R Markdown

#EJERCICIO EN CLASE (Análisis de Datos de Toros, ej.1.26)
#Parte (a): Cálculo de estadísticos y correlaciones
bull_data <- read.table("C:/Users/dell/Documents/rmarkdown/T1-10.dat", header = FALSE)
nombres_columnas <- c("V1", "V2", "V3","V4", "V5", "V6","V7", "V8", "V9")  
colnames(bull_data) <- nombres_columnas
# Seleccionar solo las variables numéricas para el análisis
numeric_data <- bull_data[, c("V3", "V4", "V5", "V6", "V7", "V8", "V9")]
# Calcular vector de medias
mean_vector <- colMeans(numeric_data);mean_vector
##           V3           V4           V5           V6           V7           V8 
##   50.5223684  995.9473684   70.8815789    6.3157895    0.1967105   54.1263158 
##           V9 
## 1555.2894737
# Calcular matriz de covarianza
cov_matrix <- cov(numeric_data);cov_matrix
##              V3          V4          V5          V6           V7           V8
## V3   2.99802632  100.130526   2.9600175  1.50884211 -0.053392105   2.98313684
## V4 100.13052632 8594.343860 209.5043509 51.95017544 -1.398175439 129.94007018
## V5   2.96001754  209.504351  10.6916561  1.45922807 -0.142994737   3.41422456
## V6   1.50884211   51.950175   1.4592281  0.85894737 -0.021614035   1.48757895
## V7  -0.05339211   -1.398175  -0.1429947 -0.02161404  0.008022368  -0.05064561
## V8   2.98313684  129.940070   3.4142246  1.48757895 -0.050645614   4.01796491
## V9  82.81077193 6680.308772  83.9254035 44.32070175  2.412964912 147.28961404
##              V9
## V3    82.810772
## V4  6680.308772
## V5    83.925404
## V6    44.320702
## V7     2.412965
## V8   147.289614
## V9 16850.661754
# Calcular matriz de correlación
cor_matrix <- cor(numeric_data);cor_matrix 
##            V3         V4         V5         V6         V7         V8        V9
## V3  1.0000000  0.6237958  0.5228223  0.9402488 -0.3442770  0.8595129 0.3684348
## V4  0.6237958  1.0000000  0.6911371  0.6046407 -0.1683852  0.6992519 0.5551134
## V5  0.5228223  0.6911371  1.0000000  0.4815234 -0.4882545  0.5209146 0.1977254
## V6  0.9402488  0.6046407  0.4815234  1.0000000 -0.2603762  0.8007440 0.3683960
## V7 -0.3442770 -0.1683852 -0.4882545 -0.2603762  1.0000000 -0.2820899 0.2075349
## V8  0.8595129  0.6992519  0.5209146  0.8007440 -0.2820899  1.0000000 0.5660575
## V9  0.3684348  0.5551134  0.1977254  0.3683960  0.2075349  0.5660575 1.0000000
# Interpretación de correlaciones
# Podemos visualizar la matriz de correlación
library(corrplot)
## corrplot 0.92 loaded
corrplot(cor_matrix,  method = "ellipse", type = "upper")

# Análisis por raza
# Calcular medias por raza
media_V1 <- aggregate(numeric_data, by = list(V1 = bull_data$V1), FUN = mean);media_V1
##   V1       V3        V4       V5       V6        V7       V8       V9
## 1  1 49.88750  969.2188 69.80938 6.062500 0.2500000 53.55000 1551.719
## 2  5 49.15294  940.0588 68.53529 5.588235 0.2147059 52.19412 1501.941
## 3  8 52.13704 1062.8148 73.62963 7.074074 0.1222222 56.02593 1593.111
##Parte (b): Visualización 3D (Breed, Frame, BkFat)
library(plotly)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.3
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout

library(RColorBrewer)

# Paleta de colores
colors <- brewer.pal(length(unique(bull_data$Breed)), "Set1")
## Warning in brewer.pal(length(unique(bull_data$Breed)), "Set1"): minimal value for n is 3, returning requested palette with 3 different levels
# Gráfico 3D 
plot_ly(bull_data, 
        x = ~V6, 
        y = ~V7, 
        z = ~V1,
        color = ~as.factor(V1),
        colors = colors,
        type = "scatter3d",
        mode = "markers",
        marker = list(size = 5),
        text = ~paste("Breed:", V1, "<br>Frame:", V6, "<br>BkFat:", V7),
        hoverinfo = "text") %>%
  layout(scene = list(
    xaxis = list(title = "Frame"),
    yaxis = list(title = "BkFat (inches)"),
    zaxis = list(title = "Breed"),
    title = "Visualización 3D: Breed vs Frame vs BkFat"
  ))
#EJERCICIO 2.30
# Datos del problema
#Vector de medias 
mu <- c(4, 3, 2, 1) 
Sigma <- matrix(c(3, 0, 2, 2,
                    0, 1, 1, 0,
                    2, 1, 9, -2,
                    2, 0, -2, 4), nrow = 4)

# Particiones
mu1 <- c(1, 2)  
mu2 <- c(3, 4)  

# Matrices A y B
A <- matrix(c(1, 2), nrow = 1)
B <- matrix(c(1, -2, 2, -1), nrow = 2,byrow = TRUE)

#Inciso (a) 
#E(X^(1))
E_X1 <- mu[mu1];E_X1
## [1] 4 3
#Inciso (b) E(AX^(1))
E_AX1 <- A %*% E_X1;E_AX1
##      [,1]
## [1,]   10
#Inciso (c) Cov(X^(1))
Cov_X1 <- Sigma[mu1, mu1];Cov_X1
##      [,1] [,2]
## [1,]    3    0
## [2,]    0    1
#Inciso (d) Cov(AX^(1))
Cov_AX1 <- A %*% Cov_X1 %*% t(A);Cov_AX1
##      [,1]
## [1,]    7
#Inciso (e) E(X^(2))
E_X2 <- mu[mu2];E_X2
## [1] 2 1
#Inciso (f) E(BX^(2))
E_BX2 <- B %*% E_X2;E_BX2
##      [,1]
## [1,]    0
## [2,]    3
#Inciso (g) Cov(X^(2))
Cov_X2 <- Sigma[mu2, mu2];Cov_X2
##      [,1] [,2]
## [1,]    9   -2
## [2,]   -2    4
#Inciso (h) Cov(BX^(2))
Cov_BX2 <- B %*% Cov_X2 %*% t(B);Cov_BX2
##      [,1] [,2]
## [1,]   33   36
## [2,]   36   48
#Inciso (i) Cov(X^(1), X^(2))
Cov_X1_X2 <- Sigma[mu1, mu2];Cov_X1_X2
##      [,1] [,2]
## [1,]    2    2
## [2,]    1    0
#Inciso (j) Cov(AX^(1), BX^(2))
Cov_AX1_BX2 <- A %*% Cov_X1_X2 %*% t(B);Cov_AX1_BX2
##      [,1] [,2]
## [1,]    0    6
#Resultados 
E_X1
## [1] 4 3
E_AX1
##      [,1]
## [1,]   10
Cov_X1
##      [,1] [,2]
## [1,]    3    0
## [2,]    0    1
Cov_AX1
##      [,1]
## [1,]    7
E_X2
## [1] 2 1
E_BX2
##      [,1]
## [1,]    0
## [2,]    3
Cov_X2
##      [,1] [,2]
## [1,]    9   -2
## [2,]   -2    4
Cov_BX2
##      [,1] [,2]
## [1,]   33   36
## [2,]   36   48
Cov_X1_X2
##      [,1] [,2]
## [1,]    2    2
## [2,]    1    0
Cov_AX1_BX2
##      [,1] [,2]
## [1,]    0    6