Teoría

Agrupamiento o clustering es una tecnica de aprendizaje automatico no supervisado que agrupa datos en funcion de su similitud.

Algunos usos típicos de esta técnica son:

  • Segmentación de clientes
  • Detección de anormalidades
  • Categorización de documentos

Instalar paquetes y llamar librerías

#install.packages("cluster") # Análisis de Agrupamiento 
library(cluster) 
#install.packages("ggplot2") # Graficar 
library(ggplot2) 
#install.packages("data.table") #Manejo de muchos datos 
library(data.table) 
#install.packages("factoextra") # Grafica optimizacion de numero de clusters 
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

Paso 2. Obtener los datos

df1 <- data.frame(x=c(2,2,8,5,7,6,1,4), y=c(10,5,4,8,5,4,2,9))

Paso 3. Entender los datos

summary(df1)
##        x               y         
##  Min.   :1.000   Min.   : 2.000  
##  1st Qu.:2.000   1st Qu.: 4.000  
##  Median :4.500   Median : 5.000  
##  Mean   :4.375   Mean   : 5.875  
##  3rd Qu.:6.250   3rd Qu.: 8.250  
##  Max.   :8.000   Max.   :10.000
str(df1)
## 'data.frame':    8 obs. of  2 variables:
##  $ x: num  2 2 8 5 7 6 1 4
##  $ y: num  10 5 4 8 5 4 2 9

Paso 4. Escalar los datos

# Sólo si los datos no estan en la misma escala.
# datos_escalados <- scale(datos_originales)

Paso 5. Determinar numeros de grupos

# Siempre es un valor inicial cualquiera, luego se optimiza.
plot(df1$x,df1$y)

grupos1 <- 3

Paso 6. Generar los grupos

set.seed(123)
clusters1 <- kmeans(df1, grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 2, 3, 3
## 
## Cluster means:
##          x        y
## 1 1.500000 3.500000
## 2 3.666667 9.000000
## 3 7.000000 4.333333
## 
## Clustering vector:
## [1] 2 1 3 2 3 3 1 2
## 
## Within cluster sum of squares by cluster:
## [1] 5.000000 6.666667 2.666667
##  (between_SS / total_SS =  85.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Paso 7. Optimizar el numero de grupos

set.seed(123)
optimizacion1 <- clusGap(df1, FUN=kmeans, nstart=1, K.max=7)
# El K.max normalmente es 10, en este ejercicio al ser 8 datos se dejo en 7.
plot(optimizacion1, xlab="Número de clusters k", main="Optimización de clusters")

# Se selecciona como óptimo el primer punto mas alto.

Paso 8. Graficar los grupos

fviz_cluster(clusters1, data=df1)

Paso 9. Agregar grupos ala base de datos

df1_clusters <- cbind(df1, cluster = clusters1$cluster)
head(df1_clusters)
##   x  y cluster
## 1 2 10       2
## 2 2  5       1
## 3 8  4       3
## 4 5  8       2
## 5 7  5       3
## 6 6  4       3

Conclusiones

la técnica de clustering permite identificar patrones o grupos naturales en los datos sin necesidad de etiquetas previas.

LS0tDQp0aXRsZTogIkFncnVwYW1pZW50byAoQ2x1c3RlcnMpIg0KYXV0aG9yOiAiQW50b25pbyBDw6FyZGVuYXMgRHVhcnRlIEEwMTU2ODkwOCINCmRhdGU6ICIyMDI1LTA4LTE4Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICB0aGVtZTogeWV0aQ0KZW5jb2Rpbmc6IFVURi04DQotLS0NCg0KIVtdKGh0dHBzOi8vbWlyby5tZWRpdW0uY29tL21heC8yMzU0LzEqYjJzTzJmLS15ZlppSmF6YzVyWVNwZy5naWYpDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gVGVvcsOtYSA8L3NwYW4+DQoqKkFncnVwYW1pZW50byoqIG8gKmNsdXN0ZXJpbmcqIGVzIHVuYSB0ZWNuaWNhIGRlIGFwcmVuZGl6YWplIGF1dG9tYXRpY28gbm8gc3VwZXJ2aXNhZG8gcXVlIGFncnVwYSBkYXRvcyBlbiBmdW5jaW9uIGRlIHN1IHNpbWlsaXR1ZC4NCg0KQWxndW5vcyB1c29zIHTDrXBpY29zIGRlIGVzdGEgdMOpY25pY2Egc29uOg0KDQoqIFNlZ21lbnRhY2nDs24gZGUgY2xpZW50ZXMNCiogRGV0ZWNjacOzbiBkZSBhbm9ybWFsaWRhZGVzDQoqIENhdGVnb3JpemFjacOzbiBkZSBkb2N1bWVudG9zDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+DQoNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoImNsdXN0ZXIiKSAjIEFuw6FsaXNpcyBkZSBBZ3J1cGFtaWVudG8gDQpsaWJyYXJ5KGNsdXN0ZXIpIA0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAjIEdyYWZpY2FyIA0KbGlicmFyeShnZ3Bsb3QyKSANCiNpbnN0YWxsLnBhY2thZ2VzKCJkYXRhLnRhYmxlIikgI01hbmVqbyBkZSBtdWNob3MgZGF0b3MgDQpsaWJyYXJ5KGRhdGEudGFibGUpIA0KI2luc3RhbGwucGFja2FnZXMoImZhY3RvZXh0cmEiKSAjIEdyYWZpY2Egb3B0aW1pemFjaW9uIGRlIG51bWVybyBkZSBjbHVzdGVycyANCmxpYnJhcnkoZmFjdG9leHRyYSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjEgPC0gZGF0YS5mcmFtZSh4PWMoMiwyLDgsNSw3LDYsMSw0KSwgeT1jKDEwLDUsNCw4LDUsNCwyLDkpKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyAzLiBFbnRlbmRlciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGRmMSkNCnN0cihkZjEpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDQuIEVzY2FsYXIgbG9zIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KIyBTw7NsbyBzaSBsb3MgZGF0b3Mgbm8gZXN0YW4gZW4gbGEgbWlzbWEgZXNjYWxhLg0KIyBkYXRvc19lc2NhbGFkb3MgPC0gc2NhbGUoZGF0b3Nfb3JpZ2luYWxlcykNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNS4gRGV0ZXJtaW5hciBudW1lcm9zIGRlIGdydXBvcyA8L3NwYW4+DQpgYGB7cn0NCiMgU2llbXByZSBlcyB1biB2YWxvciBpbmljaWFsIGN1YWxxdWllcmEsIGx1ZWdvIHNlIG9wdGltaXphLg0KcGxvdChkZjEkeCxkZjEkeSkNCmdydXBvczEgPC0gMw0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA2LiBHZW5lcmFyIGxvcyBncnVwb3MgPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpjbHVzdGVyczEgPC0ga21lYW5zKGRmMSwgZ3J1cG9zMSkNCmNsdXN0ZXJzMQ0KYGBgDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNy4gT3B0aW1pemFyIGVsIG51bWVybyBkZSBncnVwb3MgPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpvcHRpbWl6YWNpb24xIDwtIGNsdXNHYXAoZGYxLCBGVU49a21lYW5zLCBuc3RhcnQ9MSwgSy5tYXg9NykNCiMgRWwgSy5tYXggbm9ybWFsbWVudGUgZXMgMTAsIGVuIGVzdGUgZWplcmNpY2lvIGFsIHNlciA4IGRhdG9zIHNlIGRlam8gZW4gNy4NCnBsb3Qob3B0aW1pemFjaW9uMSwgeGxhYj0iTsO6bWVybyBkZSBjbHVzdGVycyBrIiwgbWFpbj0iT3B0aW1pemFjacOzbiBkZSBjbHVzdGVycyIpDQojIFNlIHNlbGVjY2lvbmEgY29tbyDDs3B0aW1vIGVsIHByaW1lciBwdW50byBtYXMgYWx0by4NCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gOC4gR3JhZmljYXIgbG9zIGdydXBvcyA8L3NwYW4+DQpgYGB7cn0NCmZ2aXpfY2x1c3RlcihjbHVzdGVyczEsIGRhdGE9ZGYxKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA5LiBBZ3JlZ2FyIGdydXBvcyBhbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KZGYxX2NsdXN0ZXJzIDwtIGNiaW5kKGRmMSwgY2x1c3RlciA9IGNsdXN0ZXJzMSRjbHVzdGVyKQ0KaGVhZChkZjFfY2x1c3RlcnMpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBDb25jbHVzaW9uZXMgPC9zcGFuPg0KbGEgdMOpY25pY2EgZGUgKmNsdXN0ZXJpbmcqIHBlcm1pdGUgaWRlbnRpZmljYXIgcGF0cm9uZXMgbyBncnVwb3MgbmF0dXJhbGVzIGVuIGxvcyBkYXRvcyBzaW4gbmVjZXNpZGFkIGRlIGV0aXF1ZXRhcyBwcmV2aWFzLiANCg0KDQo=