSksIGxvcyByZXN1bHRhZG9zIG11ZXN0cmFuIHF1ZSBsYSBlc3RydWN0dXJhIHByb3B1ZXN0YSBlcyB2w6FsaWRhIHkgbG9zIGNvbnN0cnVjdG9zIGVzdMOhbiBzw7NsaWRhbWVudGUgcmVwcmVzZW50YWRvcyBwb3Igc3VzIHZhcmlhYmxlcy4KCkxhIGludGVsaWdlbmNpYSBkZSBsb3MgYWRvbGVzY2VudGVzIGVzdGEgY29tcHVldGEgcG9yIHVuIGdydXBvIGRlIGZhY3Rjb3JlcyBxdWUgbm8gc2UgcmVkdWNlIGEgdW4gc29sbyBudW1iZXJvLiAKCiMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgRWplcmNpY2lvIDIuIERlbW9jcmFjaWEgUG9saXRpY2EgZSBJbmR1c3RyaWFsaXphY2lvbiA8L3NwYW4+CgojIyA8c3BhbiBzdHlsZT0nY29sb3I6cmVkOyc+ICBDb250ZXh0byA8L3NwYW4+CgpMYSBiYXNlIGRlIGRhdG9zIGNvbnRpZW5lIGRpc3RpbnRhcyBtZWRpb2NvaW5lcyBzb2JyZSBsYSBkZW1vY3JhY2lhIHBvbGl0aWNhIGUgaW5kdXN0cmFsaXphY2lvbiBlbiBwYWlzZXMgZGUgZGVzYXJyb2xsbyBkdXJhbnRlIDE5NjAgeSAxOTY1LiAKCkxhIHRhYmxhIGluY2x1eWUgbG9zIHNpZ3VlbnRlcyBkYXRvczogCgoqIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MAoqIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpb24gcG9saXRpY2FzIGVuIDE5NjAKKiB5MzogSW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIGVuIDE5NjAKKiB5NDogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjAKKiB5NTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjUKKiB5NjogTGliZXJ0YWQgZGUgbGEgb3Bvc2ljaW9uIHBvbGl0aWNhcyBlbiAxOTY1CiogeTc6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTY1CiogeTg6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTY1CiogeDE6IFBJQiBwZXIgY2FwaXRhIGVuIDE5NjAKKiB4MjogQ29uc3VtbyBkZSBlbmVyZ2lhIGluYW1pYWRhIHBlciBjYXBpdGEgZW4gMTk2MAoqIHgzOiBwb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSAgbGFib3JhbCBlbiBsYSBpbmR1c3RyaWEgZW4gMTk2MAoKIyMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgR2VuZXJhciBlbCBNb2RlbG8gPC9zcGFuPgoKYGBge3J9CmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kKc3VtbWFyeShkZjIpCnN0cihkZjIpCm1vZGVsbzIgPC0gJyMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgICAgZGVtNjAgPX4geTEgKyB5MiArIHkzICsgeTQKICAgICAgICAgICAgICBkZW02NSA9fiB5NSArIHk2ICsgeTcgKyB5OAogICAgICAgICAgICAgIGluZDYwID1+IHgxICsgeDIgKyB4MwogICAgICAgICAgICAgICMgVmFucmlhbnphIHkgQ292YXJpYW56YQogICAgICAgICAgICAgIGRlbTY1IH5+IGRlbTYwCiAgICAgICAgICAgICAgZGVtNjAgfn4gaW5kNjAKICAgICAgICAgICAgICBkZW02NSB+fiBpbmQ2MAogICAgICcKc2VtMiA8LSBzZW0obW9kZWxvMiwgZGF0YT1kZjIpCnN1bW1hcnkoc2VtMikKbGF2YWFuUGxvdChzZW0yLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQogICAgICAgIApgYGAKRW4gY29uY2x1c2lvbiwgbGEgaW5kdXN0cmFsaXphY2lvbiBpbXB1bHNhIGxhIGRlbW9jcmFjaWEsIHkgdW5hIGRlbW9jcmFjaWEgZXN0YWJsZSAsIHRpZW5kZSBhIHNlZ3VpciBlc3RhbmRvbG8uIAoKIyA8c3BhbiBzdHlsZT0nY29sb3I6cmVkOyc+ICBBY3RpdmlkYWQgMy4gQmllbmVzdGFyIDwvc3Bhbj4KVW5vIGRlIGxvcyByZXRvcyBtYXMgaW1wb3J0bmF0ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjYXIgZGlyZWN0YW1lbnRlIGVuIGVsIGRlc2VtcGVubyB5IGVsIGxvZ3JvIGRlIGxvcyBvYmpldGl2b3MuIAoKIyMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgUGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIFJlY3VwZXJhY2lvbiA8L3NwYW4+CmBgYHtyfQpkZjM8LSByZWFkX2V4Y2VsKCIvVXNlcnMvc2ViYXN0aWFuZXNwaS9Eb3dubG9hZHMvRGF0b3NfU0VNX0VuZy54bHN4IikKbW9kZWxvMyA8LSAnIyBSZWdyZXNpb25lcwogICAgICAgICAgICAgICNWYXJpYWJsZXMgTGF0ZW50ZXMKICAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTAgCiAgICAgICAgICAgICAgcmVsYWphY2lvbiA9fiArIFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJQRDEwIAogICAgICAgICAgICAgIG1hZXN0cmlhID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMAogICAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyAgUkNPMDMgKyAgUkNPMDQgKyAgUkNPMDUgKyAgUkNPMDYgKyAgUkNPMDcKICAgICAgICAgICAgICAjIFZhbnJpYW56YSB5IENvdmFyaWFuemEKICAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAnCnNlbTMgPC0gc2VtKG1vZGVsbzMsIGRhdGE9ZGYzKQpzdW1tYXJ5KHNlbTMpCmxhdmFhblBsb3Qoc2VtMywgY29lZj1UUlVFLCBjb3Y9VFJVRSkKICAgICAgICAKYGBgCgoKIyMgPHNwYW4gc3R5bGU9J2NvbG9yOnJlZDsnPiAgUGFydGUgMi4gRW5lcmdpYXMgUmVjdXBlcmFkYXMgPC9zcGFuPgoKYGBge3J9CmRmNDwtIHJlYWRfZXhjZWwoIi9Vc2Vycy9zZWJhc3RpYW5lc3BpL0Rvd25sb2Fkcy9EYXRvc19TRU1fRW5nLnhsc3giKQptb2RlbG80IDwtICcjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAgI1ZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOAogICAgICAgICAgICAgICMgSW50ZXJjZXB0bwogICAgICcKc2VtNCA8LSBzZW0obW9kZWxvNCwgZGF0YT1kZjQpCnN1bW1hcnkoc2VtNCkKbGF2YWFuUGxvdChzZW00LCBjb2VmPVRSVUUsIGNvdj1UUlVFKQogICAgICAgIApgYGAKCiMjIDxzcGFuIHN0eWxlPSdjb2xvcjpyZWQ7Jz4gIFBhcnRlIDMuIEVuZ2FnZW1lbnQgbGFib3JhbCAgPC9zcGFuPgpgYGB7cn0KZGY1PC0gcmVhZF9leGNlbCgiL1VzZXJzL3NlYmFzdGlhbmVzcGkvRG93bmxvYWRzL0RhdG9zX1NFTV9FbmcueGxzeCIpCm1vZGVsbzUgPC0gJyMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICAjVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgICAgIyBQYXJ0ZSAxCiAgICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwIAogICAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gKyBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUEQxMCAKICAgICAgICAgICAgICBtYWVzdHJpYSA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAKICAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgIFJDTzAzICsgIFJDTzA0ICsgIFJDTzA1ICsgIFJDTzA2ICsgIFJDTzA3CiAgICAgICAgICAgICAgIyBQYXJ0ZSAyCiAgICAgICAgICAgICAgI1ZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOAogICAgICAgICAgICAgIAogICAgICAgICAgICAgICMgUGFydGUgMwogICAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMwogICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzCiAgICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDIKICAgICAgICAgICAgICAjIFZhbnJpYW56YSB5IENvdmFyaWFuemEKICAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAnCnNlbTU8LSBzZW0obW9kZWxvNSwgZGF0YT1kZjUpCnN1bW1hcnkoc2VtNSkKbGF2YWFuUGxvdChzZW01LCBjb2VmPVRSVUUsIGNvdj1UUlVFKQogICAgICAgIApgYGAKCiMjIDxzcGFuIHN0eWxlPSdjb2xvcjpyZWQ7Jz4gIENvbmNsdXNpb25lcyA8L3NwYW4+CgpFbiBjb25jbHVzaW9uIGxhcyBleHBlcmllbmNpYXMgZGUgcmVjdXBlcmFjaW9uIHB1ZWRlbiBlbnRlbmRlcnNlIGNvbW8gdW4gY29uanVudG8gZGUgNCBkb21pbmlvczogZGVzYXBlZ28sIHJlbGFqYWNpb24sIG1hZXN0cmlhIHkgY29udHJvbC4gQ2FkYSB1bm8gZGUgZWxsb3MgY29udHJpYnV5ZSBzaWduaWZpY2F0aXZhbWVudGUgZW4gbGEgdmFyaWFibGUgbGF0ZW50ZS4gCgpMYSBlbmVyZ2lhIGVzIHVuaWRlbWVuc2lvbmFsLCB5IHN1cyB2YXJpYWJsZXMgdGFtYmllbiBjb250cmlidXllbiBzaWduaWZpY2F0aXZhbWVudGUuIAoKRGUgbWFuZXJhIGdsb2JhbCwgdGFudG8gbGEgZW5lZ2VyaWEgY29tbyBsYXMgZXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2lvbiBjb250cmlidXllbiBzaWduaWZpY2F0aXZhbWVudGUgZW4gZWwgZW5nYW1lbnQgbGFib3JhbCwgZGVzdGFjYW5kbyBsYSByZWxhY2lvbiBkZSBsYSBkZWRpY2FjaW9uIGNvbiBsYSBhYnNvcmNpb24gZGVsIHRyYWJham8uIAoKCgoKCgoKCgoKCgo=