Contexto

Estos datos son el resutado de un analisis quimico de vinos cultivados, de una región de Italia, pero dereivados de tres cultivares diferentes

El análisis determino las cantidades de 13 componemtes que se encuentran en cada uno de los 3 cultivares

Paso 1. Instalar paquetes y llamar librerías

# install.packages("cluster")  #Analisis de Agrupamiento
library(cluster)
# install.packages("ggplot2") #Graficar
library(ggplot2)
# install.packages("data.table") #Manejo de muchos datos
library(data.table)
# install.packages("factoextra") #Gráfica optimización de numeros cluster
library(factoextra)

Paso 2. Obtener los datos

# Paso 2. Obtener los datos
df1 <- read.csv("/Users/mariajoseflores/Downloads/wine.csv")

Paso 3. Entender los datos

# Paso 3. Entender los datos
summary(df1)
##     Alcohol        Malic_Acid         Ash         Ash_Alcanity  
##  Min.   :11.03   Min.   :0.740   Min.   :1.360   Min.   :10.60  
##  1st Qu.:12.36   1st Qu.:1.603   1st Qu.:2.210   1st Qu.:17.20  
##  Median :13.05   Median :1.865   Median :2.360   Median :19.50  
##  Mean   :13.00   Mean   :2.336   Mean   :2.367   Mean   :19.49  
##  3rd Qu.:13.68   3rd Qu.:3.083   3rd Qu.:2.558   3rd Qu.:21.50  
##  Max.   :14.83   Max.   :5.800   Max.   :3.230   Max.   :30.00  
##    Magnesium      Total_Phenols     Flavanoids    Nonflavanoid_Phenols
##  Min.   : 70.00   Min.   :0.980   Min.   :0.340   Min.   :0.1300      
##  1st Qu.: 88.00   1st Qu.:1.742   1st Qu.:1.205   1st Qu.:0.2700      
##  Median : 98.00   Median :2.355   Median :2.135   Median :0.3400      
##  Mean   : 99.74   Mean   :2.295   Mean   :2.029   Mean   :0.3619      
##  3rd Qu.:107.00   3rd Qu.:2.800   3rd Qu.:2.875   3rd Qu.:0.4375      
##  Max.   :162.00   Max.   :3.880   Max.   :5.080   Max.   :0.6600      
##  Proanthocyanins Color_Intensity       Hue             OD280      
##  Min.   :0.410   Min.   : 1.280   Min.   :0.4800   Min.   :1.270  
##  1st Qu.:1.250   1st Qu.: 3.220   1st Qu.:0.7825   1st Qu.:1.938  
##  Median :1.555   Median : 4.690   Median :0.9650   Median :2.780  
##  Mean   :1.591   Mean   : 5.058   Mean   :0.9574   Mean   :2.612  
##  3rd Qu.:1.950   3rd Qu.: 6.200   3rd Qu.:1.1200   3rd Qu.:3.170  
##  Max.   :3.580   Max.   :13.000   Max.   :1.7100   Max.   :4.000  
##     Proline      
##  Min.   : 278.0  
##  1st Qu.: 500.5  
##  Median : 673.5  
##  Mean   : 746.9  
##  3rd Qu.: 985.0  
##  Max.   :1680.0
str(df1)
## 'data.frame':    178 obs. of  13 variables:
##  $ Alcohol             : num  14.2 13.2 13.2 14.4 13.2 ...
##  $ Malic_Acid          : num  1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
##  $ Ash                 : num  2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
##  $ Ash_Alcanity        : num  15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
##  $ Magnesium           : int  127 100 101 113 118 112 96 121 97 98 ...
##  $ Total_Phenols       : num  2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
##  $ Flavanoids          : num  3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
##  $ Nonflavanoid_Phenols: num  0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
##  $ Proanthocyanins     : num  2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
##  $ Color_Intensity     : num  5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
##  $ Hue                 : num  1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
##  $ OD280               : num  3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
##  $ Proline             : int  1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

Paso 4. Escalar los datos

# Sólo si los datos no están en la misma escala.
datos_escalados <- scale(df1)

Paso 5. Determinar números de grupos

# Siempre es un valor inicial "cualquiera". Luego optimiza.
plot(datos_escalados)

grupos1 <- 3

Paso 6. Generar los grupos

clusters1 <- kmeans(datos_escalados, grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 51, 62, 65
## 
## Cluster means:
##      Alcohol Malic_Acid        Ash Ash_Alcanity   Magnesium Total_Phenols
## 1  0.1644436  0.8690954  0.1863726    0.5228924 -0.07526047   -0.97657548
## 2  0.8328826 -0.3029551  0.3636801   -0.6084749  0.57596208    0.88274724
## 3 -0.9234669 -0.3929331 -0.4931257    0.1701220 -0.49032869   -0.07576891
##    Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity        Hue
## 1 -1.21182921           0.72402116     -0.77751312       0.9388902 -1.1615122
## 2  0.97506900          -0.56050853      0.57865427       0.1705823  0.4726504
## 3  0.02075402          -0.03343924      0.05810161      -0.8993770  0.4605046
##        OD280    Proline
## 1 -1.2887761 -0.4059428
## 2  0.7770551  1.1220202
## 3  0.2700025 -0.7517257
## 
## Clustering vector:
##   [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2
##  [75] 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [112] 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 
## Within cluster sum of squares by cluster:
## [1] 326.3537 385.6983 558.6971
##  (between_SS / total_SS =  44.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Paso 7. Optimizar números los grupos

set.seed(123)
optimizacion <- clusGap(df1, FUN=kmeans, nstar= 1, K.max=10)
# El K.max normalmente es 10. en este ejercicio al ser 8 datos se dejó en 7
plot(optimizacion, xlab= "Número clusters k")

# Se selecciona como óptimo de clusters

Paso 8. Graficar los grupos

fviz_cluster(clusters1, data=datos_escalados)

# Paso 9. Agregar clusters a la base de dsatos

datos_escalados_clusters <- cbind(datos_escalados, clusters1$cluster)
head(datos_escalados_clusters)
##        Alcohol  Malic_Acid        Ash Ash_Alcanity  Magnesium Total_Phenols
## [1,] 1.5143408 -0.56066822  0.2313998   -1.1663032 1.90852151     0.8067217
## [2,] 0.2455968 -0.49800856 -0.8256672   -2.4838405 0.01809398     0.5670481
## [3,] 0.1963252  0.02117152  1.1062139   -0.2679823 0.08810981     0.8067217
## [4,] 1.6867914 -0.34583508  0.4865539   -0.8069748 0.92829983     2.4844372
## [5,] 0.2948684  0.22705328  1.8352256    0.4506745 1.27837900     0.8067217
## [6,] 1.4773871 -0.51591132  0.3043010   -1.2860793 0.85828399     1.5576991
##      Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity        Hue
## [1,]  1.0319081           -0.6577078       1.2214385       0.2510088  0.3611585
## [2,]  0.7315653           -0.8184106      -0.5431887      -0.2924962  0.4049085
## [3,]  1.2121137           -0.4970050       2.1299594       0.2682629  0.3174085
## [4,]  1.4623994           -0.9791134       1.0292513       1.1827317 -0.4263410
## [5,]  0.6614853            0.2261576       0.4002753      -0.3183774  0.3611585
## [6,]  1.3622851           -0.1755994       0.6623487       0.7298108  0.4049085
##          OD280     Proline  
## [1,] 1.8427215  1.01015939 2
## [2,] 1.1103172  0.96252635 2
## [3,] 0.7863692  1.39122370 2
## [4,] 1.1807407  2.32800680 2
## [5,] 0.4483365 -0.03776747 2
## [6,] 0.3356589  2.23274072 2

Paso 9. Agregar clusters a la base de dsatos

LS0tCnRpdGxlOiAiQ2x1c3RlcmluZyAtIFZpbm9zIgphdXRob3I6ICJNYXJpYSBKb3NlIEZsb3JlcyIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGRhcmtseQotLS0KCiFbXShodHRwczovL3MzLmFtYXpvbmF3cy5jb20vYXJjLXdvcmRwcmVzcy1jbGllbnQtdXBsb2Fkcy9pbmZvYmFlLXdwL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA1LzIwMTE0NzQyL3Zpbm9zLTQuanBnKSAKCgojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBDb250ZXh0byA8L3NwYW4+CkVzdG9zIGRhdG9zIHNvbiBlbCByZXN1dGFkbyBkZSB1biBhbmFsaXNpcyBxdWltaWNvIGRlIHZpbm9zIGN1bHRpdmFkb3MsIGRlIHVuYSByZWdpw7NuIGRlIEl0YWxpYSwgcGVybyBkZXJlaXZhZG9zIGRlIHRyZXMgY3VsdGl2YXJlcyBkaWZlcmVudGVzCgpFbCBhbsOhbGlzaXMgZGV0ZXJtaW5vIGxhcyBjYW50aWRhZGVzIGRlIDEzIGNvbXBvbmVtdGVzIHF1ZSBzZSBlbmN1ZW50cmFuIGVuIGNhZGEgdW5vIGRlIGxvcyAzIGN1bHRpdmFyZXMKCgojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDEuIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KIyBpbnN0YWxsLnBhY2thZ2VzKCJjbHVzdGVyIikgICNBbmFsaXNpcyBkZSBBZ3J1cGFtaWVudG8KbGlicmFyeShjbHVzdGVyKQojIGluc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAjR3JhZmljYXIKbGlicmFyeShnZ3Bsb3QyKQojIGluc3RhbGwucGFja2FnZXMoImRhdGEudGFibGUiKSAjTWFuZWpvIGRlIG11Y2hvcyBkYXRvcwpsaWJyYXJ5KGRhdGEudGFibGUpCiMgaW5zdGFsbC5wYWNrYWdlcygiZmFjdG9leHRyYSIpICNHcsOhZmljYSBvcHRpbWl6YWNpw7NuIGRlIG51bWVyb3MgY2x1c3RlcgpsaWJyYXJ5KGZhY3RvZXh0cmEpCgpgYGAKCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6cmVkOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgIDwvc3Bhbj4KYGBge3J9CiMgUGFzbyAyLiBPYnRlbmVyIGxvcyBkYXRvcwpkZjEgPC0gcmVhZC5jc3YoIi9Vc2Vycy9tYXJpYWpvc2VmbG9yZXMvRG93bmxvYWRzL3dpbmUuY3N2IikKCgpgYGAKIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpyZWQ7Ij4gUGFzbyAzLiBFbnRlbmRlciBsb3MgZGF0b3MgIDwvc3Bhbj4KYGBge3J9CiMgUGFzbyAzLiBFbnRlbmRlciBsb3MgZGF0b3MKc3VtbWFyeShkZjEpCnN0cihkZjEpCmBgYAoKIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpyZWQ7Ij4gUGFzbyA0LiBFc2NhbGFyIGxvcyBkYXRvcyAgPC9zcGFuPgpgYGB7cn0KIyBTw7NsbyBzaSBsb3MgZGF0b3Mgbm8gZXN0w6FuIGVuIGxhIG1pc21hIGVzY2FsYS4KZGF0b3NfZXNjYWxhZG9zIDwtIHNjYWxlKGRmMSkKYGBgCgojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDUuIERldGVybWluYXIgbsO6bWVyb3MgZGUgZ3J1cG9zIDwvc3Bhbj4KYGBge3J9CiMgU2llbXByZSBlcyB1biB2YWxvciBpbmljaWFsICJjdWFscXVpZXJhIi4gTHVlZ28gb3B0aW1pemEuCnBsb3QoZGF0b3NfZXNjYWxhZG9zKQpncnVwb3MxIDwtIDMKCmBgYAojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDYuIEdlbmVyYXIgbG9zIGdydXBvcyA8L3NwYW4+CmBgYHtyfQpjbHVzdGVyczEgPC0ga21lYW5zKGRhdG9zX2VzY2FsYWRvcywgZ3J1cG9zMSkKY2x1c3RlcnMxCmBgYAojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDcuIE9wdGltaXphciBuw7ptZXJvcyBsb3MgZ3J1cG9zIDwvc3Bhbj4KYGBge3J9CnNldC5zZWVkKDEyMykKb3B0aW1pemFjaW9uIDwtIGNsdXNHYXAoZGYxLCBGVU49a21lYW5zLCBuc3Rhcj0gMSwgSy5tYXg9MTApCiMgRWwgSy5tYXggbm9ybWFsbWVudGUgZXMgMTAuIGVuIGVzdGUgZWplcmNpY2lvIGFsIHNlciA4IGRhdG9zIHNlIGRlasOzIGVuIDcKcGxvdChvcHRpbWl6YWNpb24sIHhsYWI9ICJOw7ptZXJvIGNsdXN0ZXJzIGsiKQojIFNlIHNlbGVjY2lvbmEgY29tbyDDs3B0aW1vIGRlIGNsdXN0ZXJzCgpgYGAKCgojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDguIEdyYWZpY2FyIGxvcyBncnVwb3MgPC9zcGFuPgpgYGB7cn0KZnZpel9jbHVzdGVyKGNsdXN0ZXJzMSwgZGF0YT1kYXRvc19lc2NhbGFkb3MpCmBgYAojIDxzcGFuIHN0eWxlID0gImNvbG9yOnJlZDsiPiBQYXNvIDkuIEFncmVnYXIgY2x1c3RlcnMgYSBsYSBiYXNlIGRlIGRzYXRvcyA8L3NwYW4+CmBgYHtyfQpkYXRvc19lc2NhbGFkb3NfY2x1c3RlcnMgPC0gY2JpbmQoZGF0b3NfZXNjYWxhZG9zLCBjbHVzdGVyczEkY2x1c3RlcikKaGVhZChkYXRvc19lc2NhbGFkb3NfY2x1c3RlcnMpCmBgYAoKIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjpyZWQ7Ij4gUGFzbyA5LiBBZ3JlZ2FyIGNsdXN0ZXJzIGEgbGEgYmFzZSBkZSBkc2F0b3MgPC9zcGFuPgoK