#Imagen

#modelo econometrico

¿Que factores afectan el precio de una escuela?

modelo economico Ubicacion Prestigio Tasa de graduados

Precio de colegiatura = f (Ubicacion, prestigio y tasa de graduados) Modelo economico

Especificaciones =

Costos de colegiatura = B0+B1Ubicacion+B2Prestigio+B3*Tasa de graduados+U Modelo econometrico

#good to great

Si pero depende de la empresa, las empresas tienen diferentes fases y una de ellas son las bases del negocio, si se encuentra en etapa de madurez el negocio deberia principalmente buscar plantar sus bases

#app shiny https://mauriciovela201102.shinyapps.io/SHinyappma/

#Panel en equipos

#Actividad 1 patentes


# install.packages("WDI")
library(WDI)
# install.packages("wbstats")
library(wbstats)
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# install.packages("plm") # Paquete para realizar modelos lineales para datos de panel
library(plm)
## 
## Adjuntando el paquete: 'plm'
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, lag, lead
#Install gplot
library(gplots)
## 
## Adjuntando el paquete: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
#lmtest
library(lmtest)
## Cargando paquete requerido: zoo
## 
## Adjuntando el paquete: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(readxl)
patentes <-read_excel("C:/Users/Mauri/Downloads/PATENT 3.xls")
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.227   1st Qu.:  5.128  
##  Median :501116   Median :0.0000   Median :  3.842   Median :  7.585  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 15.442   3rd Qu.: 10.501  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##                                    NA's   :21        NA's   :8        
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##                                    NA's   :2                             
##     rndeflt             rndstck              sales                sic      
##  Min.   :   0.0000   Min.   :   0.1253   Min.   :    1.222   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.1520   1st Qu.:   52.995   1st Qu.:2890  
##  Median :   1.4764   Median :  13.3532   Median :  174.065   Median :3531  
##  Mean   :  19.7238   Mean   : 163.8234   Mean   : 1219.601   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.:  74.5625   3rd Qu.:  728.964   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.3516   Max.   :44224.000   Max.   :9997  
##                      NA's   :157         NA's   :3                         
##       year     
##  Min.   :2012  
##  1st Qu.:2014  
##  Median :2016  
##  Mean   :2016  
##  3rd Qu.:2019  
##  Max.   :2021  
## 
str(patentes)
## tibble [2,260 × 13] (S3: tbl_df/tbl/data.frame)
##  $ cusip   : num [1:2260] 800 800 800 800 800 800 800 800 800 800 ...
##  $ merger  : num [1:2260] 0 0 0 0 0 0 0 0 0 0 ...
##  $ employ  : num [1:2260] 9.85 12.32 12.2 11.84 12.99 ...
##  $ return  : num [1:2260] 5.82 5.69 4.42 5.28 4.91 ...
##  $ patents : num [1:2260] 22 34 31 32 40 60 57 77 38 5 ...
##  $ patentsg: num [1:2260] 24 32 30 34 28 33 53 47 64 70 ...
##  $ stckpr  : num [1:2260] 47.6 57.9 33 38.5 35.1 ...
##  $ rnd     : num [1:2260] 2.56 3.1 3.27 3.24 3.78 ...
##  $ rndeflt : num [1:2260] 2.56 2.91 2.8 2.52 2.78 ...
##  $ rndstck : num [1:2260] 16.2 17.4 19.6 21.9 23.1 ...
##  $ sales   : num [1:2260] 344 436 535 567 631 ...
##  $ sic     : num [1:2260] 3740 3740 3740 3740 3740 3740 3740 3740 3740 3740 ...
##  $ year    : num [1:2260] 2012 2013 2014 2015 2016 ...
patentes$employ[is.na(patentes$employ)]<-mean(patentes$employ, na.rm = TRUE)
patentes$return[is.na(patentes$return)]<-mean(patentes$return, na.rm = TRUE)
patentes$stckpr[is.na(patentes$stckpr)]<-mean(patentes$stckpr, na.rm = TRUE)
patentes$rndstck[is.na(patentes$rndstck)]<-mean(patentes$rndstck, na.rm = TRUE)
patentes$sales[is.na(patentes$sales)]<-mean(patentes$sales, na.rm = TRUE)
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.242   1st Qu.:  5.139  
##  Median :501116   Median :0.0000   Median :  3.893   Median :  7.601  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 16.034   3rd Qu.: 10.473  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##     rndeflt             rndstck              sales                sic      
##  Min.   :   0.0000   Min.   :   0.1253   Min.   :    1.222   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.5882   1st Qu.:   53.204   1st Qu.:2890  
##  Median :   1.4764   Median :  16.2341   Median :  174.283   Median :3531  
##  Mean   :  19.7238   Mean   : 163.8234   Mean   : 1219.601   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.: 119.1048   3rd Qu.:  743.422   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.3516   Max.   :44224.000   Max.   :9997  
##       year     
##  Min.   :2012  
##  1st Qu.:2014  
##  Median :2016  
##  Mean   :2016  
##  3rd Qu.:2019  
##  Max.   :2021
sum(is.na(patentes))#NA en la base de datos
## [1] 0
boxplot(patentes$cusip             , horizontal=TRUE)

boxplot(patentes$merger            , horizontal=TRUE)

boxplot(patentes$employ             , horizontal=TRUE)

boxplot(patentes$return            , horizontal=TRUE)

boxplot(patentes$patents          , horizontal=TRUE)

boxplot(patentes$patentsg       , horizontal=TRUE)

boxplot(patentes$stckpr               , horizontal=TRUE)

boxplot(patentes$rnd                , horizontal=TRUE)

boxplot(patentes$rndeflt              , horizontal=TRUE)

boxplot(patentes$rndstck               , horizontal=TRUE)

boxplot(patentes$sales           , horizontal=TRUE)

boxplot(patentes$sic             , horizontal=TRUE)

boxplot(patentes$year      , horizontal=TRUE)

patentes$year <- patentes$year -40
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.242   1st Qu.:  5.139  
##  Median :501116   Median :0.0000   Median :  3.893   Median :  7.601  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 16.034   3rd Qu.: 10.473  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##     rndeflt             rndstck              sales                sic      
##  Min.   :   0.0000   Min.   :   0.1253   Min.   :    1.222   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.5882   1st Qu.:   53.204   1st Qu.:2890  
##  Median :   1.4764   Median :  16.2341   Median :  174.283   Median :3531  
##  Mean   :  19.7238   Mean   : 163.8234   Mean   : 1219.601   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.: 119.1048   3rd Qu.:  743.422   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.3516   Max.   :44224.000   Max.   :9997  
##       year     
##  Min.   :1972  
##  1st Qu.:1974  
##  Median :1976  
##  Mean   :1976  
##  3rd Qu.:1979  
##  Max.   :1981
#Generar conjunto de datos de panel
panel_patentes <- pdata.frame(patentes, index = c("cusip","year"))
plotmeans(patents ~ cusip ,main = "Prueba de heterogeneidad", data = panel_patentes)

pooled_patentes <- plm(patents ~ merger + employ + return + stckpr+ rnd + sales + sic, data = panel_patentes, model = "pooling" )
summary(pooled_patentes)
## Pooling Model
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "pooling")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -320.36212  -10.01555    0.94472    7.40861  433.86316 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept) -4.1831e-01  5.2757e+00 -0.0793   0.93681    
## merger      -1.1612e+01  7.2433e+00 -1.6031   0.10905    
## employ       1.3683e+00  4.1969e-02 32.6040 < 2.2e-16 ***
## return      -4.3505e-03  1.8155e-01 -0.0240   0.98088    
## stckpr       6.5137e-01  4.3139e-02 15.0994 < 2.2e-16 ***
## rnd         -1.3853e-01  1.6106e-02 -8.6007 < 2.2e-16 ***
## sales       -3.2049e-03  4.6962e-04 -6.8246  1.13e-11 ***
## sic         -2.6894e-03  1.4820e-03 -1.8146   0.06972 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    10998000
## Residual Sum of Squares: 4600300
## R-Squared:      0.58173
## Adj. R-Squared: 0.58043
## F-statistic: 447.437 on 7 and 2252 DF, p-value: < 2.22e-16
#Modelo 2. Efectos fijos (within) Cuando las diferencias no observadas son constantes en el tiempo
within_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "within" )
summary(within_patentes)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "within")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -497.22898   -1.64569   -0.19669    1.64341  184.49423 
## 
## Coefficients:
##           Estimate  Std. Error  t-value  Pr(>|t|)    
## merger  3.30904770  4.16313684   0.7948   0.42680    
## employ  0.11963128  0.07052503   1.6963   0.08998 .  
## return -0.07056694  0.10867769  -0.6493   0.51620    
## stckpr -0.01107952  0.03242512  -0.3417   0.73262    
## rnd    -0.19889614  0.01443066 -13.7829 < 2.2e-16 ***
## sales  -0.00309052  0.00041525  -7.4426 1.451e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1091400
## Residual Sum of Squares: 819280
## R-Squared:      0.24935
## Adj. R-Squared: 0.16385
## F-statistic: 112.278 on 6 and 2028 DF, p-value: < 2.22e-16
#Prueba
pFtest(within_patentes, pooled_patentes)
## 
##  F test for individual effects
## 
## data:  patents ~ merger + employ + return + stckpr + rnd + sales + sic
## F = 41.782, df1 = 224, df2 = 2028, p-value < 2.2e-16
## alternative hypothesis: significant effects
" Si el P value es <0.05 se avanza a los siguientes modelos"
## [1] " Si el P value es <0.05 se avanza a los siguientes modelos"
#Modelo 3. Efectos aleatorios - Metodo walhus. Cuando las diferencias no obsevadas son aleatorias
walhus_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method = "walhus" )
summary(walhus_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "walhus")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  555.26   23.56 0.273
## individual    1480.26   38.47 0.727
## theta: 0.8099
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -433.72438   -3.89667   -1.76198    0.78484  211.91016 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept) 11.84397257 12.78087032  0.9267    0.3541    
## merger       4.47647107  4.51685216  0.9911    0.3217    
## employ       1.10525428  0.04853786 22.7710 < 2.2e-16 ***
## return      -0.12920955  0.11762230 -1.0985    0.2720    
## stckpr       0.17097726  0.03355374  5.0956 3.476e-07 ***
## rnd         -0.14575073  0.01469317 -9.9196 < 2.2e-16 ***
## sales       -0.00393738  0.00042854 -9.1880 < 2.2e-16 ***
## sic         -0.00107515  0.00376075 -0.2859    0.7750    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1449600
## Residual Sum of Squares: 1098300
## R-Squared:      0.24236
## Adj. R-Squared: 0.24
## Chisq: 720.388 on 7 DF, p-value: < 2.22e-16
#Modelo 4. Efectos aleatorios - Metodo amemiya.
amemiya_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method = "amemiya" )
summary(amemiya_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "amemiya")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  402.79   20.07 0.051
## individual    7483.44   86.51 0.949
## theta: 0.9268
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -454.59697   -2.99704   -1.65272    0.59741  193.17353 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  8.58107091 29.77947247   0.2882    0.7732    
## merger       3.91351453  4.11354681   0.9514    0.3414    
## employ       0.49060426  0.06153621   7.9726 1.554e-15 ***
## return      -0.09427795  0.10733800  -0.8783    0.3798    
## stckpr       0.04660332  0.03163610   1.4731    0.1407    
## rnd         -0.17995961  0.01406835 -12.7918 < 2.2e-16 ***
## sales       -0.00342554  0.00040647  -8.4275 < 2.2e-16 ***
## sic          0.00425278  0.00877425   0.4847    0.6279    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1144500
## Residual Sum of Squares: 891720
## R-Squared:      0.22085
## Adj. R-Squared: 0.21842
## Chisq: 638.312 on 7 DF, p-value: < 2.22e-16
#Modelo 5. Efectos aleatorios - Metodo nerlove.
nerlove_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method = "nerlove" )
summary(nerlove_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "nerlove")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  362.51   19.04 0.046
## individual    7557.16   86.93 0.954
## theta: 0.9309
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -455.94828   -2.93752   -1.60035    0.62863  192.36375 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  8.38498937 31.41700295   0.2669    0.7896    
## merger       3.86675065  4.09938561   0.9433    0.3456    
## employ       0.46018862  0.06203371   7.4184 1.186e-13 ***
## return      -0.09236163  0.10697310  -0.8634    0.3879    
## stckpr       0.04167663  0.03156299   1.3204    0.1867    
## rnd         -0.18153379  0.01403810 -12.9315 < 2.2e-16 ***
## sales       -0.00339833  0.00040545  -8.3816 < 2.2e-16 ***
## sic          0.00451640  0.00925634   0.4879    0.6256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1138700
## Residual Sum of Squares: 885220
## R-Squared:      0.22262
## Adj. R-Squared: 0.22021
## Chisq: 644.925 on 7 DF, p-value: < 2.22e-16
# Comparar la r2 ajustada de los 3 metodos y elegir el que tenga el mayor.
phtest(walhus_patentes, within_patentes)
## 
##  Hausman Test
## 
## data:  patents ~ merger + employ + return + stckpr + rnd + sales + sic
## chisq = 352.48, df = 6, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
#Si el p-value es <0.05, usamos efectos fijos (within)

#Por lo tanto nos quedamos con el modelo de efectos fijos (within)

#paso 4 pruebas de heterosticidady autocorrlacion serial

#prueba de hetereosticidad
bptest(within_patentes)
## 
##  studentized Breusch-Pagan test
## 
## data:  within_patentes
## BP = 1447.6, df = 7, p-value < 2.2e-16
#si el p values en menosde 0.05 hay heterocedasticidad en los residuos(problema detectado)

#pruieba deautocorrelacion serial
pwartest(within_patentes)
## 
##  Wooldridge's test for serial correlation in FE panels
## 
## data:  within_patentes
## F = 104.29, df1 = 1, df2 = 2032, p-value < 2.2e-16
## alternative hypothesis: serial correlation
#si el p value es menos de 0.05 hay autocorrelacion serial en los errores(que es problema detectado)
#modelo de correlacion con erroresesstandar robuztos
coeficientes_corregidos <- coeftest(within_patentes, vcov = vcovHC(within_patentes, type = "HC0"))
solo_coeficientes <- coeficientes_corregidos[,1]
#generar pronosticos y evaluar modelo
datos_de_prueba <- data.frame(merger =0, employ =10, return =6,  stckpr =48, rnd =3, sales =344)
prediccion <- sum(solo_coeficientes*datos_de_prueba)
prediccion
## [1] -1.418735

![]