Teoría

Agrupamienro o clustering es una técnica de aprendizaje automático no supervisado que agrupa datos en función de su similitud.

Algunos usos típicos de esta técnica son:

  • Segmentación de clientes
  • Detección de anormalidades
  • Categorización de documentos

Instalar paquetes y llamar librerías

#install.packages("cluster") # Análisis de agrupamiento
library(cluster)
#install.packages("ggplot2") # Graficar
library(ggplot2)
#install.packages("data.table") # Manejo de muchos datos
library(data.table)
#install.packages("factoextra") # Gráfica optimización de número de clusters
library(factoextra)

Paso 2. Obtener los datos

df1 <- data.frame(x=c(2,2,8,5,7,6,1,4), y=c(10,5,4,8,5,4,2,9))

Paso 3. Entender los datos

summary(df1) #pata ver datos raros, na's, 
##        x               y         
##  Min.   :1.000   Min.   : 2.000  
##  1st Qu.:2.000   1st Qu.: 4.000  
##  Median :4.500   Median : 5.000  
##  Mean   :4.375   Mean   : 5.875  
##  3rd Qu.:6.250   3rd Qu.: 8.250  
##  Max.   :8.000   Max.   :10.000
str(df1) #ver que sean numericos los datos del df
## 'data.frame':    8 obs. of  2 variables:
##  $ x: num  2 2 8 5 7 6 1 4
##  $ y: num  10 5 4 8 5 4 2 9

Paso 4. Escalar los datos

# Sólo si los datos no están en la misma escala.
# datos_escalados <- scale(datos_originales), para hacer los clusters

Paso 5. Determinar núemro de grupos

# Siempre es un valor inicial "cualquiera", luego se optimiza.
plot(df1$x, df1$y) #$ sirve para separarlo, especificar columnas

grupos1 <- 3

Paso 6. Generar los grupos

set.seed(123)
clusters1 <- kmeans(df1, grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 2, 3, 3
## 
## Cluster means:
##          x        y
## 1 1.500000 3.500000
## 2 3.666667 9.000000
## 3 7.000000 4.333333
## 
## Clustering vector:
## [1] 2 1 3 2 3 3 1 2
## 
## Within cluster sum of squares by cluster:
## [1] 5.000000 6.666667 2.666667
##  (between_SS / total_SS =  85.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Paso 7. Optimizar el número de grupos

set.seed(123)
optimizacion1 <- clusGap(df1, FUN=kmeans, nstart=1, K.max=7)
# El k.max normalmente es 10, en este ejercicio al ser 8 datos se dejó en 7.
plot(optimizacion1, xlab="Número de Clusters k", main="Optimización de Clusters")

# Se selecciona como óptimo el primer punto más alto

Paso 8. Graficar los grupos

fviz_cluster(clusters1, data=df1)

Paso 9. Agergar clusters a la base de datos

df1_clusters <- cbind(df1, cluster = clusters1$cluster)
head(df1_clusters)
##   x  y cluster
## 1 2 10       2
## 2 2  5       1
## 3 8  4       3
## 4 5  8       2
## 5 7  5       3
## 6 6  4       3

Conclusiones

La técnica de clustering permite identificar patrones o grupos naturales en los datos sin necesidad de etiquetas previas.

LS0tDQp0aXRsZTogIkFncnVwYW1pZW50byAoQ2x1c3RlcnMpIg0KYXV0aG9yOiAiU2FsdmFkb3IgTmFydmFleiBBMDA1NzE4NDgiDQpkYXRlOiAiMjAyNS0wOC0xOCINCm91dHB1dDogDQogICAgaHRtbF9kb2N1bWVudDoNCiAgICAgIHRvYzogVFJVRQ0KICAgICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgICB0aGVtZTogeWV0aQ0KLS0tDQoNCiFbXShDOi9Vc2Vycy9TYWx2YWRvci9Eb3dubG9hZHMvZGVzY2FyZ2FyLnBuZykNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBUZW9yw61hIDwvc3Bhbj4NCg0KKipBZ3J1cGFtaWVucm8qKiBvICpjbHVzdGVyaW5nKiBlcyB1bmEgdMOpY25pY2EgZGUgYXByZW5kaXphamUgYXV0b23DoXRpY28gbm8gc3VwZXJ2aXNhZG8gcXVlIGFncnVwYSBkYXRvcyBlbiBmdW5jacOzbiBkZSBzdSBzaW1pbGl0dWQuICANCg0KQWxndW5vcyB1c29zIHTDrXBpY29zIGRlIGVzdGEgdMOpY25pY2Egc29uOg0KDQoqIFNlZ21lbnRhY2nDs24gZGUgY2xpZW50ZXMNCiogRGV0ZWNjacOzbiBkZSBhbm9ybWFsaWRhZGVzIA0KKiBDYXRlZ29yaXphY2nDs24gZGUgZG9jdW1lbnRvcw0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPg0KDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KI2luc3RhbGwucGFja2FnZXMoImNsdXN0ZXIiKSAjIEFuw6FsaXNpcyBkZSBhZ3J1cGFtaWVudG8NCmxpYnJhcnkoY2x1c3RlcikNCiNpbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikgIyBHcmFmaWNhcg0KbGlicmFyeShnZ3Bsb3QyKQ0KI2luc3RhbGwucGFja2FnZXMoImRhdGEudGFibGUiKSAjIE1hbmVqbyBkZSBtdWNob3MgZGF0b3MNCmxpYnJhcnkoZGF0YS50YWJsZSkNCiNpbnN0YWxsLnBhY2thZ2VzKCJmYWN0b2V4dHJhIikgIyBHcsOhZmljYSBvcHRpbWl6YWNpw7NuIGRlIG7Dum1lcm8gZGUgY2x1c3RlcnMNCmxpYnJhcnkoZmFjdG9leHRyYSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjEgPC0gZGF0YS5mcmFtZSh4PWMoMiwyLDgsNSw3LDYsMSw0KSwgeT1jKDEwLDUsNCw4LDUsNCwyLDkpKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyAzLiBFbnRlbmRlciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmMSkgI3BhdGEgdmVyIGRhdG9zIHJhcm9zLCBuYSdzLCANCnN0cihkZjEpICN2ZXIgcXVlIHNlYW4gbnVtZXJpY29zIGxvcyBkYXRvcyBkZWwgZGYNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDQuIEVzY2FsYXIgbG9zIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KIyBTw7NsbyBzaSBsb3MgZGF0b3Mgbm8gZXN0w6FuIGVuIGxhIG1pc21hIGVzY2FsYS4NCiMgZGF0b3NfZXNjYWxhZG9zIDwtIHNjYWxlKGRhdG9zX29yaWdpbmFsZXMpLCBwYXJhIGhhY2VyIGxvcyBjbHVzdGVycw0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA1LiBEZXRlcm1pbmFyIG7DumVtcm8gZGUgZ3J1cG9zIDwvc3Bhbj4NCmBgYHtyfQ0KIyBTaWVtcHJlIGVzIHVuIHZhbG9yIGluaWNpYWwgImN1YWxxdWllcmEiLCBsdWVnbyBzZSBvcHRpbWl6YS4NCnBsb3QoZGYxJHgsIGRmMSR5KSAjJCBzaXJ2ZSBwYXJhIHNlcGFyYXJsbywgZXNwZWNpZmljYXIgY29sdW1uYXMNCmdydXBvczEgPC0gMw0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA2LiBHZW5lcmFyIGxvcyBncnVwb3MgPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpjbHVzdGVyczEgPC0ga21lYW5zKGRmMSwgZ3J1cG9zMSkNCmNsdXN0ZXJzMQ0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNy4gT3B0aW1pemFyIGVsIG7Dum1lcm8gZGUgZ3J1cG9zIDwvc3Bhbj4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0Kb3B0aW1pemFjaW9uMSA8LSBjbHVzR2FwKGRmMSwgRlVOPWttZWFucywgbnN0YXJ0PTEsIEsubWF4PTcpDQojIEVsIGsubWF4IG5vcm1hbG1lbnRlIGVzIDEwLCBlbiBlc3RlIGVqZXJjaWNpbyBhbCBzZXIgOCBkYXRvcyBzZSBkZWrDsyBlbiA3Lg0KcGxvdChvcHRpbWl6YWNpb24xLCB4bGFiPSJOw7ptZXJvIGRlIENsdXN0ZXJzIGsiLCBtYWluPSJPcHRpbWl6YWNpw7NuIGRlIENsdXN0ZXJzIikNCiMgU2Ugc2VsZWNjaW9uYSBjb21vIMOzcHRpbW8gZWwgcHJpbWVyIHB1bnRvIG3DoXMgYWx0bw0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gOC4gR3JhZmljYXIgbG9zIGdydXBvcyA8L3NwYW4+DQoNCmBgYHtyfQ0KZnZpel9jbHVzdGVyKGNsdXN0ZXJzMSwgZGF0YT1kZjEpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDkuIEFnZXJnYXIgY2x1c3RlcnMgYSBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYxX2NsdXN0ZXJzIDwtIGNiaW5kKGRmMSwgY2x1c3RlciA9IGNsdXN0ZXJzMSRjbHVzdGVyKQ0KaGVhZChkZjFfY2x1c3RlcnMpDQpgYGANCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gQ29uY2x1c2lvbmVzIDwvc3Bhbj4NCkxhIHTDqWNuaWNhIGRlIGNsdXN0ZXJpbmcgcGVybWl0ZSBpZGVudGlmaWNhciBwYXRyb25lcyBvIGdydXBvcyBuYXR1cmFsZXMgZW4gbG9zIGRhdG9zIHNpbiBuZWNlc2lkYWQgZGUgZXRpcXVldGFzIHByZXZpYXMuDQo=