
Teoría
Agrupamiento o clustering es una técnica de
aprendizaje automático no supervisado que agrupa datos en función de su
similitud.
Algunos usos típicos de esta técnica son:
- Segmentación de clientes
- Detección de anormalidades
- Categorización de documentos
Paso 1. Instalar paquetes y llamar
librerías
#install.packages("cluster") # Análisis de Agrupamiento
library(cluster)
#install.packages("ggplot2") # Graficar
library(ggplot2)
#install.packages("data.table") # Manejo de muchos datos
library(data.table)
#install.packages("factoextra") # Gráfica optimización de número de clusters
library(factoextra)
Paso 2. Obtener los datos
df1 <- data.frame(x=c(2,2,8,5,7,6,1,4), y=c(10,5,4,8,5,4,2,9))
Paso 3. Entender los datos
summary(df1)
## x y
## Min. :1.000 Min. : 2.000
## 1st Qu.:2.000 1st Qu.: 4.000
## Median :4.500 Median : 5.000
## Mean :4.375 Mean : 5.875
## 3rd Qu.:6.250 3rd Qu.: 8.250
## Max. :8.000 Max. :10.000
str(df1)
## 'data.frame': 8 obs. of 2 variables:
## $ x: num 2 2 8 5 7 6 1 4
## $ y: num 10 5 4 8 5 4 2 9
Paso 4. Escalar los datos
# Sólo si los datos no están en la misma escala.
# datos_escalados <- scale(datos_originales)
Paso 5. Determinar número de grupos
# Siempre es un valor inicial "cualquiera", luego se optimiza.
plot(df1$x,df1$y)

grupos1 <- 3
Paso 6. Generar los grupos
set.seed(123)
clusters1 <- kmeans(df1,grupos1)
clusters1
## K-means clustering with 3 clusters of sizes 2, 3, 3
##
## Cluster means:
## x y
## 1 1.500000 3.500000
## 2 3.666667 9.000000
## 3 7.000000 4.333333
##
## Clustering vector:
## [1] 2 1 3 2 3 3 1 2
##
## Within cluster sum of squares by cluster:
## [1] 5.000000 6.666667 2.666667
## (between_SS / total_SS = 85.8 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
Paso 7. Optimizar el número de grupos
set.seed(123)
optimizacion1 <- clusGap(df1, FUN=kmeans, nstart=1, K.max=7)
# El K.max normalmente es 10, en este ejercicio al ser 8 datos se dejó en 7.
plot(optimizacion1, xlab="Número de clusters k", main="Optimización de Clusters")

# Se selecciona como óptimo el primer punto más alto.
Paso 8. Graficar los grupos
fviz_cluster(clusters1, data=df1)

Paso 9. Agregar Clusters a la Base de
Datos
df1_clusters <- cbind(df1, cluster = clusters1$cluster)
head(df1_clusters)
## x y cluster
## 1 2 10 2
## 2 2 5 1
## 3 8 4 3
## 4 5 8 2
## 5 7 5 3
## 6 6 4 3
Conclusiones
La técnica de clustering permite identificar patrones o
grupos naturales en los datos sin necesidad de etiquetas previas.
LS0tDQp0aXRsZTogIkFncnVwYW1pZW50byAoQ2x1c3RlcnMpIg0KYXV0aG9yOiAiUmF1bCBDYW50dSBBMDEwODc2ODMiDQpkYXRlOiAiMjAyNS0wOC0xOCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiB5ZXRpDQotLS0NCg0KIVtdKGh0dHBzOi8vbWlyby5tZWRpdW0uY29tLzEqeGt1ZXQ0WVZnbHA4S1dzSzkwYmZSdy5naWYpDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gVGVvcsOtYSA8L3NwYW4+DQoqKkFncnVwYW1pZW50byoqIG8gKmNsdXN0ZXJpbmcqIGVzIHVuYSB0w6ljbmljYSBkZSBhcHJlbmRpemFqZSBhdXRvbcOhdGljbyBubyBzdXBlcnZpc2FkbyBxdWUgYWdydXBhIGRhdG9zIGVuIGZ1bmNpw7NuIGRlIHN1IHNpbWlsaXR1ZC4gIA0KDQpBbGd1bm9zIHVzb3MgdMOtcGljb3MgZGUgZXN0YSB0w6ljbmljYSBzb246ICANCg0KKiBTZWdtZW50YWNpw7NuIGRlIGNsaWVudGVzICANCiogRGV0ZWNjacOzbiBkZSBhbm9ybWFsaWRhZGVzICANCiogQ2F0ZWdvcml6YWNpw7NuIGRlIGRvY3VtZW50b3MgIA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMS4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KI2luc3RhbGwucGFja2FnZXMoImNsdXN0ZXIiKSAjIEFuw6FsaXNpcyBkZSBBZ3J1cGFtaWVudG8NCmxpYnJhcnkoY2x1c3RlcikNCiNpbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikgIyBHcmFmaWNhcg0KbGlicmFyeShnZ3Bsb3QyKQ0KI2luc3RhbGwucGFja2FnZXMoImRhdGEudGFibGUiKSAjIE1hbmVqbyBkZSBtdWNob3MgZGF0b3MNCmxpYnJhcnkoZGF0YS50YWJsZSkNCiNpbnN0YWxsLnBhY2thZ2VzKCJmYWN0b2V4dHJhIikgIyBHcsOhZmljYSBvcHRpbWl6YWNpw7NuIGRlIG7Dum1lcm8gZGUgY2x1c3RlcnMNCmxpYnJhcnkoZmFjdG9leHRyYSkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMi4gT2J0ZW5lciBsb3MgZGF0b3MgPC9zcGFuPg0KYGBge3J9DQpkZjEgPC0gZGF0YS5mcmFtZSh4PWMoMiwyLDgsNSw3LDYsMSw0KSwgeT1jKDEwLDUsNCw4LDUsNCwyLDkpKSANCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gMy4gRW50ZW5kZXIgbG9zIGRhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZjEpDQpzdHIoZGYxKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA0LiBFc2NhbGFyIGxvcyBkYXRvcyA8L3NwYW4+DQpgYGB7cn0NCiMgU8OzbG8gc2kgbG9zIGRhdG9zIG5vIGVzdMOhbiBlbiBsYSBtaXNtYSBlc2NhbGEuDQojIGRhdG9zX2VzY2FsYWRvcyA8LSBzY2FsZShkYXRvc19vcmlnaW5hbGVzKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA1LiBEZXRlcm1pbmFyIG7Dum1lcm8gZGUgZ3J1cG9zIDwvc3Bhbj4NCmBgYHtyfQ0KIyBTaWVtcHJlIGVzIHVuIHZhbG9yIGluaWNpYWwgImN1YWxxdWllcmEiLCBsdWVnbyBzZSBvcHRpbWl6YS4NCnBsb3QoZGYxJHgsZGYxJHkpDQpncnVwb3MxIDwtIDMNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhc28gNi4gR2VuZXJhciBsb3MgZ3J1cG9zIDwvc3Bhbj4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KY2x1c3RlcnMxIDwtIGttZWFucyhkZjEsZ3J1cG9zMSkNCmNsdXN0ZXJzMQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA3LiBPcHRpbWl6YXIgZWwgbsO6bWVybyBkZSBncnVwb3MgPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpvcHRpbWl6YWNpb24xIDwtIGNsdXNHYXAoZGYxLCBGVU49a21lYW5zLCBuc3RhcnQ9MSwgSy5tYXg9NykNCiMgRWwgSy5tYXggbm9ybWFsbWVudGUgZXMgMTAsIGVuIGVzdGUgZWplcmNpY2lvIGFsIHNlciA4IGRhdG9zIHNlIGRlasOzIGVuIDcuDQpwbG90KG9wdGltaXphY2lvbjEsIHhsYWI9Ik7Dum1lcm8gZGUgY2x1c3RlcnMgayIsIG1haW49Ik9wdGltaXphY2nDs24gZGUgQ2x1c3RlcnMiKQ0KIyBTZSBzZWxlY2Npb25hIGNvbW8gw7NwdGltbyBlbCBwcmltZXIgcHVudG8gbcOhcyBhbHRvLg0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFzbyA4LiBHcmFmaWNhciBsb3MgZ3J1cG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZnZpel9jbHVzdGVyKGNsdXN0ZXJzMSwgZGF0YT1kZjEpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXNvIDkuIEFncmVnYXIgQ2x1c3RlcnMgYSBsYSBCYXNlIGRlIERhdG9zIDwvc3Bhbj4NCmBgYHtyfQ0KZGYxX2NsdXN0ZXJzIDwtIGNiaW5kKGRmMSwgY2x1c3RlciA9IGNsdXN0ZXJzMSRjbHVzdGVyKQ0KaGVhZChkZjFfY2x1c3RlcnMpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBDb25jbHVzaW9uZXMgPC9zcGFuPg0KTGEgdMOpY25pY2EgZGUgKmNsdXN0ZXJpbmcqIHBlcm1pdGUgaWRlbnRpZmljYXIgcGF0cm9uZXMgbyBncnVwb3MgbmF0dXJhbGVzIGVuIGxvcyBkYXRvcyBzaW4gbmVjZXNpZGFkIGRlIGV0aXF1ZXRhcyBwcmV2aWFzLiAgDQoNCg0K