pacman::p_load(wooldridge,stargazer,dplyr)
head(wage1)
## wage educ exper tenure nonwhite female married numdep smsa northcen south
## 1 3.10 11 2 0 0 1 0 2 1 0 0
## 2 3.24 12 22 2 0 1 1 3 1 0 0
## 3 3.00 11 2 0 0 0 0 2 0 0 0
## 4 6.00 8 44 28 0 0 1 0 1 0 0
## 5 5.30 12 7 2 0 0 1 1 0 0 0
## 6 8.75 16 9 8 0 0 1 0 1 0 0
## west construc ndurman trcommpu trade services profserv profocc clerocc
## 1 1 0 0 0 0 0 0 0 0
## 2 1 0 0 0 0 1 0 0 0
## 3 1 0 0 0 1 0 0 0 0
## 4 1 0 0 0 0 0 0 0 1
## 5 1 0 0 0 0 0 0 0 0
## 6 1 0 0 0 0 0 1 1 0
## servocc lwage expersq tenursq
## 1 0 1.131402 4 0
## 2 1 1.175573 484 4
## 3 0 1.098612 4 0
## 4 0 1.791759 1936 784
## 5 0 1.667707 49 4
## 6 0 2.169054 81 64
glimpse(wage1)
## Rows: 526
## Columns: 24
## $ wage <dbl> 3.10, 3.24, 3.00, 6.00, 5.30, 8.75, 11.25, 5.00, 3.60, 18.18,…
## $ educ <int> 11, 12, 11, 8, 12, 16, 18, 12, 12, 17, 16, 13, 12, 12, 12, 16…
## $ exper <int> 2, 22, 2, 44, 7, 9, 15, 5, 26, 22, 8, 3, 15, 18, 31, 14, 10, …
## $ tenure <int> 0, 2, 0, 28, 2, 8, 7, 3, 4, 21, 2, 0, 0, 3, 15, 0, 0, 10, 0, …
## $ nonwhite <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ female <int> 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1…
## $ married <int> 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0…
## $ numdep <int> 2, 3, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0…
## $ smsa <int> 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ northcen <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ south <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ west <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ construc <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ ndurman <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ trcommpu <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ trade <int> 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ services <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ profserv <int> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1…
## $ profocc <int> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1…
## $ clerocc <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ servocc <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ lwage <dbl> 1.1314021, 1.1755733, 1.0986123, 1.7917595, 1.6677068, 2.1690…
## $ expersq <int> 4, 484, 4, 1936, 49, 81, 225, 25, 676, 484, 64, 9, 225, 324, …
## $ tenursq <int> 0, 4, 0, 784, 4, 64, 49, 9, 16, 441, 4, 0, 0, 9, 225, 0, 0, 1…
modelo1 <- lm(log(wage)~educ+exper+tenure,wage1)
summary(modelo1)
##
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure, data = wage1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.05802 -0.29645 -0.03265 0.28788 1.42809
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.284360 0.104190 2.729 0.00656 **
## educ 0.092029 0.007330 12.555 < 2e-16 ***
## exper 0.004121 0.001723 2.391 0.01714 *
## tenure 0.022067 0.003094 7.133 3.29e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4409 on 522 degrees of freedom
## Multiple R-squared: 0.316, Adjusted R-squared: 0.3121
## F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16
Interpretação dos coeficientes: (Intercept) é o
logaritmo do salário esperado para alguém com educ,
exper e tenure iguais a zero. Embora seja
estatisticamente significativo, sua interpretação direta nem sempre é
prática.
O coeficiente de educ foi de 0.092029. Como a variável
dependente está em escala logarítmica, isso significa que, mantendo as
outras variáveis constantes, um ano adicional de educação está associado
a um aumento de aproximadamente 9.2% no salário. O p-valor (< 2e-16),
indicando que esse efeito é significativo.
O coeficiente de exper foi de 0.004121. Indicando que um
ano adicional de experiência, mantendo as outras variáveis constantes,
está associado a um aumento de aproximadamente 0.4% no salário. O
p-valor (0.01714) indica que esse efeito é estatisticamente
significativo.
Por sua vez tenure (Tempo no emprego atual) teve um
coeficiente de 0.022067. Um ano adicional de tempo no emprego atual,
mantendo as outras variáveis constantes, está associado a um aumento de
aproximadamente 2.2% no salário. O p-valor (3.29e-12) também indica que
esse efeito é significativo.
stargazer(modelo1,type = "text")
##
## ===============================================
## Dependent variable:
## ---------------------------
## log(wage)
## -----------------------------------------------
## educ 0.092***
## (0.007)
##
## exper 0.004**
## (0.002)
##
## tenure 0.022***
## (0.003)
##
## Constant 0.284***
## (0.104)
##
## -----------------------------------------------
## Observations 526
## R2 0.316
## Adjusted R2 0.312
## Residual Std. Error 0.441 (df = 522)
## F Statistic 80.391*** (df = 3; 522)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01