Teoria

Agrupamiento o Clustering es una técnica de aprendizaje automático no supervisado que agrupa datos en función de su similitud.

Algunos usos típicos de esta técnica son:

  • Segmentación de clientes
  • Detección de anormalidades
  • Categorización de documentos

Paso 1. Instalar paquetes y llamar librerías

#install.packages("cluster") # Analisis de Agrupamiento
library(cluster)
#install.packages(("ggplot2")) # Graficar
library(ggplot2)
#install.packages(("data.table")) # Manejo de muchos datos
library(data.table)
#install.packages(("factoextra")) # Gráfica optimización de número de clusters
library(factoextra)

Paso 2. Obtener los datos

df1 <- data.frame(x=c(2,2,8,5,7,6,1,4), y=c(10,5,4,8,5,4,2,9))

Paso 3. Entender los datos

summary(df1)
##        x               y         
##  Min.   :1.000   Min.   : 2.000  
##  1st Qu.:2.000   1st Qu.: 4.000  
##  Median :4.500   Median : 5.000  
##  Mean   :4.375   Mean   : 5.875  
##  3rd Qu.:6.250   3rd Qu.: 8.250  
##  Max.   :8.000   Max.   :10.000
str(df1)
## 'data.frame':    8 obs. of  2 variables:
##  $ x: num  2 2 8 5 7 6 1 4
##  $ y: num  10 5 4 8 5 4 2 9

Paso 4. Escalar los datos

# Sí los datos no están en la misma escala
# datos_escalados <- scale(datos_originales)

Paso 5. Determinar número de grupos

# Siempre es una valor inicial "cualquiera", luego se optimiza
plot(df1$x,df1$y)

grupos1 <- 3 

Paso 6. Generar los grupos

set.seed(123)
clusters1 <- kmeans(df1,grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 2, 3, 3
## 
## Cluster means:
##          x        y
## 1 1.500000 3.500000
## 2 3.666667 9.000000
## 3 7.000000 4.333333
## 
## Clustering vector:
## [1] 2 1 3 2 3 3 1 2
## 
## Within cluster sum of squares by cluster:
## [1] 5.000000 6.666667 2.666667
##  (between_SS / total_SS =  85.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Paso 7. Optimizar el número de grupos

optimizacion1 <- clusGap(df1, FUN=kmeans, nstart=1, K.max=7)
# El K.mx normalmente es 10, en este ejercicio al ser 8 datos se dejó en 7
plot(optimizacion1, xlab="Número de clusters k", main="Optimización de Clusters")

# Se selecciona como óptimo el primer punto más alto

Paso 8. Graficar los grupos

fviz_cluster(clusters1, data=df1)

Paso 9. Agregar Clusters a la Base de Datos

df1_clusters <- cbind(df1, cluster = clusters1$cluster)
head(df1_clusters)
##   x  y cluster
## 1 2 10       2
## 2 2  5       1
## 3 8  4       3
## 4 5  8       2
## 5 7  5       3
## 6 6  4       3

Conclusiones

La técnica de clustering permite identificar patrones o grupos naturales en los datos sin necesidad de etiquetas previas.

LS0tCnRpdGxlOiAiQWdydXBhbWllbnRvIChDbHVzdGVycykiCmF1dGhvcjogIk1hcmllbCBHYXJ6YSBBMDEyODUxNzUiCmRhdGU6ICIyMDI1LTA4LTE4IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IHlldGkKLS0tCgohW10oaHR0cHM6Ly9mYWN1bHR5c3RhZmYucmljaG1vbmQuZWR1L350bWF0dHNvbi9JTkZPMzAzL2ltYWdlcy9jbHVzdGVyX3A0LmdpZikKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gVGVvcmlhIDwvc3Bhbj4KKipBZ3J1cGFtaWVudG8qKiBvICoqQ2x1c3RlcmluZyoqIGVzIHVuYSB0w6ljbmljYSBkZSBhcHJlbmRpemFqZSBhdXRvbcOhdGljbwpubyBzdXBlcnZpc2FkbyBxdWUgYWdydXBhIGRhdG9zIGVuIGZ1bmNpw7NuIGRlIHN1IHNpbWlsaXR1ZC4KCkFsZ3Vub3MgdXNvcyB0w61waWNvcyBkZSBlc3RhIHTDqWNuaWNhIHNvbjoKCiogU2VnbWVudGFjacOzbiBkZSBjbGllbnRlcwoqIERldGVjY2nDs24gZGUgYW5vcm1hbGlkYWRlcwoqIENhdGVnb3JpemFjacOzbiBkZSBkb2N1bWVudG9zCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMS4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojaW5zdGFsbC5wYWNrYWdlcygiY2x1c3RlciIpICMgQW5hbGlzaXMgZGUgQWdydXBhbWllbnRvCmxpYnJhcnkoY2x1c3RlcikKI2luc3RhbGwucGFja2FnZXMoKCJnZ3Bsb3QyIikpICMgR3JhZmljYXIKbGlicmFyeShnZ3Bsb3QyKQojaW5zdGFsbC5wYWNrYWdlcygoImRhdGEudGFibGUiKSkgIyBNYW5lam8gZGUgbXVjaG9zIGRhdG9zCmxpYnJhcnkoZGF0YS50YWJsZSkKI2luc3RhbGwucGFja2FnZXMoKCJmYWN0b2V4dHJhIikpICMgR3LDoWZpY2Egb3B0aW1pemFjacOzbiBkZSBuw7ptZXJvIGRlIGNsdXN0ZXJzCmxpYnJhcnkoZmFjdG9leHRyYSkKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgPC9zcGFuPgpgYGB7cn0KZGYxIDwtIGRhdGEuZnJhbWUoeD1jKDIsMiw4LDUsNyw2LDEsNCksIHk9YygxMCw1LDQsOCw1LDQsMiw5KSkKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMy4gRW50ZW5kZXIgbG9zIGRhdG9zIDwvc3Bhbj4KYGBge3J9CnN1bW1hcnkoZGYxKQpzdHIoZGYxKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA0LiBFc2NhbGFyIGxvcyBkYXRvcyA8L3NwYW4+CmBgYHtyfQojIFPDrSBsb3MgZGF0b3Mgbm8gZXN0w6FuIGVuIGxhIG1pc21hIGVzY2FsYQojIGRhdG9zX2VzY2FsYWRvcyA8LSBzY2FsZShkYXRvc19vcmlnaW5hbGVzKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA1LiBEZXRlcm1pbmFyIG7Dum1lcm8gZGUgZ3J1cG9zIDwvc3Bhbj4KYGBge3J9CiMgU2llbXByZSBlcyB1bmEgdmFsb3IgaW5pY2lhbCAiY3VhbHF1aWVyYSIsIGx1ZWdvIHNlIG9wdGltaXphCnBsb3QoZGYxJHgsZGYxJHkpCmdydXBvczEgPC0gMyAKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNi4gR2VuZXJhciBsb3MgZ3J1cG9zIDwvc3Bhbj4KYGBge3J9CnNldC5zZWVkKDEyMykKY2x1c3RlcnMxIDwtIGttZWFucyhkZjEsZ3J1cG9zMSkKY2x1c3RlcnMxCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDcuIE9wdGltaXphciBlbCBuw7ptZXJvIGRlIGdydXBvcyA8L3NwYW4+CmBgYHtyfQpvcHRpbWl6YWNpb24xIDwtIGNsdXNHYXAoZGYxLCBGVU49a21lYW5zLCBuc3RhcnQ9MSwgSy5tYXg9NykKIyBFbCBLLm14IG5vcm1hbG1lbnRlIGVzIDEwLCBlbiBlc3RlIGVqZXJjaWNpbyBhbCBzZXIgOCBkYXRvcyBzZSBkZWrDsyBlbiA3CnBsb3Qob3B0aW1pemFjaW9uMSwgeGxhYj0iTsO6bWVybyBkZSBjbHVzdGVycyBrIiwgbWFpbj0iT3B0aW1pemFjacOzbiBkZSBDbHVzdGVycyIpCiMgU2Ugc2VsZWNjaW9uYSBjb21vIMOzcHRpbW8gZWwgcHJpbWVyIHB1bnRvIG3DoXMgYWx0bwpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA4LiBHcmFmaWNhciBsb3MgZ3J1cG9zIDwvc3Bhbj4KYGBge3J9CmZ2aXpfY2x1c3RlcihjbHVzdGVyczEsIGRhdGE9ZGYxKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA5LiBBZ3JlZ2FyIENsdXN0ZXJzIGEgbGEgQmFzZSBkZSBEYXRvcyA8L3NwYW4+CmBgYHtyfQpkZjFfY2x1c3RlcnMgPC0gY2JpbmQoZGYxLCBjbHVzdGVyID0gY2x1c3RlcnMxJGNsdXN0ZXIpCmhlYWQoZGYxX2NsdXN0ZXJzKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gQ29uY2x1c2lvbmVzIDwvc3Bhbj4KTGEgdMOpY25pY2EgZGUgKmNsdXN0ZXJpbmcqIHBlcm1pdGUgaWRlbnRpZmljYXIgcGF0cm9uZXMgbyBncnVwb3MgbmF0dXJhbGVzIGVuIApsb3MgZGF0b3Mgc2luIG5lY2VzaWRhZCBkZSBldGlxdWV0YXMgcHJldmlhcy4K