This study, conducted by Claudio Urbani for Texas Realty Insights, analyzes the dynamics of the Texas real estate market using historical sales data from the “Real Estate Texas.csv” dataset. The analysis examines key variables – including sales, transaction volumes, median prices, active listings, and months of inventory – across cities, years, and months. Results highlight significant geographic and temporal disparities: some cities display higher median prices and stability, while others are characterized by volatility and larger transaction volumes. The study also identifies seasonal and cyclical patterns consistent with national real estate trends. These insights provide Texas Realty Insights with data-driven guidance to optimize sales strategies, evaluate listing effectiveness, and target areas with the greatest growth potential.
Keywords: Texas real estate market trends, Texas housing market analysis, Texas property sales data, Texas home sales historical data, Texas real estate statistics, Texas housing market insights, Texas real estate data visualization, Texas property market research, Texas real estate sales trends, Texas home prices trends, Texas real estate market forecast, Texas housing supply and demand analysis, Texas real estate sales optimization, Texas real estate listings analysis, Texas property market dynamics, Texas real estate analytics, Texas home sales trends by city, Texas real estate big data analysis, Texas real estate investment trends, Texas housing market dashboards
# Variable classification (theoretical definition based on dataset structure)
variable_types <- data.frame(
Variable = c("city", "year", "month", "sales", "volume", "median_price", "listings", "months_inventory"),
Statistical_Type = c(
"Categorical Nominal",
"Quantitative Discrete (Temporal)",
"Quantitative Discrete (Temporal)",
"Quantitative Discrete",
"Quantitative Continuous",
"Quantitative Continuous",
"Quantitative Discrete",
"Quantitative Continuous"
),
Measurement_Scale = c("Nominal", "Ordinal", "Ordinal", "Ratio", "Ratio", "Ratio", "Ratio", "Ratio"),
Possible_Analysis = c(
"Frequencies, mode, chi-square tests",
"Temporal trends, seasonality, autocorrelation",
"Seasonal cycles, monthly patterns",
"All indices, correlations, regressions",
"All indices, correlations, distributive analysis",
"All indices, correlations, price analysis",
"All indices, correlations, supply-demand analysis",
"All indices, correlations, inventory cycle analysis"
),
stringsAsFactors = FALSE
)
kable(variable_types,
caption = "Variable Classification and Applicable Analysis Types")
Variable | Statistical_Type | Measurement_Scale | Possible_Analysis |
---|---|---|---|
city | Categorical Nominal | Nominal | Frequencies, mode, chi-square tests |
year | Quantitative Discrete (Temporal) | Ordinal | Temporal trends, seasonality, autocorrelation |
month | Quantitative Discrete (Temporal) | Ordinal | Seasonal cycles, monthly patterns |
sales | Quantitative Discrete | Ratio | All indices, correlations, regressions |
volume | Quantitative Continuous | Ratio | All indices, correlations, distributive analysis |
median_price | Quantitative Continuous | Ratio | All indices, correlations, price analysis |
listings | Quantitative Discrete | Ratio | All indices, correlations, supply-demand analysis |
months_inventory | Quantitative Continuous | Ratio | All indices, correlations, inventory cycle analysis |
The year
and month
variables constitute a
structured temporal dimension that enables time series
analysis. The combination of these variables allows for: -
Monthly time series to identify trends and seasonality
- Autocorrelation analysis to verify temporal
dependence - Seasonal decomposition to isolate trend,
seasonal, and irregular components - Stationarity
analysis to validate statistical stability assumptions
# Load data
df <- read_csv("texas_data.csv", show_col_types = FALSE)
# Verify dataset structure after loading
cat("Dataset Information:\n")
## Dataset Information:
## - Observations: 240
## - Variables: 8
## - Period: 2010 - 2014
## - Cities: 4
## spc_tbl_ [240 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ city : chr [1:240] "Beaumont" "Beaumont" "Beaumont" "Beaumont" ...
## $ year : num [1:240] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ month : num [1:240] 1 2 3 4 5 6 7 8 9 10 ...
## $ sales : num [1:240] 83 108 182 200 202 189 164 174 124 150 ...
## $ volume : num [1:240] 14.2 17.7 28.7 26.8 28.8 ...
## $ median_price : num [1:240] 163800 138200 122400 123200 123100 ...
## $ listings : num [1:240] 1533 1586 1689 1708 1771 ...
## $ months_inventory: num [1:240] 9.5 10 10.6 10.6 10.9 11.1 11.7 11.6 11.7 11.5 ...
## - attr(*, "spec")=
## .. cols(
## .. city = col_character(),
## .. year = col_double(),
## .. month = col_double(),
## .. sales = col_double(),
## .. volume = col_double(),
## .. median_price = col_double(),
## .. listings = col_double(),
## .. months_inventory = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
city | year | month | sales | volume | median_price | listings | months_inventory |
---|---|---|---|---|---|---|---|
Beaumont | 2010 | 1 | 83 | 14.162 | 163800 | 1533 | 9.5 |
Beaumont | 2010 | 2 | 108 | 17.690 | 138200 | 1586 | 10.0 |
Beaumont | 2010 | 3 | 182 | 28.701 | 122400 | 1689 | 10.6 |
Beaumont | 2010 | 4 | 200 | 26.819 | 123200 | 1708 | 10.6 |
Beaumont | 2010 | 5 | 202 | 28.833 | 123100 | 1771 | 10.9 |
Beaumont | 2010 | 6 | 189 | 27.219 | 122800 | 1803 | 11.1 |
The dataset contains 240 monthly observations for 4 Texas metropolitan areas in the period 2010-2014.
Variables analyzed: - sales
: Number of
monthly sales - volume
: Transaction volume (millions USD) -
median_price
: Median housing price (USD) -
listings
: Number of active listings -
months_inventory
: Months of available inventory
# Calculate descriptive statistics
quant_vars <- c("sales", "volume", "median_price", "listings", "months_inventory")
stats_summary <- data.frame(
Variable = quant_vars,
Mean = round(sapply(quant_vars, function(x) mean(df[[x]], na.rm = TRUE)), 2),
Median = round(sapply(quant_vars, function(x) median(df[[x]], na.rm = TRUE)), 2),
Std_Dev = round(sapply(quant_vars, function(x) sd(df[[x]], na.rm = TRUE)), 2),
Coeff_Variation = round(sapply(quant_vars, function(x) {
mean_val <- mean(df[[x]], na.rm = TRUE)
sd_val <- sd(df[[x]], na.rm = TRUE)
if(mean_val != 0) (sd_val / mean_val) * 100 else NA
}), 2)
)
# Rename variables for presentation
stats_summary$Variable <- c("Monthly Sales", "Transaction Volume ($M)",
"Median Price ($)", "Active Listings", "Months Inventory")
kable(stats_summary,
caption = "Descriptive Statistics - Core Market Variables",
col.names = c("Variable", "Mean", "Median", "Std Dev", "Coeff Variation (%)"))
Variable | Mean | Median | Std Dev | Coeff Variation (%) | |
---|---|---|---|---|---|
sales | Monthly Sales | 192.29 | 175.50 | 79.65 | 41.42 |
volume | Transaction Volume (\(M) | 31.01| 27.06| 16.65| 53.71| |median_price |Median Price (\)) | 132665.42 | 134500.00 | 22662.15 | 17.08 |
listings | Active Listings | 1738.02 | 1618.50 | 752.71 | 43.31 |
months_inventory | Months Inventory | 9.19 | 8.95 | 2.30 | 25.06 |
# Identify most variable
most_variable_var <- quant_vars[which.max(stats_summary$Coeff_Variation)]
max_coefficient_variation <- max(stats_summary$Coeff_Variation, na.rm = TRUE)
The analysis reveals that transaction volume presents the highest relative dispersion (CV = 53.71%), consistent with real estate cycle literature that documents high volume elasticity to macroeconomic conditions.
# Price distribution analysis
price_data <- df$median_price
# Calculate Gini coefficient for price distribution
calculate_gini_coefficient <- function(x) {
x <- sort(x)
n <- length(x)
gini_value <- (2 * sum((1:n) * x)) / (n * sum(x)) - (n + 1) / n
return(gini_value)
}
gini_index <- round(calculate_gini_coefficient(price_data), 4)
# Dynamic interpretation based on calculated Gini value
concentration_level <- if(gini_index > 0.7) "HIGH" else if(gini_index > 0.4) "MODERATE" else "LOW"
concentration_level_lower <- tolower(concentration_level)
# Histogram
hist(price_data,
breaks = 15,
main = "Empirical Distribution of Median Prices",
xlab = "Median Price (USD)",
ylab = "Frequency",
col = "lightsteelblue",
border = "navy",
prob = FALSE,
xaxt = "n")
# Custom x-axis with readable labels
axis(1, at = seq(80000, 200000, 20000),
labels = paste0("$", seq(80, 200, 20), "K"))
# Overlay density curve (scaled to histogram)
hist_data <- hist(price_data, breaks = 15, plot = FALSE)
density_data <- density(price_data)
density_scaled <- density_data$y * length(price_data) * diff(hist_data$breaks)[1]
lines(density_data$x, density_scaled, col = "red", lwd = 2)
## Concentration Index: 0.0968
cat("Interpretation:",
if(gini_index > 0.7) "HIGH Concentration" else if(gini_index > 0.4) "MODERATE Concentration" else "LOW Concentration")
## Interpretation: LOW Concentration
The Gini coefficient (0.097) indicates low concentration in price distribution.
# Analysis by city
city_analysis <- df %>%
group_by(city) %>%
summarise(
n_observations = n(),
mean_sales = round(mean(sales, na.rm = TRUE), 1),
mean_median_price = round(mean(median_price, na.rm = TRUE), 0),
total_volume = round(sum(volume, na.rm = TRUE), 1),
mean_listings = round(mean(listings, na.rm = TRUE), 0),
cv_sales = round((sd(sales, na.rm = TRUE) / mean(sales, na.rm = TRUE)) * 100, 2),
.groups = 'drop'
) %>%
arrange(desc(mean_median_price))
# Performance table
city_performance <- city_analysis %>%
select(city, mean_median_price, mean_sales, total_volume, cv_sales) %>%
mutate(
price_rank = row_number(),
volume_rank = rank(desc(total_volume))
)
kable(city_performance,
caption = "Comparative Performance by Metropolitan Area",
col.names = c("MSA", "Median Price ($)", "Average Sales", "Total Volume ($M)",
"Volatility (%)", "Price Rank", "Volume Rank"))
MSA | Median Price (\()| Average Sales| Total Volume (\)M) | Volatility (%) | Price Rank | Volume Rank | ||
---|---|---|---|---|---|---|
Bryan-College Station | 157488 | 206.0 | 2291.5 | 41.26 | 1 | 2 |
Tyler | 141442 | 269.8 | 2746.0 | 22.97 | 2 | 1 |
Beaumont | 129988 | 177.4 | 1567.9 | 23.39 | 3 | 3 |
Wichita Falls | 101743 | 116.1 | 835.8 | 19.09 | 4 | 4 |
# Identify leaders dynamically
price_leader_city <- city_analysis$city[1]
price_leader_value <- city_analysis$mean_median_price[1]
volume_leader_city <- city_analysis$city[which.max(city_analysis$total_volume)]
volume_leader_value <- max(city_analysis$total_volume)
# Visualization of prices by city
ggplot(city_analysis, aes(x = reorder(city, mean_median_price))) +
geom_col(aes(y = mean_median_price/1000), fill = "#1f77b4", alpha = 0.8, width = 0.6) +
geom_text(aes(y = mean_median_price/1000,
label = paste0("$", format(round(mean_median_price/1000), big.mark = ","), "K")),
hjust = -0.1, size = 3.5, fontface = "bold") +
coord_flip() +
labs(
title = "Median Price Stratification by Metropolitan Area",
subtitle = "Observation period: 2010-2014",
x = NULL,
y = "Median Price (thousands USD)",
caption = "Source: Analysis of Texas MLS data"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold"),
plot.subtitle = element_text(size = 11),
plot.caption = element_text(size = 9, color = "gray60")
)
Bryan-College Station emerges as a premium market ($157,488 median price), while Tyler dominates in transaction volumes ($2,746M).
# Calculate growth rates
annual_city_data <- df %>%
group_by(city, year) %>%
summarise(
annual_median_price = median(median_price, na.rm = TRUE),
.groups = 'drop'
)
growth_analysis <- annual_city_data %>%
arrange(city, year) %>%
group_by(city) %>%
mutate(
price_growth_rate = ((annual_median_price - lag(annual_median_price)) / lag(annual_median_price)) * 100
) %>%
ungroup()
growth_summary <- growth_analysis %>%
filter(!is.na(price_growth_rate)) %>%
group_by(city) %>%
summarise(
avg_growth_rate = round(mean(price_growth_rate, na.rm = TRUE), 2),
years_data = n(),
.groups = 'drop'
) %>%
arrange(desc(avg_growth_rate))
kable(growth_summary,
caption = "Annual Price Growth Rates by MSA",
col.names = c("Metropolitan Area", "Average Growth (%)", "Years of Data"))
Metropolitan Area | Average Growth (%) | Years of Data |
---|---|---|
Tyler | 3.12 | 4 |
Bryan-College Station | 3.05 | 4 |
Wichita Falls | 1.49 | 4 |
Beaumont | 1.11 | 4 |
# Identify growth leader dynamically
growth_leader_city <- growth_summary$city[1]
growth_leader_value <- growth_summary$avg_growth_rate[1]
# Aggregate annual trends
annual_analysis <- df %>%
group_by(year) %>%
summarise(
mean_median_price = round(mean(median_price, na.rm = TRUE), 0),
total_sales = sum(sales, na.rm = TRUE),
total_volume = round(sum(volume, na.rm = TRUE), 2),
cv_price = round((sd(median_price, na.rm = TRUE) / mean(median_price, na.rm = TRUE)) * 100, 2),
.groups = 'drop'
) %>%
arrange(year)
# Temporal evolution chart
ggplot(annual_analysis, aes(x = year, y = mean_median_price)) +
geom_line(color = "#1f77b4", size = 1.5, alpha = 0.8) +
geom_point(color = "#1f77b4", size = 3) +
geom_text(aes(label = paste0("$", format(round(mean_median_price/1000), big.mark = ","), "K")),
vjust = -0.7, size = 3.5) +
labs(
title = "Evolution of Aggregate Median Price",
subtitle = "All metropolitan areas",
x = "Year",
y = "Median Price (USD)"
) +
theme_minimal() +
scale_y_continuous(labels = function(x) paste0("$", format(x/1000, big.mark = ","), "K")) +
scale_x_continuous(breaks = annual_analysis$year)
# Trend table
kable(annual_analysis,
caption = "Annual Market Evolution",
col.names = c("Year", "Median Price ($)", "Total Sales", "Total Volume ($M)", "Price CV (%)"))
Year | Median Price (\()| Total Sales| Total Volume (\)M) | Price CV (%) | ||
---|---|---|---|---|
2010 | 130192 | 8096 | 1232.44 | 16.76 |
2011 | 127854 | 7878 | 1207.58 | 16.67 |
2012 | 130077 | 8935 | 1404.84 | 16.48 |
2013 | 135723 | 10172 | 1687.32 | 15.99 |
2014 | 139481 | 11069 | 1909.07 | 18.37 |
# Boxplot 1: Median price distribution by city
price_boxplot <- ggplot(df, aes(x = reorder(city, median_price, median), y = median_price/1000)) +
geom_boxplot(aes(fill = city), alpha = 0.7, show.legend = FALSE) +
geom_jitter(width = 0.2, alpha = 0.3, size = 0.8) +
labs(title = "Median Price Distribution by City",
subtitle = "Comparison of intra-urban variability",
x = "Metropolitan Area",
y = "Median Price (thousands USD)") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(price_boxplot)
# Boxplot 2: Sales distribution by city
sales_boxplot <- ggplot(df, aes(x = reorder(city, sales, median), y = sales)) +
geom_boxplot(aes(fill = city), alpha = 0.7, show.legend = FALSE) +
labs(title = "Monthly Sales Distribution by City",
subtitle = "Analysis of sales volume variability",
x = "Metropolitan Area",
y = "Monthly Sales (units)") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(sales_boxplot)
# Boxplot 3: Sales by city and year (temporal comparison)
temporal_boxplot <- ggplot(df, aes(x = city, y = sales, fill = factor(year))) +
geom_boxplot(alpha = 0.8, position = "dodge") +
labs(title = "Sales Distribution Evolution: Cities vs Years",
subtitle = "Comparison of temporal volatility by geographic area",
x = "Metropolitan Area",
y = "Monthly Sales (units)",
fill = "Year") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(temporal_boxplot)
# Boxplot 4: Transaction volume by year
volume_boxplot <- ggplot(df, aes(x = factor(year), y = volume)) +
geom_boxplot(aes(fill = factor(year)), alpha = 0.7, show.legend = FALSE) +
geom_jitter(width = 0.2, alpha = 0.4) +
labs(title = "Transaction Volume Distribution by Year",
subtitle = "Evolution of variability over time",
x = "Year",
y = "Transaction Volume (millions USD)") +
theme_minimal() +
scale_y_continuous(labels = function(x) paste0("$", x, "M"))
print(volume_boxplot)
# Data preparation for seasonality
monthly_data <- df %>%
group_by(month, city) %>%
summarise(total_sales = sum(sales),
avg_sales = mean(sales),
.groups = 'drop')
# Chart 1: Stacked bars for seasonality
seasonal_stacked <- ggplot(monthly_data, aes(x = factor(month), y = total_sales, fill = city)) +
geom_col(position = "stack", alpha = 0.8) +
labs(title = "Seasonal Sales Patterns: Composition by City",
subtitle = "Relative contribution of each MSA to monthly total",
x = "Month",
y = "Total Sales (units)",
fill = "Metropolitan Area") +
theme_minimal() +
scale_x_discrete(labels = month.abb) +
scale_y_continuous(labels = function(x) format(x, big.mark = ","))
print(seasonal_stacked)
# Chart 2: Normalized bars (percentages)
seasonal_normalized <- ggplot(monthly_data, aes(x = factor(month), y = total_sales, fill = city)) +
geom_col(position = "fill", alpha = 0.8) +
labs(title = "Percentage Sales Composition by Month",
subtitle = "Relative share of each city on monthly total",
x = "Month",
y = "Proportion (%)",
fill = "Metropolitan Area") +
theme_minimal() +
scale_x_discrete(labels = month.abb) +
scale_y_continuous(labels = scales::percent_format())
print(seasonal_normalized)
# Chart 3: Multi-annual seasonal patterns
yearly_monthly <- df %>%
group_by(year, month, city) %>%
summarise(avg_sales = mean(sales), .groups = 'drop')
multi_annual_seasonal <- ggplot(yearly_monthly, aes(x = factor(month), y = avg_sales, fill = city)) +
geom_col(position = "dodge", alpha = 0.7) +
facet_wrap(~year, labeller = label_both) +
labs(title = "Multi-Annual Seasonal Patterns by City",
subtitle = "Evolution of seasonal cycles in the 2010-2014 period",
x = "Month",
y = "Average Sales (units)",
fill = "MSA") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
strip.text = element_text(size = 9, face = "bold")) +
scale_x_discrete(labels = month.abb[1:12]) +
scale_y_continuous(labels = function(x) format(x, big.mark = ","))
print(multi_annual_seasonal)
# Time series data preparation
ts_data <- df %>%
mutate(time_period = year + (month - 1)/12) %>%
arrange(city, year, month)
# Line Chart 1: Median price evolution by city
price_evolution <- ggplot(ts_data, aes(x = time_period, y = median_price/1000, color = city)) +
geom_line(size = 1.2, alpha = 0.8) +
geom_smooth(method = "loess", se = FALSE, size = 0.8, linetype = "dashed") +
labs(title = "Temporal Evolution of Median Prices",
subtitle = "Trends and smooth curves for cyclical pattern identification",
x = "Year",
y = "Median Price (thousands USD)",
color = "Metropolitan Area") +
theme_minimal() +
scale_x_continuous(breaks = seq(2010, 2014, 1),
labels = c("2010", "2011", "2012", "2013", "2014")) +
scale_y_continuous(labels = function(x) paste0("$", x, "K"))
print(price_evolution)
# Line Chart 2: Transaction volume dynamics
volume_dynamics <- ggplot(ts_data, aes(x = time_period, y = volume, color = city)) +
geom_line(size = 1.1, alpha = 0.7) +
geom_point(size = 1.5, alpha = 0.6) +
labs(title = "Transaction Volume Dynamics by City",
subtitle = "Identification of temporal shocks and recovery patterns",
x = "Year",
y = "Transaction Volume (millions USD)",
color = "Metropolitan Area") +
theme_minimal() +
scale_x_continuous(breaks = seq(2010, 2014, 1),
labels = c("2010", "2011", "2012", "2013", "2014")) +
scale_y_continuous(labels = function(x) paste0("$", x, "M"))
print(volume_dynamics)
# Line Chart 3: Composite activity indicator
activity_index <- ts_data %>%
group_by(city) %>%
mutate(
sales_normalized = scale(sales)[,1],
volume_normalized = scale(volume)[,1],
activity_index = sales_normalized + volume_normalized
) %>%
ungroup()
composite_activity <- ggplot(activity_index, aes(x = time_period, y = activity_index, color = city)) +
geom_line(size = 1.3, alpha = 0.8) +
geom_hline(yintercept = 0, linetype = "dashed", alpha = 0.5) +
labs(title = "Composite Market Activity Index",
subtitle = "Normalized synthesis of sales and volumes for relative comparisons",
x = "Year",
y = "Activity Index (standardized)",
color = "Metropolitan Area") +
theme_minimal() +
scale_x_continuous(breaks = seq(2010, 2014, 1),
labels = c("2010", "2011", "2012", "2013", "2014")) +
scale_y_continuous(labels = function(x) round(x, 1))
print(composite_activity)
# Correlation matrix calculation
correlation_vars <- c("sales", "volume", "median_price", "listings", "months_inventory")
correlation_matrix <- df %>%
select(all_of(correlation_vars)) %>%
cor(use = "complete.obs")
# Visualization
corrplot(correlation_matrix,
method = "color",
type = "upper",
order = "hclust",
tl.col = "black",
tl.srt = 45,
addCoef.col = "black",
number.cex = 0.8)
# Dynamic correlation interpretation
sales_volume_corr <- round(correlation_matrix["sales", "volume"], 3)
sales_inventory_corr <- round(correlation_matrix["sales", "months_inventory"], 3)
kable(round(correlation_matrix, 3),
caption = "Correlation Matrix - Market Variables")
sales | volume | median_price | listings | months_inventory | |
---|---|---|---|---|---|
sales | 1.000 | 0.976 | 0.590 | 0.621 | 0.147 |
volume | 0.976 | 1.000 | 0.704 | 0.570 | 0.055 |
median_price | 0.590 | 0.704 | 1.000 | 0.396 | -0.035 |
listings | 0.621 | 0.570 | 0.396 | 1.000 | 0.735 |
months_inventory | 0.147 | 0.055 | -0.035 | 0.735 | 1.000 |
The correlations observed confirm expected economic mechanisms: Sales-Volume (r = 0.976) shows strong direct relationship.
# Calculate probabilities dynamically
total_observations <- nrow(df)
probability_events <- data.frame(
Event = c("City = Beaumont", "Month = July", "December 2012"),
Probability = c(
round(sum(df$city == "Beaumont") / total_observations, 4),
round(sum(df$month == 7) / total_observations, 4),
round(sum(df$month == 12 & df$year == 2012) / total_observations, 4)
),
Count = c(
sum(df$city == "Beaumont"),
sum(df$month == 7),
sum(df$month == 12 & df$year == 2012)
),
Total = rep(total_observations, 3)
) %>%
mutate(Percentage = round(Probability * 100, 2))
kable(probability_events,
caption = "Probability Analysis of Key Events")
Event | Probability | Count | Total | Percentage |
---|---|---|---|---|
City = Beaumont | 0.2500 | 60 | 240 | 25.00 |
Month = July | 0.0833 | 20 | 240 | 8.33 |
December 2012 | 0.0167 | 4 | 240 | 1.67 |
# Calculate derived variables
df_enhanced <- df %>%
mutate(
average_transaction_value = ifelse(sales > 0, (volume * 1000000) / sales, NA),
market_efficiency_ratio = ifelse(listings > 0, sales / listings, NA),
inventory_turnover_rate = ifelse(months_inventory > 0, 1 / months_inventory, NA)
)
# Summary of derived variables
derived_summary_stats <- df_enhanced %>%
summarise(
avg_transaction_mean = round(mean(average_transaction_value, na.rm = TRUE), 0),
efficiency_mean = round(mean(market_efficiency_ratio, na.rm = TRUE), 3),
turnover_mean = round(mean(inventory_turnover_rate, na.rm = TRUE), 3),
correlation_derived_median = round(cor(average_transaction_value, median_price, use = "complete.obs"), 3)
)
derived_variables_table <- data.frame(
Indicator = c("Average Transaction Value", "Market Efficiency Ratio", "Inventory Turnover Rate"),
Mean = c(
paste0("$", format(derived_summary_stats$avg_transaction_mean, big.mark = ",")),
derived_summary_stats$efficiency_mean,
derived_summary_stats$turnover_mean
),
Interpretation = c(
"Average value per transaction",
"Listing-to-sale conversion efficiency",
"Inventory rotation speed"
)
)
kable(derived_variables_table,
caption = "Derived Performance Indicators")
Indicator | Mean | Interpretation |
---|---|---|
Average Transaction Value | $154,320 | Average value per transaction |
Market Efficiency Ratio | 0.119 | Listing-to-sale conversion efficiency |
Inventory Turnover Rate | 0.117 | Inventory rotation speed |
cat("Correlation Average Transaction Value vs Median Price:", derived_summary_stats$correlation_derived_median)
## Correlation Average Transaction Value vs Median Price: 0.946
This comprehensive analysis of the Texas real estate market (2010-2014) reveals distinct geographic and temporal patterns. The identification of Bryan-College Station as price leader and Tyler as volume leader provides clear strategic direction for market positioning.
The methodology developed provides a replicable framework for ongoing market analysis and strategic decision-making in regional real estate markets.
Analysis conducted using R v4.3.0. Complete reproducible methodology with automated insights generation.
Report generated: 2025-08-16 | Author: Claudio Urbani | Texas Realty Insights