Los Modelos de Ecuaciones Estructurales SEM es una tecnica de analisis de estadistica multivariada, que permite analizar patrones complejos de relacion entre variables, realizar comparaciones entre e intragrupos y validad modelos teoricos y empiricos.
Holdzinger y Swineford realizaron examenes de habilidad mental a adolescentes de 7to y 8vo de dos escuerlas (Pesteur y Grand-White)
La base de datos esta incluida como paqueteria en R, e incluye las siguentes columnas:
Se busca Identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7, x8 y x9) de los adolescentes
Practica:
#install.packages("forecast")
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(plm)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::between() masks plm::between()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks plm::lag(), stats::lag()
## ✖ dplyr::lead() masks plm::lead()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(WDI)
library(wbstats)
library(gplots)
##
## Attaching package: 'gplots'
##
## The following object is masked from 'package:stats':
##
## lowess
library(readxl)
# install.packages("lavaanPlot")
library(lavaanPlot)
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
#install.packages("readxl")
library('readxl')
modelo1 <- ’ # Regresiones # varibales Latentes # Varianza y Covarianzas # Intercepto ## Generar el Modelo
df1 <- HolzingerSwineford1939
summary(df1)
## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##
str(df1)
## 'data.frame': 301 obs. of 15 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 11 ...
## $ sex : int 1 2 2 1 2 2 1 2 2 2 ...
## $ ageyr : int 13 13 13 13 12 14 12 12 13 12 ...
## $ agemo : int 1 7 1 2 2 1 1 2 0 5 ...
## $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ grade : int 7 7 7 7 7 7 7 7 7 7 ...
## $ x1 : num 3.33 5.33 4.5 5.33 4.83 ...
## $ x2 : num 7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
## $ x3 : num 0.375 2.125 1.875 3 0.875 ...
## $ x4 : num 2.33 1.67 1 2.67 2.67 ...
## $ x5 : num 5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
## $ x6 : num 1.286 1.286 0.429 2.429 2.571 ...
## $ x7 : num 3.39 3.78 3.26 3 3.7 ...
## $ x8 : num 5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
## $ x9 : num 6.36 7.92 4.42 4.86 5.92 ...
modelo1 <- ' # Regresiones
# varibales Latentes
visual=~ x1 + x2 + x3
textual=~ x4 + x5 + x6
velocidad =~ x7 + x8 + x9
# Varianza y Covarianzas
visual~~ textual
textual ~~velocidad
velocidad~~ visual
# Intercepto
'
sem1 <- sem(modelo1, data=df1)
summary(sem1)
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
## visual ~~
## velocidad 0.262 0.056 4.660 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
lavaanPlot(sem1, coef=TRUE, cov= TRUE)
Conclusion: l modelo factorial confirma la existencia de tres factores latentes (visual, textual y velocidad) bien definidos, con cargas significativas en sus indicadores. Además, los factores están moderadamente correlacionados entre sí. Aunque la prueba Chi-cuadrado indica que el ajuste global no es perfecto (p < 0.001), los resultados muestran que la estructura propuesta es válida y los constructos están sólidamente representados por sus variables.
La inteligencia de los adolescentes esta compueta por un grupo de factcores que no se reduce a un solo numbero.
La base de datos contiene distintas mediocoines sobre la democracia politica e industralizacion en paises de desarrollo durante 1960 y 1965.
La tabla incluye los siguentes datos:
df2 <- PoliticalDemocracy
summary(df2)
## y1 y2 y3 y4
## Min. : 1.250 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 2.900 1st Qu.: 0.000 1st Qu.: 3.767 1st Qu.: 1.581
## Median : 5.400 Median : 3.333 Median : 6.667 Median : 3.333
## Mean : 5.465 Mean : 4.256 Mean : 6.563 Mean : 4.453
## 3rd Qu.: 7.500 3rd Qu.: 8.283 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## y5 y6 y7 y8
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 3.692 1st Qu.: 0.000 1st Qu.: 3.478 1st Qu.: 1.301
## Median : 5.000 Median : 2.233 Median : 6.667 Median : 3.333
## Mean : 5.136 Mean : 2.978 Mean : 6.196 Mean : 4.043
## 3rd Qu.: 7.500 3rd Qu.: 4.207 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## x1 x2 x3
## Min. :3.784 Min. :1.386 Min. :1.002
## 1st Qu.:4.477 1st Qu.:3.663 1st Qu.:2.300
## Median :5.075 Median :4.963 Median :3.568
## Mean :5.054 Mean :4.792 Mean :3.558
## 3rd Qu.:5.515 3rd Qu.:5.830 3rd Qu.:4.523
## Max. :6.737 Max. :7.872 Max. :6.425
str(df2)
## 'data.frame': 75 obs. of 11 variables:
## $ y1: num 2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
## $ y2: num 0 0 8.8 8.8 3.33 ...
## $ y3: num 3.33 3.33 10 10 10 ...
## $ y4: num 0 0 9.2 9.2 6.67 ...
## $ y5: num 1.25 6.25 8.75 8.91 7.5 ...
## $ y6: num 0 1.1 8.09 8.13 3.33 ...
## $ y7: num 3.73 6.67 10 10 10 ...
## $ y8: num 3.333 0.737 8.212 4.615 6.667 ...
## $ x1: num 4.44 5.38 5.96 6.29 5.86 ...
## $ x2: num 3.64 5.06 6.26 7.57 6.82 ...
## $ x3: num 2.56 3.57 5.22 6.27 4.57 ...
modelo2 <- '# Variables Latentes
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
ind60 =~ x1 + x2 + x3
# Vanrianza y Covarianza
dem65 ~~ dem60
dem60 ~~ ind60
dem65 ~~ ind60
'
sem2 <- sem(modelo2, data=df2)
summary(sem2)
## lavaan 0.6-19 ended normally after 47 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 25
##
## Number of observations 75
##
## Model Test User Model:
##
## Test statistic 72.462
## Degrees of freedom 41
## P-value (Chi-square) 0.002
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## dem60 =~
## y1 1.000
## y2 1.354 0.175 7.755 0.000
## y3 1.044 0.150 6.961 0.000
## y4 1.300 0.138 9.412 0.000
## dem65 =~
## y5 1.000
## y6 1.258 0.164 7.651 0.000
## y7 1.282 0.158 8.137 0.000
## y8 1.310 0.154 8.529 0.000
## ind60 =~
## x1 1.000
## x2 2.182 0.139 15.714 0.000
## x3 1.819 0.152 11.956 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## dem60 ~~
## dem65 4.487 0.911 4.924 0.000
## ind60 0.660 0.206 3.202 0.001
## dem65 ~~
## ind60 0.774 0.208 3.715 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .y1 1.942 0.395 4.910 0.000
## .y2 6.490 1.185 5.479 0.000
## .y3 5.340 0.943 5.662 0.000
## .y4 2.887 0.610 4.731 0.000
## .y5 2.390 0.447 5.351 0.000
## .y6 4.343 0.796 5.456 0.000
## .y7 3.510 0.668 5.252 0.000
## .y8 2.940 0.586 5.019 0.000
## .x1 0.082 0.020 4.180 0.000
## .x2 0.118 0.070 1.689 0.091
## .x3 0.467 0.090 5.174 0.000
## dem60 4.845 1.088 4.453 0.000
## dem65 4.345 1.051 4.134 0.000
## ind60 0.448 0.087 5.169 0.000
lavaanPlot(sem2, coef=TRUE, cov=TRUE)
En conclusion, la industralizacion impulsa la democracia, y una democracia estable , tiende a seguir estandolo.
Uno de los retos mas importnates de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impacar directamente en el desempeno y el logro de los objetivos.
df3<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo3 <- '# Regresiones
#Variables Latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ + RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RPD10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
# Vanrianza y Covarianza
# Intercepto
'
sem3 <- sem(modelo3, data=df3)
summary(sem3)
## lavaan 0.6-19 ended normally after 57 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 67
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1170.372
## Degrees of freedom 398
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.206 0.081 14.875 0.000
## RPD03 1.144 0.085 13.462 0.000
## RPD05 1.310 0.086 15.322 0.000
## RPD06 1.083 0.088 12.266 0.000
## RPD07 1.229 0.085 14.527 0.000
## RPD08 1.160 0.086 13.472 0.000
## RPD09 1.310 0.087 15.141 0.000
## RPD10 1.284 0.099 12.973 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.112 0.064 17.340 0.000
## RRE04 1.023 0.057 18.013 0.000
## RRE05 1.053 0.055 19.107 0.000
## RRE06 1.233 0.073 16.887 0.000
## RRE07 1.103 0.071 15.616 0.000
## RPD10 0.093 0.080 1.162 0.245
## maestria =~
## RMA02 1.000
## RMA03 1.155 0.096 12.061 0.000
## RMA04 1.179 0.089 13.269 0.000
## RMA05 1.141 0.087 13.050 0.000
## RMA06 0.647 0.075 8.617 0.000
## RMA07 1.104 0.085 13.052 0.000
## RMA08 1.109 0.085 12.987 0.000
## RMA09 1.030 0.084 12.249 0.000
## RMA10 1.056 0.088 12.036 0.000
## control =~
## RCO02 1.000
## RCO03 0.948 0.049 19.228 0.000
## RCO04 0.795 0.044 18.126 0.000
## RCO05 0.817 0.043 18.987 0.000
## RCO06 0.834 0.046 18.249 0.000
## RCO07 0.834 0.046 18.078 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## desapego ~~
## relajacion 1.141 0.164 6.952 0.000
## maestria 0.690 0.155 4.441 0.000
## control 1.312 0.200 6.556 0.000
## relajacion ~~
## maestria 0.962 0.159 6.045 0.000
## control 1.482 0.195 7.597 0.000
## maestria ~~
## control 1.221 0.202 6.047 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.163 0.119 9.763 0.000
## .RPD02 0.987 0.107 9.189 0.000
## .RPD03 1.427 0.147 9.710 0.000
## .RPD05 0.980 0.110 8.928 0.000
## .RPD06 1.825 0.183 9.965 0.000
## .RPD07 1.161 0.124 9.351 0.000
## .RPD08 1.463 0.151 9.707 0.000
## .RPD09 1.052 0.116 9.042 0.000
## .RPD10 1.049 0.116 9.049 0.000
## .RRE02 0.608 0.066 9.170 0.000
## .RRE03 0.659 0.073 8.971 0.000
## .RRE04 0.468 0.054 8.660 0.000
## .RRE05 0.360 0.045 7.942 0.000
## .RRE06 0.907 0.099 9.142 0.000
## .RRE07 0.979 0.103 9.513 0.000
## .RMA02 1.742 0.175 9.933 0.000
## .RMA03 1.489 0.155 9.581 0.000
## .RMA04 0.853 0.097 8.770 0.000
## .RMA05 0.904 0.101 8.980 0.000
## .RMA06 1.627 0.158 10.279 0.000
## .RMA07 0.845 0.094 8.978 0.000
## .RMA08 0.885 0.098 9.034 0.000
## .RMA09 1.091 0.115 9.496 0.000
## .RMA10 1.259 0.131 9.591 0.000
## .RCO02 0.980 0.105 9.374 0.000
## .RCO03 0.482 0.058 8.381 0.000
## .RCO04 0.463 0.052 8.967 0.000
## .RCO05 0.385 0.045 8.533 0.000
## .RCO06 0.493 0.055 8.914 0.000
## .RCO07 0.516 0.057 8.987 0.000
## desapego 1.929 0.275 7.012 0.000
## relajacion 1.641 0.208 7.901 0.000
## maestria 1.978 0.317 6.242 0.000
## control 2.660 0.335 7.930 0.000
lavaanPlot(sem3, coef=TRUE, cov=TRUE)
df4<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo4 <- '# Regresiones
#Variables Latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Intercepto
'
sem4 <- sem(modelo4, data=df4)
summary(sem4)
## lavaan 0.6-19 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.029 0.044 23.192 0.000
## EN04 0.999 0.044 22.583 0.000
## EN05 0.999 0.042 23.649 0.000
## EN06 0.986 0.042 23.722 0.000
## EN07 1.049 0.046 22.856 0.000
## EN08 1.036 0.043 24.173 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .EN01 0.711 0.074 9.651 0.000
## .EN02 0.444 0.049 9.012 0.000
## .EN04 0.481 0.052 9.214 0.000
## .EN05 0.375 0.042 8.830 0.000
## .EN06 0.359 0.041 8.798 0.000
## .EN07 0.499 0.055 9.129 0.000
## .EN08 0.353 0.041 8.580 0.000
## energia 2.801 0.327 8.565 0.000
lavaanPlot(sem4, coef=TRUE, cov=TRUE)
df5<- read_excel("/Users/sebastianespi/Downloads/Datos_SEM_Eng.xlsx")
modelo5 <- '# Regresiones
#Variables Latentes
# Parte 1
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ + RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RPD10
maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
# Parte 2
#Variables Latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Parte 3
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorcion =~ EAB01 + EAB02
# Vanrianza y Covarianza
# Intercepto
'
sem5<- sem(modelo5, data=df5)
summary(sem5)
## lavaan 0.6-19 ended normally after 103 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 119
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2248.536
## Degrees of freedom 916
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.206 0.081 14.943 0.000
## RPD03 1.145 0.085 13.533 0.000
## RPD05 1.311 0.085 15.406 0.000
## RPD06 1.077 0.088 12.223 0.000
## RPD07 1.228 0.084 14.579 0.000
## RPD08 1.154 0.086 13.429 0.000
## RPD09 1.308 0.086 15.169 0.000
## RPD10 1.278 0.099 12.964 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.114 0.064 17.367 0.000
## RRE04 1.021 0.057 17.924 0.000
## RRE05 1.053 0.055 19.060 0.000
## RRE06 1.235 0.073 16.906 0.000
## RRE07 1.106 0.071 15.689 0.000
## RPD10 0.096 0.080 1.190 0.234
## maestria =~
## RMA02 1.000
## RMA03 1.152 0.096 12.038 0.000
## RMA04 1.179 0.089 13.274 0.000
## RMA05 1.140 0.087 13.047 0.000
## RMA06 0.648 0.075 8.634 0.000
## RMA07 1.104 0.085 13.057 0.000
## RMA08 1.110 0.085 12.999 0.000
## RMA09 1.030 0.084 12.267 0.000
## RMA10 1.057 0.088 12.050 0.000
## control =~
## RCO02 1.000
## RCO03 0.945 0.049 19.116 0.000
## RCO04 0.794 0.044 18.057 0.000
## RCO05 0.815 0.043 18.915 0.000
## RCO06 0.838 0.045 18.425 0.000
## RCO07 0.837 0.046 18.201 0.000
## energia =~
## EN01 1.000
## EN02 1.026 0.044 23.555 0.000
## EN04 0.996 0.043 22.930 0.000
## EN05 0.994 0.042 23.903 0.000
## EN06 0.981 0.041 23.932 0.000
## EN07 1.044 0.045 23.113 0.000
## EN08 1.031 0.042 24.446 0.000
## vigor =~
## EVI01 1.000
## EVI02 0.978 0.027 35.865 0.000
## EVI03 0.991 0.048 20.692 0.000
## dedicacion =~
## EDE01 1.000
## EDE02 0.912 0.034 26.453 0.000
## EDE03 0.576 0.037 15.712 0.000
## absorcion =~
## EAB01 1.000
## EAB02 0.656 0.052 12.563 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## desapego ~~
## relajacion 1.141 0.164 6.951 0.000
## maestria 0.691 0.156 4.441 0.000
## control 1.314 0.200 6.560 0.000
## energia 1.383 0.204 6.770 0.000
## vigor 1.048 0.187 5.620 0.000
## dedicacion 1.092 0.205 5.315 0.000
## absorcion 0.857 0.181 4.734 0.000
## relajacion ~~
## maestria 0.964 0.159 6.053 0.000
## control 1.481 0.195 7.596 0.000
## energia 1.364 0.188 7.248 0.000
## vigor 0.958 0.169 5.674 0.000
## dedicacion 1.035 0.188 5.516 0.000
## absorcion 0.763 0.164 4.647 0.000
## maestria ~~
## control 1.222 0.202 6.050 0.000
## energia 1.326 0.209 6.355 0.000
## vigor 1.008 0.191 5.290 0.000
## dedicacion 0.990 0.207 4.780 0.000
## absorcion 0.883 0.187 4.725 0.000
## control ~~
## energia 1.988 0.252 7.876 0.000
## vigor 1.492 0.225 6.641 0.000
## dedicacion 1.539 0.246 6.250 0.000
## absorcion 1.221 0.216 5.647 0.000
## energia ~~
## vigor 2.046 0.249 8.224 0.000
## dedicacion 1.855 0.260 7.143 0.000
## absorcion 1.382 0.223 6.189 0.000
## vigor ~~
## dedicacion 2.771 0.294 9.435 0.000
## absorcion 2.191 0.251 8.744 0.000
## dedicacion ~~
## absorcion 2.797 0.296 9.442 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.158 0.119 9.763 0.000
## .RPD02 0.979 0.107 9.184 0.000
## .RPD03 1.415 0.146 9.705 0.000
## .RPD05 0.967 0.108 8.912 0.000
## .RPD06 1.844 0.185 9.980 0.000
## .RPD07 1.156 0.124 9.353 0.000
## .RPD08 1.484 0.152 9.732 0.000
## .RPD09 1.056 0.117 9.060 0.000
## .RPD10 1.058 0.117 9.082 0.000
## .RRE02 0.609 0.066 9.174 0.000
## .RRE03 0.654 0.073 8.957 0.000
## .RRE04 0.476 0.055 8.702 0.000
## .RRE05 0.364 0.046 7.973 0.000
## .RRE06 0.903 0.099 9.134 0.000
## .RRE07 0.967 0.102 9.494 0.000
## .RMA02 1.742 0.175 9.938 0.000
## .RMA03 1.501 0.156 9.600 0.000
## .RMA04 0.854 0.097 8.784 0.000
## .RMA05 0.907 0.101 9.000 0.000
## .RMA06 1.625 0.158 10.280 0.000
## .RMA07 0.845 0.094 8.991 0.000
## .RMA08 0.882 0.098 9.040 0.000
## .RMA09 1.087 0.114 9.499 0.000
## .RMA10 1.256 0.131 9.595 0.000
## .RCO02 0.981 0.104 9.398 0.000
## .RCO03 0.497 0.058 8.499 0.000
## .RCO04 0.470 0.052 9.028 0.000
## .RCO05 0.392 0.045 8.617 0.000
## .RCO06 0.475 0.054 8.869 0.000
## .RCO07 0.503 0.056 8.969 0.000
## .EN01 0.689 0.071 9.661 0.000
## .EN02 0.439 0.048 9.070 0.000
## .EN04 0.475 0.051 9.263 0.000
## .EN05 0.380 0.043 8.944 0.000
## .EN06 0.368 0.041 8.933 0.000
## .EN07 0.502 0.054 9.210 0.000
## .EN08 0.358 0.041 8.714 0.000
## .EVI01 0.176 0.036 4.912 0.000
## .EVI02 0.243 0.038 6.334 0.000
## .EVI03 1.219 0.124 9.824 0.000
## .EDE01 0.386 0.064 6.020 0.000
## .EDE02 0.495 0.065 7.613 0.000
## .EDE03 0.849 0.086 9.917 0.000
## .EAB01 0.376 0.122 3.076 0.002
## .EAB02 1.150 0.120 9.587 0.000
## desapego 1.935 0.275 7.028 0.000
## relajacion 1.640 0.208 7.898 0.000
## maestria 1.979 0.317 6.244 0.000
## control 2.660 0.335 7.930 0.000
## energia 2.823 0.327 8.623 0.000
## vigor 2.859 0.289 9.902 0.000
## dedicacion 3.467 0.367 9.451 0.000
## absorcion 2.697 0.312 8.654 0.000
lavaanPlot(sem5, coef=TRUE, cov=TRUE)
En conclusion las experiencias de recuperacion pueden entenderse como un conjunto de 4 dominios: desapego, relajacion, maestria y control. Cada uno de ellos contribuye significativamente en la variable latente.
La energia es unidemensional, y sus variables tambien contribuyen significativamente.
De manera global, tanto la enegeria como las experiencias de recuperacion contribuyen significativamente en el engament laboral, destacando la relacion de la dedicacion con la absorcion del trabajo.