Teoría

Agrupamiento o clustering es un técnica de aprendizaje automático no supervisado que agrupa datos en una función de su similitud.

Algunos usos típicos de esta técnica son:

  • Segmentación de clientes
  • Deteccion de anormalidades
  • Categorización de docuementos

Instalar paquetes y llamar librerias

#install.packages("cluster") #Analisis de Agrupamiento 
library(cluster)
#install.packages("ggplot2")
library(ggplot2)
#install.packages("data.table")
library(data.table)
#install.packages("factoextra")
library(factoextra)

Paso 2. Obtener los datos

df1 <- data.frame(x=c(2,2,8,5,7,6,1,4), y=c(10,5,4,8,5,4,2,9))

Paso 3.

summary(df1)
##        x               y         
##  Min.   :1.000   Min.   : 2.000  
##  1st Qu.:2.000   1st Qu.: 4.000  
##  Median :4.500   Median : 5.000  
##  Mean   :4.375   Mean   : 5.875  
##  3rd Qu.:6.250   3rd Qu.: 8.250  
##  Max.   :8.000   Max.   :10.000
str(df1)
## 'data.frame':    8 obs. of  2 variables:
##  $ x: num  2 2 8 5 7 6 1 4
##  $ y: num  10 5 4 8 5 4 2 9

Paso 4. Escalar los datos

#Solo si los datos no están en la misma escala.
# datos_escalados <- scale(datos_originales)

Paso 5. Determinar el número de grupos

# siempre es un valor inicial "cualquiera", luego se optimizan
plot(df1$x,df1$y)

grupos1 <- 3

Paso 6. Generar los grupos

set.seed(123)
clusters1 <- kmeans(df1,grupos1)
clusters1 
## K-means clustering with 3 clusters of sizes 2, 3, 3
## 
## Cluster means:
##          x        y
## 1 1.500000 3.500000
## 2 3.666667 9.000000
## 3 7.000000 4.333333
## 
## Clustering vector:
## [1] 2 1 3 2 3 3 1 2
## 
## Within cluster sum of squares by cluster:
## [1] 5.000000 6.666667 2.666667
##  (between_SS / total_SS =  85.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Paso 7. Optimizar el número de grupos

optimizacion1 <- clusGap(df1, FUN=kmeans, nstart=1, K.max=7)
#El k.max normalmente es 10, en este ejercicio al ser 8 datos se dejó en 7.
plot(optimizacion1, xlab="Número de cluster k", main= "Optimización de Clusters")

#se selecciona el como óptimo el primer punto más alto.

Paso 8. Graficar los grupos

fviz_cluster(clusters1, data=df1)

# Paso 9. Agregar Grupos a la Base de Datos

df1_clusters <- cbind(df1, cluster = clusters1$cluster)
head(df1_clusters)
##   x  y cluster
## 1 2 10       2
## 2 2  5       1
## 3 8  4       3
## 4 5  8       2
## 5 7  5       3
## 6 6  4       3

Paso 9. Conclusiones

La técnica de clustering permite idenetificar patrones o grupos naturales en los datos sin necesidad de etiquetas previas.

LS0tDQp0aXRsZTogIlNlZ21lbnRhY2nDs24gKENsdXN0ZXJzKSINCmF1dGhvcjogIkpvcmdlIFBvbnMgRGlheiBJbmZhbnRlIg0KZGF0ZTogIjIwMjUtMDgtMTgiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogeWV0aQ0KLS0tDQoNCiFbXShodHRwczovL2Rhc2hlZTg3LmdpdGh1Yi5pby9pbWFnZXMvbWVhbl9zaGlmdF90dXRvcmlhbC5naWYpDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gVGVvcsOtYSA8L3NwYW4+DQoNCioqQWdydXBhbWllbnRvKiogbyAqY2x1c3RlcmluZyogZXMgdW4gdMOpY25pY2EgZGUgYXByZW5kaXphamUgYXV0b23DoXRpY28gbm8gc3VwZXJ2aXNhZG8gcXVlIGFncnVwYSBkYXRvcyBlbiB1bmEgZnVuY2nDs24gZGUgc3Ugc2ltaWxpdHVkLg0KDQpBbGd1bm9zIHVzb3MgdMOtcGljb3MgZGUgZXN0YSB0w6ljbmljYSBzb246DQoNCiogU2VnbWVudGFjacOzbiBkZSBjbGllbnRlcw0KKiBEZXRlY2Npb24gZGUgYW5vcm1hbGlkYWRlcw0KKiBDYXRlZ29yaXphY2nDs24gZGUgZG9jdWVtZW50b3MgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojaW5zdGFsbC5wYWNrYWdlcygiY2x1c3RlciIpICNBbmFsaXNpcyBkZSBBZ3J1cGFtaWVudG8gDQpsaWJyYXJ5KGNsdXN0ZXIpDQojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpDQpsaWJyYXJ5KGdncGxvdDIpDQojaW5zdGFsbC5wYWNrYWdlcygiZGF0YS50YWJsZSIpDQpsaWJyYXJ5KGRhdGEudGFibGUpDQojaW5zdGFsbC5wYWNrYWdlcygiZmFjdG9leHRyYSIpDQpsaWJyYXJ5KGZhY3RvZXh0cmEpDQoNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjEgPC0gZGF0YS5mcmFtZSh4PWMoMiwyLDgsNSw3LDYsMSw0KSwgeT1jKDEwLDUsNCw4LDUsNCwyLDkpKQ0KYGBgDQoNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDMuICA8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoZGYxKQ0Kc3RyKGRmMSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNC4gRXNjYWxhciBsb3MgZGF0b3MgIDwvc3Bhbj4NCmBgYHtyfQ0KI1NvbG8gc2kgbG9zIGRhdG9zIG5vIGVzdMOhbiBlbiBsYSBtaXNtYSBlc2NhbGEuDQojIGRhdG9zX2VzY2FsYWRvcyA8LSBzY2FsZShkYXRvc19vcmlnaW5hbGVzKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA1LiBEZXRlcm1pbmFyIGVsIG7Dum1lcm8gZGUgZ3J1cG9zICA8L3NwYW4+DQpgYGB7cn0NCiMgc2llbXByZSBlcyB1biB2YWxvciBpbmljaWFsICJjdWFscXVpZXJhIiwgbHVlZ28gc2Ugb3B0aW1pemFuDQpwbG90KGRmMSR4LGRmMSR5KQ0KZ3J1cG9zMSA8LSAzDQoNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDYuIEdlbmVyYXIgbG9zIGdydXBvcyAgPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpjbHVzdGVyczEgPC0ga21lYW5zKGRmMSxncnVwb3MxKQ0KY2x1c3RlcnMxIA0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNy4gT3B0aW1pemFyIGVsIG7Dum1lcm8gZGUgZ3J1cG9zICA8L3NwYW4+DQpgYGB7cn0NCm9wdGltaXphY2lvbjEgPC0gY2x1c0dhcChkZjEsIEZVTj1rbWVhbnMsIG5zdGFydD0xLCBLLm1heD03KQ0KI0VsIGsubWF4IG5vcm1hbG1lbnRlIGVzIDEwLCBlbiBlc3RlIGVqZXJjaWNpbyBhbCBzZXIgOCBkYXRvcyBzZSBkZWrDsyBlbiA3Lg0KcGxvdChvcHRpbWl6YWNpb24xLCB4bGFiPSJOw7ptZXJvIGRlIGNsdXN0ZXIgayIsIG1haW49ICJPcHRpbWl6YWNpw7NuIGRlIENsdXN0ZXJzIikNCiNzZSBzZWxlY2Npb25hIGVsIGNvbW8gw7NwdGltbyBlbCBwcmltZXIgcHVudG8gbcOhcyBhbHRvLg0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gOC4gR3JhZmljYXIgbG9zIGdydXBvcyAgPC9zcGFuPg0KYGBge3J9DQpmdml6X2NsdXN0ZXIoY2x1c3RlcnMxLCBkYXRhPWRmMSkNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDkuIEFncmVnYXIgR3J1cG9zIGEgbGEgQmFzZSBkZSBEYXRvcyAgPC9zcGFuPg0KYGBge3J9DQpkZjFfY2x1c3RlcnMgPC0gY2JpbmQoZGYxLCBjbHVzdGVyID0gY2x1c3RlcnMxJGNsdXN0ZXIpDQpoZWFkKGRmMV9jbHVzdGVycykNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDkuIENvbmNsdXNpb25lcyA8L3NwYW4+DQpMYSB0w6ljbmljYSBkZSAqY2x1c3RlcmluZyogcGVybWl0ZSBpZGVuZXRpZmljYXIgcGF0cm9uZXMgbyBncnVwb3MgbmF0dXJhbGVzIGVuIGxvcyBkYXRvcyBzaW4gbmVjZXNpZGFkIGRlIGV0aXF1ZXRhcyBwcmV2aWFzLg0K