Estos datos son el resultado de un análsis químico de vinos cultivados en la misma región de Italia, pero derivados de tres cultivares diferentes
El análsis determinó las cantidades de 13 componentes que se encuentran en cada uno de los tres cultivares
library(cluster)
library(ggplot2)
library(data.table)
library(factoextra)
df1 <- read.csv("C:\\Users\\erik-\\OneDrive\\Documentos\\Escuela\\Universidad\\7ºSemestre\\Modulo_2\\wine.csv")
summary(df1)
## Alcohol Malic_Acid Ash Ash_Alcanity
## Min. :11.03 Min. :0.740 Min. :1.360 Min. :10.60
## 1st Qu.:12.36 1st Qu.:1.603 1st Qu.:2.210 1st Qu.:17.20
## Median :13.05 Median :1.865 Median :2.360 Median :19.50
## Mean :13.00 Mean :2.336 Mean :2.367 Mean :19.49
## 3rd Qu.:13.68 3rd Qu.:3.083 3rd Qu.:2.558 3rd Qu.:21.50
## Max. :14.83 Max. :5.800 Max. :3.230 Max. :30.00
## Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols
## Min. : 70.00 Min. :0.980 Min. :0.340 Min. :0.1300
## 1st Qu.: 88.00 1st Qu.:1.742 1st Qu.:1.205 1st Qu.:0.2700
## Median : 98.00 Median :2.355 Median :2.135 Median :0.3400
## Mean : 99.74 Mean :2.295 Mean :2.029 Mean :0.3619
## 3rd Qu.:107.00 3rd Qu.:2.800 3rd Qu.:2.875 3rd Qu.:0.4375
## Max. :162.00 Max. :3.880 Max. :5.080 Max. :0.6600
## Proanthocyanins Color_Intensity Hue OD280
## Min. :0.410 Min. : 1.280 Min. :0.4800 Min. :1.270
## 1st Qu.:1.250 1st Qu.: 3.220 1st Qu.:0.7825 1st Qu.:1.938
## Median :1.555 Median : 4.690 Median :0.9650 Median :2.780
## Mean :1.591 Mean : 5.058 Mean :0.9574 Mean :2.612
## 3rd Qu.:1.950 3rd Qu.: 6.200 3rd Qu.:1.1200 3rd Qu.:3.170
## Max. :3.580 Max. :13.000 Max. :1.7100 Max. :4.000
## Proline
## Min. : 278.0
## 1st Qu.: 500.5
## Median : 673.5
## Mean : 746.9
## 3rd Qu.: 985.0
## Max. :1680.0
str(df1)
## 'data.frame': 178 obs. of 13 variables:
## $ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...
## $ Malic_Acid : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
## $ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
## $ Ash_Alcanity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
## $ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...
## $ Total_Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
## $ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
## $ Nonflavanoid_Phenols: num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
## $ Proanthocyanins : num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
## $ Color_Intensity : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
## $ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
## $ OD280 : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
## $ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...
En este caso es necesario escalar los datos, debido a que las mediciones de cada uno de los componentes es diferente y esto puede afectar a nuestro clustering.
df_escalado <- scale(df1)
grupos1 <- 3
set.seed(123)
clusters1 <- kmeans(df_escalado, grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 51, 62, 65
##
## Cluster means:
## Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols
## 1 0.1644436 0.8690954 0.1863726 0.5228924 -0.07526047 -0.97657548
## 2 0.8328826 -0.3029551 0.3636801 -0.6084749 0.57596208 0.88274724
## 3 -0.9234669 -0.3929331 -0.4931257 0.1701220 -0.49032869 -0.07576891
## Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
## 1 -1.21182921 0.72402116 -0.77751312 0.9388902 -1.1615122
## 2 0.97506900 -0.56050853 0.57865427 0.1705823 0.4726504
## 3 0.02075402 -0.03343924 0.05810161 -0.8993770 0.4605046
## OD280 Proline
## 1 -1.2887761 -0.4059428
## 2 0.7770551 1.1220202
## 3 0.2700025 -0.7517257
##
## Clustering vector:
## [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2
## [75] 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [112] 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 326.3537 385.6983 558.6971
## (between_SS / total_SS = 44.8 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
set.seed(123)
optimizacion <- clusGap(df_escalado, FUN = kmeans, nstart = 1, K.max =10)
plot(optimizacion, xlab = "Número de clusters k", main = "Optimización de clusters")
fviz_cluster(clusters1, data = df_escalado)
df1_cl <- cbind(df1, cluster = clusters1$cluster)
head(df1_cl)
## Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids
## 1 14.23 1.71 2.43 15.6 127 2.80 3.06
## 2 13.20 1.78 2.14 11.2 100 2.65 2.76
## 3 13.16 2.36 2.67 18.6 101 2.80 3.24
## 4 14.37 1.95 2.50 16.8 113 3.85 3.49
## 5 13.24 2.59 2.87 21.0 118 2.80 2.69
## 6 14.20 1.76 2.45 15.2 112 3.27 3.39
## Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue OD280 Proline
## 1 0.28 2.29 5.64 1.04 3.92 1065
## 2 0.26 1.28 4.38 1.05 3.40 1050
## 3 0.30 2.81 5.68 1.03 3.17 1185
## 4 0.24 2.18 7.80 0.86 3.45 1480
## 5 0.39 1.82 4.32 1.04 2.93 735
## 6 0.34 1.97 6.75 1.05 2.85 1450
## cluster
## 1 2
## 2 2
## 3 2
## 4 2
## 5 2
## 6 2
La técnica de clustering permite identificar en que cultivares en los cuales se debe plantar cada combinación de los 13 componentes utilizados, eso eficientiza la plantación y podría reducir la merma.