= TRUE
save_CAMs_as_pictures # consider_Protocol = FALSE # not needed at current stage
Data Preperation
Background Information
This is an R Markdown document. Instructions for writing these documents and background information can be found in the book written by Xie, Allaire, and Grolemund (2018) When you execute code within the document, the results appear beneath the code. This is an R Markdown document. Instructions for writing these documents and background information can be found in the book written by Xie, Allaire, and Grolemund (2018) When you execute code within the document, the results appear beneath the code. This file contains summary statistics, respectively the analysis step (confirmatory and exploratory analyses). Files are split into multiple subfiles like data processing and data analyses steps, which follows the classical data-analysis pipeline (see Peng and Matsui 2016; Wickham and Grolemund 2017).
Global variables
create raw data files
# sets the directory of location of this script as the current directory
# setwd(dirname(rstudioapi::getSourceEditorContext()$path))
### load packages
require(pacman)
p_load('tidyverse', 'jsonlite', 'magrittr',
'stargazer', 'psych', 'jtools', 'DT', 'igraph',
'writexl')
### list data files
setwd("data")
<- list.files(pattern = "^study_result.*")
folders
### create data files - GERMANY
# get CAM data
writeLines("", "CAMdata.txt") # create file
<- file("CAMdata.txt", "a") # open connection to append
text_connection
# get pre CAM data
writeLines("", "preCAM.txt") # create file
<- file("preCAM.txt", "a") # open connection to append
text_connection_pre
# get post CAM data
writeLines("", "postCAM.txt") # create file
<- file("postCAM.txt", "a") # open connection to append
text_connection_post
for(i in 1:length(folders)){
setwd(folders[i])
if(length(dir()) == 3){
# print(i)
# print(dir())
# pre CAM data
setwd(dir()[1])
<- jsonlite::fromJSON(txt = "data.txt")
tmp <- tmp$ID[!is.na(tmp$ID)]
tmp_id writeLines(jsonlite::toJSON(x = tmp), text_connection_pre)
setwd("..")
# CAM data
setwd(dir()[2])
<- jsonlite::fromJSON(txt = "data.txt")
tmp if(tmp$creator != tmp_id){
warning("IDs (primary keys) not matching")
}writeLines(jsonlite::toJSON(x = tmp), text_connection)
setwd("..")
# post CAM data
setwd(dir()[3])
<- jsonlite::fromJSON(txt = "data.txt")
tmp $ID <- NA
tmp$ID[2] <- tmp_id
tmpwriteLines(jsonlite::toJSON(x = tmp), text_connection_post)
setwd("..")
}setwd("..")
}
close(text_connection) # close connection CAM
close(text_connection_pre) # close connection
close(text_connection_post) # close connection
### move files to output folder
# copy files (not overwritten)
<- getwd()
tmp_file_from setwd("../outputs")
file.copy(from = paste0(tmp_file_from, "/CAMdata.txt"), to = paste0(getwd(), "/CAMdata.txt"))
[1] FALSE
file.copy(from = paste0(tmp_file_from, "/preCAM.txt"), to = paste0(getwd(), "/preCAM.txt"))
[1] FALSE
file.copy(from = paste0(tmp_file_from, "/postCAM.txt"), to = paste0(getwd(), "/postCAM.txt"))
[1] FALSE
# remove files
file.remove(paste0(tmp_file_from, "/CAMdata.txt"))
[1] TRUE
file.remove(paste0(tmp_file_from, "/preCAM.txt"))
[1] TRUE
file.remove(paste0(tmp_file_from, "/postCAM.txt"))
[1] TRUE
### load functions
# print(getwd())
setwd("../functions")
for(i in 1:length(dir())){
# print(dir()[i])
source(dir()[i], encoding = "utf-8")
}
setwd("../functions_CAMapp")
for(i in 1:length(dir())){
# print(dir()[i])
source(dir()[i], encoding = "utf-8")
}rm(i)
rm(tmp); rm(tmp_id); rm(folders); rm(tmp_file_from)
rm(prolific1); rm(prolific2)
rm(text_connection); rm(text_connection_post); rm(text_connection_postSecond); rm(text_connection_pre); rm(text_connection_second)
set up data.frame questionnaires
load data:
setwd("outputs")
# > pre study
suppressMessages(read_file('preCAM.txt') %>%
# ... split it into lines ...
str_split('\n') %>% first() %>%
# ... filter empty rows ...
discard(function(x) x == '') %>%
discard(function(x) x == '\r') %>%
# ... parse JSON into a data.frame
map_dfr(fromJSON, flatten=TRUE)) -> dat_preCAM
# > post first CAM
suppressMessages(read_file('postCAM.txt') %>%
# ... split it into lines ...
str_split('\n') %>% first() %>%
# ... filter empty rows ...
discard(function(x) x == '') %>%
discard(function(x) x == '\r') %>%
# ... parse JSON into a data.frame
map_dfr(fromJSON, flatten=TRUE)) -> dat_postCAM
rename ID variable for data sets to avoid errors:
colnames(dat_preCAM)[colnames(dat_preCAM) == "ID"] <- "PROLIFIC_PID"
colnames(dat_postCAM)[colnames(dat_postCAM) == "ID"] <- "PROLIFIC_PID"
add unique ID variable to match rows to participants, only keep complete data sets:
### create counter variable for both data sets
# pre study
$ID <- NA
dat_preCAM
<- 0
tmp_IDcounter for(i in 1:nrow(dat_preCAM)){
if(!is.na(dat_preCAM$sender[i]) && dat_preCAM$sender[i] == "Greetings"){
# tmp <- dat_preCAM$prolific_pid[i]
= tmp_IDcounter + 1
tmp_IDcounter
}$ID[i] <- tmp_IDcounter
dat_preCAM
}
# post study
$ID <- NA
dat_postCAM
<- 0
tmp_IDcounter for(i in 1:nrow(dat_postCAM)){
if(!is.na(dat_postCAM$sender[i]) && dat_postCAM$sender[i] == "break500ms_2"){
# tmp <- dat_postCAM$prolific_pid[i]
= tmp_IDcounter + 1
tmp_IDcounter
}$ID[i] <- tmp_IDcounter
dat_postCAM
}
### keep only complete data sets
# pre-study
# sort(table(dat_preCAM$ID))
sum(table(dat_preCAM$ID) != max(table(dat_preCAM$ID)))
[1] 0
sum(table(dat_preCAM$ID) == max(table(dat_preCAM$ID)))
[1] 18
<- dat_preCAM[dat_preCAM$ID %in% names(table(dat_preCAM$ID))[table(dat_preCAM$ID) == max(table(dat_preCAM$ID))],]
dat_preCAM
# post-study
# sort(table(dat_postCAM$ID))
sum(table(dat_postCAM$ID) != max(table(dat_postCAM$ID)))
[1] 0
sum(table(dat_postCAM$ID) == max(table(dat_postCAM$ID)))
[1] 18
<- dat_postCAM[dat_postCAM$ID %in% names(table(dat_postCAM$ID))[table(dat_postCAM$ID) == max(table(dat_postCAM$ID))],]
dat_postCAM
all(unique(dat_preCAM$ID) %in% unique(dat_postCAM$ID))
[1] TRUE
questionnaire pre-study (component 1)
colnames(dat_preCAM)
[1] "sender" "sender_type"
[3] "sender_id" "6"
[5] "ended_on" "duration"
[7] "time_run" "time_render"
[9] "time_show" "time_end"
[11] "time_commit" "timestamp"
[13] "time_switch" "IDtype"
[15] "PROLIFIC_PID" "dummy_informedconsent"
[17] "commCheck" "meta.labjs_version"
[19] "meta.location" "meta.userAgent"
[21] "meta.platform" "meta.language"
[23] "meta.locale" "meta.timeZone"
[25] "meta.timezoneOffset" "meta.screen_width"
[27] "meta.screen_height" "meta.scroll_width"
[29] "meta.scroll_height" "meta.window_innerWidth"
[31] "meta.window_innerHeight" "meta.devicePixelRatio"
[33] "meta.labjs_build.flavor" "meta.labjs_build.commit"
[35] "para_defocuscount" "7"
[37] "ID"
<- str_subset(string = colnames(dat_preCAM), pattern = "^meta|^R")
tmp_notNumeric <- str_subset(string = tmp_notNumeric, pattern = "labjs|location", negate = TRUE)
tmp_notNumeric
<- c("PROLIFIC_PID",
vec_ques "IDtype",
"dummy_informedconsent",
"commCheck",
tmp_notNumeric)
= c("PROLIFIC_PID", "IDtype", tmp_notNumeric)
vec_notNumeric
<- questionnairetype(dataset = dat_preCAM,
questionnaire_c1 listvars = vec_ques,
notNumeric = vec_notNumeric, verbose = FALSE)
dim(questionnaire_c1)
[1] 18 18
colnames(questionnaire_c1)
[1] "ID" "PROLIFIC_PID"
[3] "IDtype" "dummy_informedconsent"
[5] "commCheck" "meta.userAgent"
[7] "meta.platform" "meta.language"
[9] "meta.locale" "meta.timeZone"
[11] "meta.timezoneOffset" "meta.screen_width"
[13] "meta.screen_height" "meta.scroll_width"
[15] "meta.scroll_height" "meta.window_innerWidth"
[17] "meta.window_innerHeight" "meta.devicePixelRatio"
questionnaire post-CAM (component 3)
colnames(dat_postCAM)
[1] "sender" "sender_type"
[3] "sender_id" "ended_on"
[5] "duration" "time_run"
[7] "time_render" "time_show"
[9] "time_end" "time_commit"
[11] "timestamp" "time_switch"
[13] "changeCAM_valence" "14"
[15] "PROLIFIC_PID" "feedCAM_repres"
[17] "feedCAM_technicalprobs" "feedCAM_technicalprobsText"
[19] "feedCAM_already" "feedCAM_alreadyText"
[21] "para_countclicks" "PGD-10"
[23] "PGD-9" "PGD-3"
[25] "PGD-6" "PGD-4"
[27] "PGD-7" "PGD-11"
[29] "PGD-5" "PGD-2"
[31] "PGD-8" "PGD-12"
[33] "PGD-1" "CSJAS-item1"
[35] "CSJAS-item2" "CSJAS-item10r"
[37] "CSJAS-item6r" "CSJAS-item4r"
[39] "CSJAS-item8" "CSJAS-item7r"
[41] "CSJAS-item3r" "CSJAS-item9"
[43] "CSJAS-item5" "CCDisImpair-anxiety5r"
[45] "CCDisImpair-anger3r" "CCDisImpair-impairment2r"
[47] "CCDisImpair-anxiety1" "CCDisImpair-impairment4"
[49] "CCDisImpair-anger2" "CCDisImpair-anxiety2r"
[51] "CCDisImpair-impairment8" "CCDisImpair-anger5r"
[53] "CCDisImpair-anxiety3" "CCDisImpair-sadness1r"
[55] "CCDisImpair-sadness3" "CCDisImpair-impairment7"
[57] "CCDisImpair-anxiety4" "CCDisImpair-sadness4"
[59] "CCDisImpair-impairment6r" "CCDisImpair-sadness5"
[61] "CCDisImpair-impairment3" "CCDisImpair-sadness2"
[63] "CCDisImpair-anger4r" "CCDisImpair-impairment1"
[65] "CCDisImpair-impairment5r" "CCDisImpair-anger1"
[67] "guttman-item" "not_needed"
[69] "guttman-response" "PtMAtGD-8"
[71] "PtMAtGD-2" "PtMAtGD-15"
[73] "PtMAtGD-14" "PtMAtGD-11"
[75] "PtMAtGD-3" "PtMAtGD-7"
[77] "PtMAtGD-6" "PtMAtGD-10"
[79] "PtMAtGD-1" "PtMAtGD-9"
[81] "PtMAtGD-4" "PtMAtGD-5"
[83] "PtMAtGD-13" "PtMAtGD-12"
[85] "sociodemo_age" "sociodemo_gender"
[87] "sociodemo_sexualOrientation" "sociodemo_residency"
[89] "lrscale" "rlgdgr"
[91] "feedback_critic" "para_defocuscount"
[93] "15" "ID"
<- c("PROLIFIC_PID",
vec_ques "feedCAM_repres",
"feedCAM_technicalprobs", "feedCAM_technicalprobsText",
"feedCAM_already", "feedCAM_alreadyText",
"changeCAM_valence",
sort(str_subset(string = colnames(dat_postCAM), pattern = "^PGD")),
sort(str_subset(string = colnames(dat_postCAM), pattern = "^CCDisImpair")),
sort(str_subset(string = colnames(dat_postCAM), pattern = "^PtMAtGD")),
"sociodemo_age", "sociodemo_gender", "sociodemo_sexualOrientation", "sociodemo_residency",
"lrscale", "rlgdgr",
"feedback_critic")
= c("PROLIFIC_PID",
vec_notNumeric "feedCAM_technicalprobsText", "feedCAM_alreadyText", "scenario_thoughts",
"changeCAM_valence",
"sociodemo_gender", "sociodemo_sexualOrientation", "sociodemo_residency",
"feedback_critic" )
<- questionnairetype(dataset = dat_postCAM,
questionnaire_c3 listvars = vec_ques,
notNumeric = vec_notNumeric, verbose = FALSE)
dim(questionnaire_c3)
[1] 18 65
colnames(questionnaire_c3)
[1] "ID" "PROLIFIC_PID"
[3] "feedCAM_repres" "feedCAM_technicalprobs"
[5] "feedCAM_technicalprobsText" "feedCAM_already"
[7] "feedCAM_alreadyText" "changeCAM_valence"
[9] "PGD-1" "PGD-10"
[11] "PGD-11" "PGD-12"
[13] "PGD-2" "PGD-3"
[15] "PGD-4" "PGD-5"
[17] "PGD-6" "PGD-7"
[19] "PGD-8" "PGD-9"
[21] "CCDisImpair-anger1" "CCDisImpair-anger2"
[23] "CCDisImpair-anger3r" "CCDisImpair-anger4r"
[25] "CCDisImpair-anger5r" "CCDisImpair-anxiety1"
[27] "CCDisImpair-anxiety2r" "CCDisImpair-anxiety3"
[29] "CCDisImpair-anxiety4" "CCDisImpair-anxiety5r"
[31] "CCDisImpair-impairment1" "CCDisImpair-impairment2r"
[33] "CCDisImpair-impairment3" "CCDisImpair-impairment4"
[35] "CCDisImpair-impairment5r" "CCDisImpair-impairment6r"
[37] "CCDisImpair-impairment7" "CCDisImpair-impairment8"
[39] "CCDisImpair-sadness1r" "CCDisImpair-sadness2"
[41] "CCDisImpair-sadness3" "CCDisImpair-sadness4"
[43] "CCDisImpair-sadness5" "PtMAtGD-1"
[45] "PtMAtGD-10" "PtMAtGD-11"
[47] "PtMAtGD-12" "PtMAtGD-13"
[49] "PtMAtGD-14" "PtMAtGD-15"
[51] "PtMAtGD-2" "PtMAtGD-3"
[53] "PtMAtGD-4" "PtMAtGD-5"
[55] "PtMAtGD-6" "PtMAtGD-7"
[57] "PtMAtGD-8" "PtMAtGD-9"
[59] "sociodemo_age" "sociodemo_gender"
[61] "sociodemo_sexualOrientation" "sociodemo_residency"
[63] "lrscale" "rlgdgr"
[65] "feedback_critic"
get ratings of guttman
# Pre-define the column names with rat_ pattern
<- sort(str_subset(string = colnames(dat_postCAM), pattern = "^guttman"))
guttman_cols
# Create an empty list to store processed data
<- list()
result_list
<- rbind(dat_postCAM[, c("PROLIFIC_PID", "ID", "sender", guttman_cols)])
dat_merged $`guttman-response`[!is.na(dat_merged$`guttman-item`) & dat_merged$`guttman-response` == "NA"] <- "LNA"
dat_merged
# Loop over each unique ID
for (i in unique(dat_merged$ID)) {
<- dat_merged[dat_merged$ID == i, c("ID", "sender", guttman_cols)]
tmp
# Fill down ID if missing
<- tmp %>%
tmp fill(ID, .direction = "downup")
# Filter rows where all rat_ columns are not NA
<- tmp %>%
tmp filter(
if_any(all_of(guttman_cols), ~ !is.na(.)) # at least one guttman_* value present
)$sender[is.na(tmp$sender)] <- paste0("GI_", tmp$`guttman-item`[!is.na(tmp$`guttman-item`)])
tmp
# Append to result list
as.character(i)]] <- tmp
result_list[[
}
# Combine all into one dataframe
<- bind_rows(result_list)
questionnaire_rating_long $sender <- factor(questionnaire_rating_long$sender)
questionnaire_rating_long
# wide data set for guttman ratings
colnames(questionnaire_rating_long)[colnames(questionnaire_rating_long) == "guttman-item"] <- "item"
colnames(questionnaire_rating_long)[colnames(questionnaire_rating_long) == "guttman-response"] <- "response"
<- questionnaire_rating_long %>%
questionnaire_rating_wide_guttman pivot_wider(
id_cols = ID,
names_from = item,
values_from = response,
names_glue = "response_{item}"
)
merge all data sets
# Left join the others one by one
<- questionnaire_c1 %>%
merged_data left_join(questionnaire_c3, by = "ID") %>%
left_join(questionnaire_rating_wide_guttman, by = "ID")
$PROLIFIC_PID.y <- NULL
merged_data
colnames(merged_data)[colnames(merged_data) == "PROLIFIC_PID.x"] <- "PROLIFIC_PID"
dim(merged_data)
[1] 18 85
colnames(merged_data)
[1] "ID" "PROLIFIC_PID"
[3] "IDtype" "dummy_informedconsent"
[5] "commCheck" "meta.userAgent"
[7] "meta.platform" "meta.language"
[9] "meta.locale" "meta.timeZone"
[11] "meta.timezoneOffset" "meta.screen_width"
[13] "meta.screen_height" "meta.scroll_width"
[15] "meta.scroll_height" "meta.window_innerWidth"
[17] "meta.window_innerHeight" "meta.devicePixelRatio"
[19] "feedCAM_repres" "feedCAM_technicalprobs"
[21] "feedCAM_technicalprobsText" "feedCAM_already"
[23] "feedCAM_alreadyText" "changeCAM_valence"
[25] "PGD-1" "PGD-10"
[27] "PGD-11" "PGD-12"
[29] "PGD-2" "PGD-3"
[31] "PGD-4" "PGD-5"
[33] "PGD-6" "PGD-7"
[35] "PGD-8" "PGD-9"
[37] "CCDisImpair-anger1" "CCDisImpair-anger2"
[39] "CCDisImpair-anger3r" "CCDisImpair-anger4r"
[41] "CCDisImpair-anger5r" "CCDisImpair-anxiety1"
[43] "CCDisImpair-anxiety2r" "CCDisImpair-anxiety3"
[45] "CCDisImpair-anxiety4" "CCDisImpair-anxiety5r"
[47] "CCDisImpair-impairment1" "CCDisImpair-impairment2r"
[49] "CCDisImpair-impairment3" "CCDisImpair-impairment4"
[51] "CCDisImpair-impairment5r" "CCDisImpair-impairment6r"
[53] "CCDisImpair-impairment7" "CCDisImpair-impairment8"
[55] "CCDisImpair-sadness1r" "CCDisImpair-sadness2"
[57] "CCDisImpair-sadness3" "CCDisImpair-sadness4"
[59] "CCDisImpair-sadness5" "PtMAtGD-1"
[61] "PtMAtGD-10" "PtMAtGD-11"
[63] "PtMAtGD-12" "PtMAtGD-13"
[65] "PtMAtGD-14" "PtMAtGD-15"
[67] "PtMAtGD-2" "PtMAtGD-3"
[69] "PtMAtGD-4" "PtMAtGD-5"
[71] "PtMAtGD-6" "PtMAtGD-7"
[73] "PtMAtGD-8" "PtMAtGD-9"
[75] "sociodemo_age" "sociodemo_gender"
[77] "sociodemo_sexualOrientation" "sociodemo_residency"
[79] "lrscale" "rlgdgr"
[81] "feedback_critic" "response_4"
[83] "response_3" "response_1"
[85] "response_2"
save all data sets
setwd("outputs/questionnaire")
# Save as .RData objects
save(questionnaire_c1, file = "questionnaire_c1.RData")
save(questionnaire_c3, file = "questionnaire_c3.RData")
save(merged_data, file = "merged_data.RData")
save(questionnaire_rating_long, file = "questionnaire_rating_long.RData")
# Save as Excel files
write_xlsx(questionnaire_c1, "questionnaire_c1.xlsx")
write_xlsx(questionnaire_c3, "questionnaire_c3.xlsx")
write_xlsx(merged_data, "merged_data.xlsx")
write_xlsx(questionnaire_rating_long, "questionnaire_rating_long.xlsx")
set up CAM data
pre CAM (component 2)
Load CAM data
setwd("outputs")
suppressMessages(read_file("CAMdata.txt") %>%
# ... split it into lines ...
str_split('\n') %>% first() %>%
discard(function(x) x == '') %>%
discard(function(x) x == '\r') %>%
# ... filter empty rows ...
discard(function(x) x == '')) -> dat_CAM_pre
<- list()
raw_CAM_pre for(i in 1:length(dat_CAM_pre)){
<- jsonlite::fromJSON(txt = dat_CAM_pre[[i]])
raw_CAM_pre[[i]] }
Create CAM files, draw CAMs and compute network indicators
### create CAM single files (nodes, connectors, merged)
<- create_CAMfiles(datCAM = raw_CAM_pre, reDeleted = TRUE) CAMfiles_pre
Nodes and connectors, which were deleted by participants were removed.
# deleted nodes: 37
# deleted connectors: 14
# remove testing data sets
nrow(CAMfiles_pre[[1]])
[1] 261
# CAMfiles_pre[[1]] <- CAMfiles_pre[[1]][nchar(CAMfiles_pre[[1]]$participantCAM) == 24,]
# CAMfiles_pre[[2]] <- CAMfiles_pre[[2]][nchar(CAMfiles_pre[[2]]$participantCAM) == 24,]
# CAMfiles_pre[[3]] <- CAMfiles_pre[[3]][nchar(CAMfiles_pre[[3]]$participantCAM.x) == 24,]
# number of CAMs collected
# nrow(CAMfiles_pre[[1]])
# remove person who draw many empty concepts
# tmp_pid <- unique(CAMfiles_pre[[1]]$participantCAM[CAMfiles_pre[[1]]$CAM %in% c("a0c6edeb-267a-4f27-8199-79f896e033ce", "8d74f576-e617-4eb1-8ccf-93589ce6c65b")])
# print(tmp_pid)
## remove person from questionnaire data
# questionnaire <- questionnaire[!questionnaire$PROLIFIC_PID %in% tmp_pid,]
## remove person from CAM data
# table(CAMfiles_pre[[1]][CAMfiles_pre[[1]]$participantCAM %in% tmp_pid,]$text)
# CAMfiles_pre[[1]] <- CAMfiles_pre[[1]][!CAMfiles_pre[[1]]$participantCAM %in% tmp_pid,]
# CAMfiles_pre[[2]] <- CAMfiles_pre[[2]][!CAMfiles_pre[[2]]$participantCAM %in% tmp_pid,]
# CAMfiles_pre[[3]] <- CAMfiles_pre[[3]][!CAMfiles_pre[[3]]$participantCAM.x %in% tmp_pid,]
# remove 7 empty concepts:
# CAMfiles_pre[[1]]$text[nchar(CAMfiles_pre[[1]]$text) < 2]
# tmp_ids <- CAMfiles_pre[[1]]$id[nchar(CAMfiles_pre[[1]]$text) < 2]
# table(CAMfiles_pre[[1]]$isActive[CAMfiles_pre[[1]]$id %in% tmp_ids])
# table(CAMfiles_pre[[1]]$participantCAM[CAMfiles_pre[[1]]$id %in% tmp_ids])
#
# CAMfiles_pre[[1]] <- CAMfiles_pre[[1]][!CAMfiles_pre[[1]]$id %in% tmp_ids,]
### draw CAMs
<- draw_CAM(dat_merged = CAMfiles_pre[[3]],
CAMdrawn_pre dat_nodes = CAMfiles_pre[[1]],ids_CAMs = "all",
plot_CAM = FALSE,
useCoordinates = TRUE,
relvertexsize = 3,
reledgesize = 1)
processing 18 CAMs...
Warning: `graph.data.frame()` was deprecated in igraph 2.0.0.
ℹ Please use `graph_from_data_frame()` instead.
[1] "== participantCAM in drawnCAM"
for(i in 1:length(CAMdrawn_pre)){
if(any(nchar(V(CAMdrawn_pre[[i]])$label) < 3)){
print(V(CAMdrawn_pre[[i]])$label)
}
}
### network indicators
<- c("Konservativ", "Woke")
tmp_microIndicator <- compute_indicatorsCAM(drawn_CAM = CAMdrawn_pre,
networkIndicators_pre micro_degree = tmp_microIndicator,
micro_valence = tmp_microIndicator,
micro_centr_clo = tmp_microIndicator,
micro_transitivity = tmp_microIndicator,
largestClique = FALSE)
Warning: `graph.density()` was deprecated in igraph 2.0.0.
ℹ Please use `edge_density()` instead.
Warning: The `types1` argument of `assortativity()` is deprecated as of igraph 1.6.0.
ℹ Please use the `values` argument instead.
Warning: `assortativity.degree()` was deprecated in igraph 2.0.0.
ℹ Please use `assortativity_degree()` instead.
Warning: `as.undirected()` was deprecated in igraph 2.1.0.
ℹ Please use `as_undirected()` instead.
### wordlist
<- create_wordlist(
CAMwordlist_pre dat_nodes = CAMfiles_pre[[1]],
dat_merged = CAMfiles_pre[[3]],
useSummarized = TRUE,
order = "frequency",
splitByValence = FALSE,
comments = TRUE,
raterSubsetWords = NULL,
rater = FALSE
)
[1] "create_wordlist - use raw words"
[1] 0
[1] 261
[1] "temporarily suffixes are added, because not all words have been summarized"
processing 18 CAMs...
[1] "== participantCAM in drawnCAM"
if(all(nchar(CAMwordlist_pre$Words) > 2)){
print("sucessfully removed empty words")
}
::datatable(CAMwordlist_pre, options = list(pageLength = 5)) DT
save CAMs as .json files, and as .png (igraph)
if(save_CAMs_as_pictures){
setwd("outputs")
setwd("savedCAMs")
setwd("png")
### remove all files if there are any
if(length(list.files()) >= 1){
file.remove(list.files())
cat('\n!
all former .png files have been deleted')
}
### if no participant ID was provided replace by randomly generated CAM ID
if(all(CAMfiles_pre[[3]]$participantCAM.x == "noID")){
3]]$participantCAM.x <- CAMfiles_pre[[3]]$CAM.x
CAMfiles_pre[[
}
### save as .json files, and as .png (igraph)
<- unique(CAMfiles_pre[[3]]$participantCAM.x); length(ids_CAMs)
ids_CAMs
for(i in 1:length(ids_CAMs)){
save_graphic(filename = paste0("CAM", "_t1_", ids_CAMs[i])) # paste0(ids_CAMs[i]))
<- CAMdrawn_pre[[c(1:length(CAMdrawn_pre))[
CAM_igraph names(CAMdrawn_pre) == paste0(unique(CAMfiles_pre[[3]]$participantCAM.x)[i])]]]
plot(CAM_igraph, edge.arrow.size = .7,
layout=layout_nicely, vertex.frame.color="black", asp = .5, margin = -0.1,
vertex.size = 10, vertex.label.cex = .9)
dev.off()
}
setwd("../json")
### remove all files if there are any
if(length(list.files()) >= 1){
file.remove(list.files())
cat('\n!
all former .json files have been deleted')
}for(i in 1:length(raw_CAM_pre)){
if(!is_empty(raw_CAM_pre[[i]]$nodes)){
if(nrow(raw_CAM_pre[[i]]$nodes) > 5){
write(toJSON(raw_CAM_pre[[i]], encoding = "UTF-8"),
paste0(raw_CAM_pre[[i]]$creator, ".json"))
}
}
} }
!
all former .png files have been deleted
!
all former .json files have been deleted
merge and save all data
setwd("outputs/final")
if(all(unique(CAMfiles_pre[[1]]$participantCAM) == networkIndicators_pre$participantCAM)){
print("pre CAM ID can be set")
$CAM_ID <- unique(CAMfiles_pre[[1]]$CAM)
networkIndicators_pre }
[1] "pre CAM ID can be set"
### remove all previously removed participants
nrow(networkIndicators_pre)
[1] 18
nrow(merged_data)
[1] 18
nrow(networkIndicators_pre)
[1] 18
### match data
if (all(merged_data$PROLIFIC_PID == networkIndicators_pre$participantCAM)) {
print("all data can be matched row by row")
# save questionnaire
$participantCAMpre <- networkIndicators_pre$participantCAM
merged_data
## save as .xlsx file
::write.xlsx2(x = merged_data, file = "merged_data_final.xlsx")
xlsx## save as R object
saveRDS(merged_data, file = "merged_data_final.rds")
# save network indicators pre
## save as .xlsx file
::write.xlsx2(x = networkIndicators_pre, file = "networkIndicators_pre_final.xlsx")
xlsx## save as R object
saveRDS(networkIndicators_pre, file = "networkIndicators_pre_final.rds")
# save CAMfiles pre
saveRDS(CAMfiles_pre, file = "CAMfiles_pre_final.rds")
# save CAMfiles combined and clean
# saveRDS(CAMfiles_combined_translated, file = "CAMfiles_combined_final_translated.rds")
<- cbind(merged_data, networkIndicators_pre)
merged_dataCAMs dim(merged_dataCAMs)
## save as .xlsx file
::write.xlsx2(x = merged_dataCAMs, file = "merged_dataCAMs_final.xlsx")
xlsx## save as .csv file
write.csv2(x = merged_dataCAMs, file = "merged_dataCAMs_final.csv")
## save as R object
saveRDS(merged_dataCAMs, file = "merged_dataCAMs_final.rds")
### save wordlist
## save as .xlsx file
::write.xlsx2(x = CAMwordlist_pre, file = "CAMwordlist_pre_final.xlsx")
xlsx## save as .csv file
write.csv2(x = CAMwordlist_pre, file = "CAMwordlist_pre_final.csv")
## save as R object
saveRDS(CAMwordlist_pre, file = "CAMwordlist_pre_final.rds")
}
[1] "all data can be matched row by row"