1. Testing the Apriori ROIs for task-N interactions (& for
cov/var structure of Subject and Site)
uniroi_unharm_df$site <-ifelse(uniroi_unharm_df$sub < 3150,-1,1)
uniroi_unharm_df$val <- as.factor(uniroi_unharm_df$val)
contrasts(uniroi_unharm_df$val) <- contr.sum(2)
uniroi_unharm_df$proc <- as.factor(uniroi_unharm_df$proc)
contrasts(uniroi_unharm_df$proc) <- contr.sum(2)
uniroi_unharm_df$Age_c <- uniroi_unharm_df$Age - mean(uniroi_unharm_df$Age, na.rm=T)
uniroi_unharm_df$SexAtBirth <- as.numeric(uniroi_unharm_df$SexAtBirth)
uniroi_unharm_df$SexAtBirth <- uniroi_unharm_df$SexAtBirth - 1
dACC model(s): checking cor structure and site variance
# Test 1: repeated measure subject correlation structure
#corsymm
nositemodel1dacc <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(nositemodel1dacc)
#compsymm
nositemodel2dacc <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(nositemodel2dacc)
# Testing difference of fit between models
anova(nositemodel1dacc,nositemodel2dacc)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1dacc 1 20 -193.7674 -115.6058 116.8837
## nositemodel2dacc 2 15 -184.3722 -125.7509 107.1861 1 vs 2 19.39526 0.0016
# Test 2: site var/cov structure
# Different var/cov by Site
sitemodel1dacc <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
#summary(sitemodel1dacc)
# Common var/cov by Site
sitemodel2dacc <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(sitemodel2dacc)
#anova(sitemodel2dacc)
# Testing difference of fit between models
anova(sitemodel1dacc,sitemodel2dacc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1dacc 1 21 -192.2215 -110.1518 117.1108
## sitemodel2dacc 2 20 -193.7674 -115.6058 116.8837 1 vs 2 0.4541063 0.5004
dACC model(s): comparing more complex N, dpression, and anxiety
models
dacc_N <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_N)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -193.7674 -115.6058 116.8837
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.692
## 3 0.633 0.718
## 4 0.661 0.793 0.823
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3183443 0.20400255 1.560492 0.1195
## val1 -0.0034291 0.00735352 -0.466326 0.6413
## proc1 0.0170966 0.00724236 2.360641 0.0188
## N_z -0.0124206 0.02831053 -0.438726 0.6611
## dep_composite 0.0576635 0.05915113 0.974851 0.3303
## anx_composite -0.0410562 0.05235420 -0.784201 0.4334
## Age -0.0203510 0.00862274 -2.360156 0.0188
## SexAtBirth 0.0306140 0.05503597 0.556255 0.5784
## site -0.0276116 0.02580592 -1.069970 0.2854
## val1:proc1 0.0210895 0.00707412 2.981212 0.0031
## val1:N_z -0.0045431 0.00410192 -1.107560 0.2688
## proc1:N_z -0.0045812 0.00414219 -1.105977 0.2695
## val1:proc1:N_z -0.0133538 0.00402631 -3.316639 0.0010
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.003
## proc1 0.004 0.008
## N_z -0.251 -0.004 -0.005
## dep_composite 0.082 -0.007 0.006 -0.567
## anx_composite 0.165 0.007 -0.007 -0.242 -0.520
## Age -0.975 -0.001 -0.004 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.000 0.006 0.021 0.131 -0.320 0.110
## site 0.225 0.009 0.022 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.007 -0.024 -0.078 -0.006 0.013 -0.002 -0.006 -0.006 0.003
## val1:N_z -0.004 -0.426 -0.027 0.002 0.000 0.000 0.003 -0.001 -0.006
## proc1:N_z -0.008 -0.028 -0.393 -0.003 0.003 -0.002 0.009 -0.010 -0.009
## val1:proc1:N_z 0.001 0.014 0.035 -0.001 0.001 -0.006 -0.001 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.017
## proc1:N_z 0.036 0.027
## val1:proc1:N_z -0.398 0.024 -0.007
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.8876631 -0.6341294 -0.0043954 0.6621811 2.6032766
##
## Residual standard error: 0.2531437
## Degrees of freedom: 368 total; 355 residual
#depression with N and A as main effects only
dacc_D <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*dep_composite + N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_D)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * dep_composite + N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -191.3124 -113.1508 115.6562
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.699
## 3 0.631 0.707
## 4 0.659 0.793 0.818
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3175220 0.20399013 1.5565556 0.1205
## val1 -0.0055425 0.00673927 -0.8224260 0.4114
## proc1 0.0140180 0.00671522 2.0875017 0.0376
## dep_composite 0.0551072 0.05915346 0.9315968 0.3522
## N_z -0.0113352 0.02831108 -0.4003789 0.6891
## anx_composite -0.0407328 0.05235173 -0.7780601 0.4371
## Age -0.0203435 0.00862213 -2.3594461 0.0188
## SexAtBirth 0.0297296 0.05503216 0.5402232 0.5894
## site -0.0275245 0.02580497 -1.0666340 0.2869
## val1:proc1 0.0126014 0.00650825 1.9362217 0.0536
## val1:dep_composite -0.0086753 0.00763050 -1.1369223 0.2563
## proc1:dep_composite -0.0042165 0.00771321 -0.5466563 0.5850
## val1:proc1:dep_composite -0.0224372 0.00742597 -3.0214502 0.0027
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.002
## proc1 0.002 -0.005
## dep_composite 0.082 -0.007 0.008
## N_z -0.251 -0.004 -0.008 -0.568
## anx_composite 0.165 0.008 -0.008 -0.520 -0.242
## Age -0.975 0.000 -0.001 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.000 0.003 0.131 0.021 -0.320 0.110
## site 0.225 0.008 0.020 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.008 -0.011 -0.061 0.014 -0.006 -0.005 -0.006
## val1:dep_composite -0.004 -0.134 -0.045 0.002 -0.002 0.002 0.002
## proc1:dep_composite -0.006 -0.048 -0.066 -0.002 0.001 -0.002 0.007
## val1:proc1:dep_composite 0.003 0.003 0.036 0.014 -0.012 -0.007 0.000
## SxAtBr site vl1:p1 vl1:d_ prc1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.007 0.005
## val1:dep_composite 0.004 -0.004 0.009
## proc1:dep_composite -0.006 -0.011 0.038 0.011
## val1:proc1:dep_composite 0.001 -0.002 -0.049 0.025 -0.004
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.803215252 -0.625195960 -0.002566357 0.664085600 2.608132960
##
## Residual standard error: 0.2533421
## Degrees of freedom: 368 total; 355 residual
#Anxiety with N and D as main effects only
dacc_A <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*anx_composite + N_z + dep_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_A)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * anx_composite + N_z + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -188.5546 -110.3929 114.2773
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.691
## 3 0.640 0.714
## 4 0.666 0.796 0.809
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3168085 0.20432198 1.5505357 0.1219
## val1 -0.0061266 0.00675704 -0.9066958 0.3652
## proc1 0.0143301 0.00676821 2.1172718 0.0349
## anx_composite -0.0420012 0.05243841 -0.8009622 0.4237
## N_z -0.0116373 0.02835676 -0.4103892 0.6818
## dep_composite 0.0565398 0.05924508 0.9543368 0.3406
## Age -0.0202961 0.00863617 -2.3501285 0.0193
## SexAtBirth 0.0299359 0.05512129 0.5430916 0.5874
## site -0.0273646 0.02584636 -1.0587401 0.2904
## val1:proc1 0.0122433 0.00659357 1.8568600 0.0642
## val1:anx_composite -0.0083781 0.00769770 -1.0883951 0.2772
## proc1:anx_composite 0.0004776 0.00780727 0.0611763 0.9513
## val1:proc1:anx_composite -0.0189557 0.00756653 -2.5052041 0.0127
##
## Correlation:
## (Intr) val1 proc1 anx_cm N_z dp_cmp Age
## val1 0.002
## proc1 0.002 -0.011
## anx_composite 0.165 0.007 -0.007
## N_z -0.251 -0.003 -0.007 -0.242
## dep_composite 0.082 -0.007 0.007 -0.520 -0.567
## Age -0.975 0.001 -0.001 -0.089 0.173 -0.070
## SexAtBirth -0.275 0.000 0.003 -0.320 0.021 0.131 0.110
## site 0.225 0.008 0.019 0.085 -0.019 -0.084 -0.237
## val1:proc1 0.008 -0.011 -0.054 -0.005 -0.007 0.014 -0.006
## val1:anx_composite -0.002 -0.084 -0.018 0.007 -0.005 0.001 0.001
## proc1:anx_composite -0.006 -0.020 -0.051 -0.006 -0.001 0.003 0.005
## val1:proc1:anx_composite 0.002 0.031 0.014 -0.002 -0.009 0.005 -0.001
## SxAtBr site vl1:p1 vl1:n_ prc1:_
## val1
## proc1
## anx_composite
## N_z
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.006 0.004
## val1:anx_composite 0.001 -0.005 0.035
## proc1:anx_composite -0.004 -0.009 0.017 0.033
## val1:proc1:anx_composite 0.003 -0.001 -0.021 0.035 -0.029
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.7700767887 -0.6355214000 -0.0006613285 0.6680691051 2.6450197463
##
## Residual standard error: 0.2535008
## Degrees of freedom: 368 total; 355 residual
#which fits better?
anova(dacc_N,dacc_D)
## Model df AIC BIC logLik
## dacc_N 1 20 -193.7674 -115.6058 116.8837
## dacc_D 2 20 -191.3124 -113.1508 115.6562
anova(dacc_N,dacc_A)
## Model df AIC BIC logLik
## dacc_N 1 20 -193.7674 -115.6058 116.8837
## dacc_A 2 20 -188.5546 -110.3929 114.2773
#including multiple 3 way interactions:
## all three constructs get their own 3 way interaction
dacc_NDA <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*dep_composite + val*proc*N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_NDA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * dep_composite + val * proc * N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -183.7848 -82.17467 117.8924
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.695
## 3 0.644 0.714
## 4 0.667 0.792 0.821
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3182900 0.20565430 1.5476942 0.1226
## val1 -0.0055460 0.00821456 -0.6751384 0.5000
## proc1 0.0204954 0.00822049 2.4932075 0.0131
## dep_composite 0.0562993 0.05964625 0.9438866 0.3459
## N_z -0.0119583 0.02854821 -0.4188810 0.6756
## anx_composite -0.0412544 0.05278471 -0.7815592 0.4350
## Age -0.0203990 0.00869249 -2.3467361 0.0195
## SexAtBirth 0.0313212 0.05548400 0.5645084 0.5728
## site -0.0270870 0.02601500 -1.0412068 0.2985
## val1:proc1 0.0189780 0.00824875 2.3007120 0.0220
## val1:dep_composite -0.0026453 0.01652450 -0.1600835 0.8729
## proc1:dep_composite 0.0014132 0.01603473 0.0881368 0.9298
## val1:N_z -0.0007133 0.00779147 -0.0915551 0.9271
## proc1:N_z -0.0104702 0.00781677 -1.3394535 0.1813
## val1:anx_composite -0.0059167 0.01382969 -0.4278245 0.6690
## proc1:anx_composite 0.0128125 0.01334624 0.9600096 0.3377
## val1:proc1:dep_composite -0.0097077 0.01618753 -0.5997023 0.5491
## val1:proc1:N_z -0.0102016 0.00783965 -1.3012827 0.1940
## val1:proc1:anx_composite 0.0032793 0.01408259 0.2328618 0.8160
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.002
## proc1 0.004 -0.045
## dep_composite 0.082 -0.005 0.003
## N_z -0.251 -0.008 -0.001 -0.568
## anx_composite 0.165 0.010 -0.007 -0.520 -0.242
## Age -0.975 -0.001 -0.004 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.003 0.006 0.131 0.021 -0.320 0.110
## site 0.225 0.009 0.015 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.021 -0.074 0.020 -0.016 -0.001 -0.005
## val1:dep_composite -0.003 0.259 -0.074 0.004 -0.002 -0.004 0.001
## proc1:dep_composite 0.001 -0.074 0.311 -0.009 0.007 0.004 -0.001
## val1:N_z -0.001 -0.566 0.056 -0.004 0.009 -0.006 0.001
## proc1:N_z -0.004 0.054 -0.572 0.006 -0.008 0.001 0.006
## val1:anx_composite 0.003 0.155 0.012 -0.001 -0.009 0.013 -0.001
## proc1:anx_composite -0.001 0.009 0.143 0.005 -0.001 -0.008 -0.001
## val1:proc1:dep_composite 0.002 -0.024 0.008 0.021 -0.015 -0.005 0.001
## val1:proc1:N_z -0.002 0.004 0.049 -0.016 0.018 -0.003 0.000
## val1:proc1:anx_composite 0.000 0.032 -0.050 -0.004 -0.005 0.007 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.004 0.001
## val1:dep_composite 0.008 0.002 -0.017
## proc1:dep_composite 0.000 -0.004 0.007 -0.068
## val1:N_z -0.007 -0.003 0.003 -0.578 0.055
## proc1:N_z -0.008 0.001 0.045 0.053 -0.592 -0.062
## val1:anx_composite -0.003 -0.003 0.031 -0.523 0.017 -0.226 0.011
## proc1:anx_composite 0.004 -0.001 -0.046 0.015 -0.483 0.012 -0.242
## val1:proc1:dep_composite -0.001 -0.004 0.293 0.032 -0.019 -0.031 0.029
## val1:proc1:N_z -0.002 0.002 -0.606 -0.034 0.031 0.037 -0.062
## val1:proc1:anx_composite 0.004 0.001 0.200 -0.005 -0.007 0.000 0.035
## vl1:n_ prc1:n_ vl1:prc1:d_ v1:1:N
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite -0.018
## val1:proc1:dep_composite -0.006 -0.003
## val1:proc1:N_z 0.002 0.035 -0.553
## val1:proc1:anx_composite 0.017 -0.045 -0.515 -0.275
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.878417008 -0.631511461 -0.004698701 0.669658468 2.565376518
##
## Residual standard error: 0.2526127
## Degrees of freedom: 368 total; 349 residual
## just symptoms get 3 ways
dacc_DA <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*dep_composite + N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_DA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * dep_composite + N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -185.9025 -96.01663 115.9513
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.696
## 3 0.638 0.710
## 4 0.662 0.792 0.817
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3168652 0.20482907 1.5469735 0.1228
## val1 -0.0054498 0.00678592 -0.8031085 0.4225
## proc1 0.0141377 0.00675771 2.0920866 0.0371
## dep_composite 0.0554067 0.05939930 0.9327833 0.3516
## N_z -0.0114247 0.02842776 -0.4018840 0.6880
## anx_composite -0.0413564 0.05257243 -0.7866559 0.4320
## Age -0.0203397 0.00865755 -2.3493634 0.0194
## SexAtBirth 0.0302951 0.05525884 0.5482394 0.5839
## site -0.0271780 0.02591053 -1.0489178 0.2949
## val1:proc1 0.0124221 0.00656699 1.8916025 0.0594
## val1:dep_composite -0.0036210 0.01350557 -0.2681150 0.7888
## proc1:dep_composite -0.0111287 0.01294180 -0.8599046 0.3904
## val1:anx_composite -0.0057769 0.01349514 -0.4280691 0.6689
## proc1:anx_composite 0.0085902 0.01297409 0.6621019 0.5083
## val1:proc1:dep_composite -0.0216448 0.01352885 -1.5999000 0.1105
## val1:proc1:anx_composite -0.0010771 0.01358337 -0.0792973 0.9368
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.002
## proc1 0.002 -0.005
## dep_composite 0.082 -0.007 0.008
## N_z -0.251 -0.004 -0.007 -0.567
## anx_composite 0.165 0.008 -0.008 -0.520 -0.242
## Age -0.975 0.000 -0.001 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.000 0.003 0.131 0.021 -0.320 0.110
## site 0.225 0.008 0.019 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.008 -0.008 -0.061 0.013 -0.006 -0.004 -0.006
## val1:dep_composite -0.005 -0.102 -0.050 0.002 0.005 -0.008 0.003
## proc1:dep_composite -0.002 -0.048 -0.042 -0.007 0.003 0.006 0.003
## val1:anx_composite 0.003 0.034 0.030 -0.001 -0.007 0.011 -0.001
## proc1:anx_composite -0.002 0.026 0.004 0.008 -0.003 -0.009 0.001
## val1:proc1:dep_composite 0.002 -0.041 0.047 0.015 -0.006 -0.009 0.001
## val1:proc1:anx_composite -0.001 0.050 -0.032 -0.010 0.000 0.007 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:n_ prc1:n_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.006 0.004
## val1:dep_composite 0.005 0.000 -0.036
## proc1:dep_composite -0.005 -0.005 0.046 -0.043
## val1:anx_composite -0.004 -0.003 0.049 -0.823 0.038
## proc1:anx_composite 0.002 -0.002 -0.028 0.035 -0.800 -0.020
## val1:proc1:dep_composite -0.003 -0.003 -0.064 0.012 -0.006 -0.011 0.018
## val1:proc1:anx_composite 0.004 0.002 0.044 -0.014 0.015 0.023 -0.033
## vl1:prc1:d_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:dep_composite
## val1:proc1:anx_composite -0.833
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.801672566 -0.617741216 -0.002729149 0.668574023 2.581488639
##
## Residual standard error: 0.2530667
## Degrees of freedom: 368 total; 352 residual
#does including the N 3way improve fit?
anova(dacc_NDA,dacc_DA)
## Model df AIC BIC logLik Test L.Ratio p-value
## dacc_NDA 1 26 -183.7848 -82.17467 117.8924
## dacc_DA 2 23 -185.9025 -96.01663 115.9513 1 vs 2 3.882288 0.2745
## Neuroticism and one of t he two symptom measures gets 3ways
dacc_ND <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*dep_composite + val*proc*N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_ND)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * dep_composite + val * proc * N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -188.6092 -98.72327 117.3046
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.696
## 3 0.635 0.712
## 4 0.663 0.794 0.822
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3186787 0.20488162 1.5554285 0.1207
## val1 -0.0053776 0.00807258 -0.6661520 0.5058
## proc1 0.0192977 0.00808739 2.3861451 0.0176
## dep_composite 0.0562960 0.05942445 0.9473545 0.3441
## N_z -0.0119171 0.02844064 -0.4190177 0.6755
## anx_composite -0.0406757 0.05258004 -0.7735957 0.4397
## Age -0.0203770 0.00865987 -2.3530378 0.0192
## SexAtBirth 0.0305523 0.05527521 0.5527306 0.5808
## site -0.0275338 0.02591796 -1.0623462 0.2888
## val1:proc1 0.0189361 0.00802912 2.3584325 0.0189
## val1:dep_composite -0.0069471 0.01401771 -0.4955951 0.6205
## proc1:dep_composite 0.0088947 0.01396545 0.6369039 0.5246
## val1:N_z -0.0013537 0.00755460 -0.1791912 0.8579
## proc1:N_z -0.0086438 0.00754190 -1.1461079 0.2525
## val1:proc1:dep_composite -0.0075439 0.01379297 -0.5469381 0.5848
## val1:proc1:N_z -0.0097782 0.00749345 -1.3049003 0.1928
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.002
## proc1 0.005 -0.051
## dep_composite 0.082 -0.005 0.002
## N_z -0.251 -0.006 -0.001 -0.568
## anx_composite 0.165 0.008 -0.006 -0.520 -0.242
## Age -0.975 -0.001 -0.005 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.004 0.007 0.131 0.021 -0.320 0.110
## site 0.225 0.010 0.017 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.034 -0.063 0.023 -0.016 -0.004 -0.004
## val1:dep_composite -0.002 0.404 -0.086 0.004 -0.007 0.003 0.001
## proc1:dep_composite 0.001 -0.085 0.438 -0.008 0.008 0.000 -0.001
## val1:N_z -0.001 -0.552 0.063 -0.003 0.007 -0.003 0.001
## proc1:N_z -0.005 0.060 -0.560 0.008 -0.009 -0.001 0.006
## val1:proc1:dep_composite 0.002 -0.009 -0.016 0.024 -0.022 -0.003 0.001
## val1:proc1:N_z -0.001 0.013 0.034 -0.020 0.019 -0.001 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.005 0.002
## val1:dep_composite 0.008 0.001 -0.001
## proc1:dep_composite 0.003 -0.006 -0.010 -0.081
## val1:N_z -0.008 -0.004 0.010 -0.839 0.079
## proc1:N_z -0.008 0.000 0.030 0.077 -0.834 -0.065
## val1:proc1:dep_composite 0.002 -0.004 0.472 0.044 -0.046 -0.038 0.049
## val1:proc1:N_z -0.002 0.003 -0.586 -0.041 0.047 0.043 -0.050
## v1:1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:proc1:dep_composite
## val1:proc1:N_z -0.843
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.882576772 -0.635342101 -0.003713457 0.663754007 2.608787177
##
## Residual standard error: 0.2530799
## Degrees of freedom: 368 total; 352 residual
#does D model improve by adding N ineeractions
anova(dacc_ND,dacc_D)
## Model df AIC BIC logLik Test L.Ratio p-value
## dacc_ND 1 23 -188.6092 -98.72327 117.3046
## dacc_D 2 20 -191.3124 -113.15075 115.6562 1 vs 2 3.296769 0.3481
dacc_NA <- gls(brant_extract_BN_Atlas_179_180_dACC ~ val*proc*N_z + N_z + val*proc*anx_composite +dep_composite+ Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(dacc_NA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_179_180_dACC ~ val * proc * N_z + N_z + val * proc * anx_composite + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -189.4188 -99.5329 117.7094
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.691
## 3 0.645 0.719
## 4 0.668 0.793 0.820
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.3181596 0.20483575 1.5532425 0.1213
## val1 -0.0052471 0.00789261 -0.6648120 0.5066
## proc1 0.0204427 0.00778689 2.6252662 0.0090
## N_z -0.0122470 0.02843062 -0.4307669 0.6669
## anx_composite -0.0416797 0.05257324 -0.7927924 0.4284
## dep_composite 0.0572382 0.05939370 0.9637083 0.3359
## Age -0.0203809 0.00865796 -2.3540068 0.0191
## SexAtBirth 0.0313544 0.05526158 0.5673808 0.5708
## site -0.0271576 0.02591114 -1.0481065 0.2953
## val1:proc1 0.0205250 0.00786431 2.6098880 0.0094
## val1:N_z -0.0014068 0.00634292 -0.2217829 0.8246
## proc1:N_z -0.0100236 0.00628881 -1.5938711 0.1119
## val1:anx_composite -0.0070134 0.01175739 -0.5965071 0.5512
## proc1:anx_composite 0.0135506 0.01166872 1.1612791 0.2463
## val1:proc1:N_z -0.0127717 0.00650274 -1.9640539 0.0503
## val1:proc1:anx_composite -0.0012177 0.01202694 -0.1012486 0.9194
##
## Correlation:
## (Intr) val1 proc1 N_z anx_cm dp_cmp Age
## val1 0.003
## proc1 0.004 -0.009
## N_z -0.251 -0.008 -0.003
## anx_composite 0.165 0.011 -0.008 -0.242
## dep_composite 0.082 -0.006 0.006 -0.567 -0.520
## Age -0.975 -0.001 -0.004 0.173 -0.089 -0.070
## SexAtBirth -0.275 0.001 0.007 0.021 -0.320 0.131 0.110
## site 0.225 0.009 0.018 -0.019 0.085 -0.084 -0.237
## val1:proc1 0.007 -0.007 -0.090 -0.012 0.000 0.015 -0.006
## val1:N_z -0.004 -0.528 0.011 0.010 -0.009 -0.001 0.002
## proc1:N_z -0.004 0.011 -0.509 -0.004 0.004 0.001 0.007
## val1:anx_composite 0.002 0.355 -0.026 -0.011 0.012 0.002 -0.001
## proc1:anx_composite -0.001 -0.027 0.353 0.003 -0.008 0.001 -0.001
## val1:proc1:N_z -0.001 -0.005 0.057 0.011 -0.007 -0.005 0.001
## val1:proc1:anx_composite 0.002 0.020 -0.048 -0.014 0.004 0.007 -0.001
## SxAtBr site vl1:p1 vl1:N_ pr1:N_ vl1:n_ prc1:_
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.004 0.002
## val1:N_z -0.002 -0.002 -0.005
## proc1:N_z -0.009 -0.002 0.057 -0.033
## val1:anx_composite 0.002 -0.002 0.023 -0.760 0.040
## proc1:anx_composite 0.005 -0.004 -0.045 0.039 -0.749 -0.026
## val1:proc1:N_z -0.003 0.001 -0.557 0.014 -0.049 -0.014 0.057
## val1:proc1:anx_composite 0.004 -0.001 0.426 -0.013 0.057 0.027 -0.070
## v1:1:N
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:N_z
## val1:proc1:anx_composite -0.783
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.883771311 -0.629524269 0.005534385 0.671692836 2.572956561
##
## Residual standard error: 0.2526455
## Degrees of freedom: 368 total; 352 residual
#does A model improve by adding N ineeractions
anova(dacc_NA,dacc_A)
## Model df AIC BIC logLik Test L.Ratio p-value
## dacc_NA 1 23 -189.4188 -99.5329 117.7094
## dacc_A 2 20 -188.5546 -110.3929 114.2773 1 vs 2 6.864198 0.0764
spgACC model(s):
# Test 1: repeated measure subject correlation structure
nositemodel1spgacc <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(nositemodel1dacc)
# Common var/cov by Site
nositemodel2spgacc <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(nositemodel2dacc)
# Testing difference of fit
anova(nositemodel1spgacc,nositemodel2spgacc)
## Model df AIC BIC logLik Test L.Ratio
## nositemodel1spgacc 1 20 -200.8972 -122.7356 120.4486
## nositemodel2spgacc 2 15 -202.8584 -144.2372 116.4292 1 vs 2 8.038811
## p-value
## nositemodel1spgacc
## nositemodel2spgacc 0.1541
# Different var/cov by Site
sitemodel1spgacc <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
#summary(sitemodel1dacc)
#anova(sitemodel1dacc)
# Common var/cov by Site
sitemodel2spgacc <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
#summary(sitemodel2dacc)
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1spgacc,sitemodel2spgacc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1spgacc 1 16 -203.9243 -141.3950 117.9622
## sitemodel2spgacc 2 15 -202.8584 -144.2372 116.4292 1 vs 2 3.065931 0.0799
# rename winning model
spgacc_N <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(spgacc_N)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -203.9243 -141.395 117.9622
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.605738
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 1.143994
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.03180246 0.17031585 -0.186726 0.8520
## val1 -0.02401834 0.00791055 -3.036242 0.0026
## proc1 0.00681182 0.00791055 0.861106 0.3898
## N_z -0.00421636 0.02301105 -0.183232 0.8547
## dep_composite 0.05335265 0.04839467 1.102449 0.2710
## anx_composite -0.04076312 0.04319781 -0.943639 0.3460
## Age -0.01341902 0.00723504 -1.854727 0.0645
## SexAtBirth 0.00451682 0.04560940 0.099033 0.9212
## site -0.03622011 0.02183748 -1.658622 0.0981
## val1:proc1 0.02802514 0.00791055 3.542755 0.0004
## val1:N_z 0.00307407 0.00441818 0.695777 0.4870
## proc1:N_z -0.00160927 0.00441818 -0.364239 0.7159
## val1:proc1:N_z -0.01193725 0.00441818 -2.701845 0.0072
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.216 0.000 0.000
## dep_composite 0.059 0.000 0.000 -0.559
## anx_composite 0.145 0.000 0.000 -0.247 -0.530
## Age -0.975 0.000 0.000 0.141 -0.051 -0.067
## SexAtBirth -0.265 0.000 0.000 0.004 0.151 -0.328 0.101
## site 0.241 0.000 0.000 -0.016 -0.082 0.076 -0.237 0.149
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.398 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.398 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.398 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.5391731 -0.6608344 0.1268850 0.6417937 3.3334229
##
## Residual standard error: 0.2075112
## Degrees of freedom: 368 total; 355 residual
#anova(spgacc_N)
spgACC model(s): comparing more complex N, dpression, and anxiety
models
spgacc_N <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_N)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -200.8972 -122.7356 120.4486
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.586
## 3 0.538 0.641
## 4 0.578 0.706 0.692
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.02082816 0.17148940 -0.121455 0.9034
## val1 -0.02322572 0.00777432 -2.987494 0.0030
## proc1 0.00816640 0.00774872 1.053903 0.2926
## N_z -0.00298570 0.02379870 -0.125456 0.9002
## dep_composite 0.06059413 0.04972367 1.218617 0.2238
## anx_composite -0.04651595 0.04401020 -1.056936 0.2913
## Age -0.01370373 0.00724848 -1.890566 0.0595
## SexAtBirth -0.00262568 0.04626482 -0.056753 0.9548
## site -0.03899821 0.02169165 -1.797845 0.0731
## val1:proc1 0.03218298 0.00768087 4.190020 0.0000
## val1:N_z 0.00172099 0.00438633 0.392354 0.6950
## proc1:N_z -0.00258549 0.00440791 -0.586556 0.5579
## val1:proc1:N_z -0.01428206 0.00436116 -3.274830 0.0012
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.002
## proc1 0.003 0.009
## N_z -0.251 -0.004 -0.003
## dep_composite 0.082 -0.006 0.006 -0.567
## anx_composite 0.165 0.005 -0.007 -0.242 -0.520
## Age -0.975 0.000 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.000 0.005 0.021 0.131 -0.320 0.110
## site 0.225 0.005 0.020 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.007 -0.016 -0.047 -0.006 0.013 -0.002 -0.005 -0.007 0.000
## val1:N_z -0.004 -0.412 -0.024 0.002 -0.001 0.001 0.002 -0.001 -0.004
## proc1:N_z -0.006 -0.025 -0.402 -0.004 0.003 -0.002 0.008 -0.008 -0.010
## val1:proc1:N_z 0.002 0.008 0.032 -0.002 0.001 -0.005 -0.001 0.000 0.002
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.009
## proc1:N_z 0.033 0.029
## val1:proc1:N_z -0.403 0.024 -0.008
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.3067037 -0.6788581 0.1074699 0.6207046 3.5791800
##
## Residual standard error: 0.2230409
## Degrees of freedom: 368 total; 355 residual
#depression with N and A as main effects only
spgacc_D <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*dep_composite + N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_D)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * dep_composite + N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -196.9864 -118.8247 118.4932
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.595
## 3 0.539 0.637
## 4 0.582 0.698 0.676
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.02296578 0.17153406 -0.133885 0.8936
## val1 -0.02205009 0.00718572 -3.068600 0.0023
## proc1 0.00635830 0.00718264 0.885232 0.3766
## dep_composite 0.05892405 0.04973920 1.184660 0.2369
## N_z -0.00228897 0.02380624 -0.096150 0.9235
## anx_composite -0.04644574 0.04402225 -1.055051 0.2921
## Age -0.01364411 0.00725032 -1.881865 0.0607
## SexAtBirth -0.00292863 0.04627680 -0.063285 0.9496
## site -0.03907419 0.02169707 -1.800897 0.0726
## val1:proc1 0.02325136 0.00712461 3.263528 0.0012
## val1:dep_composite 0.00546768 0.00818916 0.667672 0.5048
## proc1:dep_composite 0.00075952 0.00821392 0.092468 0.9264
## val1:proc1:dep_composite -0.02069740 0.00813638 -2.543808 0.0114
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.001
## proc1 0.001 -0.002
## dep_composite 0.082 -0.005 0.008
## N_z -0.251 -0.004 -0.005 -0.567
## anx_composite 0.165 0.005 -0.009 -0.520 -0.242
## Age -0.975 0.001 0.000 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.000 0.003 0.131 0.021 -0.320 0.110
## site 0.225 0.003 0.017 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.007 -0.024 0.012 -0.006 -0.004 -0.006
## val1:dep_composite -0.003 -0.094 -0.030 -0.002 0.002 0.002 0.002
## proc1:dep_composite -0.004 -0.031 -0.078 -0.002 0.001 -0.002 0.005
## val1:proc1:dep_composite 0.003 0.005 0.029 0.011 -0.011 -0.006 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.007 0.001
## val1:dep_composite 0.002 -0.003 0.007
## proc1:dep_composite -0.005 -0.011 0.030 0.010
## val1:proc1:dep_composite 0.001 0.000 -0.073 0.019 -0.002
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.4048569 -0.6414943 0.1036747 0.6162077 3.5376134
##
## Residual standard error: 0.223225
## Degrees of freedom: 368 total; 355 residual
#Anxiety with N and D as main effects only
spgacc_A <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*anx_composite + N_z + dep_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_A)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * anx_composite + N_z + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -195.544 -117.3823 117.772
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.588
## 3 0.545 0.641
## 4 0.572 0.694 0.673
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.02237127 0.17126350 -0.130625 0.8961
## val1 -0.02173470 0.00718848 -3.023545 0.0027
## proc1 0.00634468 0.00719578 0.881723 0.3785
## anx_composite -0.04749692 0.04395286 -1.080633 0.2806
## N_z -0.00273732 0.02376810 -0.115168 0.9084
## dep_composite 0.06029404 0.04965753 1.214197 0.2255
## Age -0.01363371 0.00723892 -1.883390 0.0605
## SexAtBirth -0.00334557 0.04620403 -0.072409 0.9423
## site -0.03931530 0.02166247 -1.814904 0.0704
## val1:proc1 0.02265094 0.00714147 3.171747 0.0016
## val1:anx_composite -0.00222289 0.00823003 -0.270095 0.7872
## proc1:anx_composite 0.00902351 0.00826786 1.091396 0.2758
## val1:proc1:anx_composite -0.01705555 0.00819499 -2.081215 0.0381
##
## Correlation:
## (Intr) val1 proc1 anx_cm N_z dp_cmp Age
## val1 0.000
## proc1 0.000 -0.003
## anx_composite 0.165 0.005 -0.009
## N_z -0.251 -0.004 -0.003 -0.242
## dep_composite 0.082 -0.006 0.007 -0.520 -0.567
## Age -0.975 0.001 0.001 -0.090 0.173 -0.070
## SexAtBirth -0.275 0.000 0.002 -0.320 0.021 0.131 0.110
## site 0.225 0.002 0.015 0.085 -0.019 -0.084 -0.237
## val1:proc1 0.007 -0.008 -0.018 -0.003 -0.006 0.012 -0.006
## val1:anx_composite -0.001 -0.060 -0.011 0.003 0.001 -0.001 -0.001
## proc1:anx_composite -0.003 -0.012 -0.052 -0.005 -0.001 0.002 0.002
## val1:proc1:anx_composite 0.002 0.023 0.018 -0.001 -0.007 0.002 -0.001
## SxAtBr site vl1:p1 vl1:n_ prc1:_
## val1
## proc1
## anx_composite
## N_z
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.008 -0.001
## val1:anx_composite 0.001 -0.003 0.024
## proc1:anx_composite -0.002 -0.010 0.019 0.024
## val1:proc1:anx_composite 0.003 0.003 -0.042 0.025 -0.013
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.36252272 -0.63152494 0.09815633 0.62995347 3.59608847
##
## Residual standard error: 0.2230972
## Degrees of freedom: 368 total; 355 residual
#which fits better?
anova(spgacc_N,spgacc_D)
## Model df AIC BIC logLik
## spgacc_N 1 20 -200.8972 -122.7356 120.4486
## spgacc_D 2 20 -196.9864 -118.8247 118.4932
anova(spgacc_N,spgacc_A)
## Model df AIC BIC logLik
## spgacc_N 1 20 -200.8972 -122.7356 120.4486
## spgacc_A 2 20 -195.5440 -117.3823 117.7720
#including multiple 3 way interactions:
## all three constructs get their own 3 way interaction
spgacc_NDA <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*dep_composite + val*proc*N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_NDA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * dep_composite + val * proc * N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -197.8463 -96.23616 124.9232
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.591
## 3 0.564 0.643
## 4 0.595 0.686 0.695
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.01862426 0.17177512 -0.108422 0.9137
## val1 -0.02388586 0.00872680 -2.737070 0.0065
## proc1 0.01513108 0.00870478 1.738249 0.0830
## dep_composite 0.05958643 0.04981158 1.196237 0.2324
## N_z -0.00321028 0.02384148 -0.134651 0.8930
## anx_composite -0.04638566 0.04408450 -1.052199 0.2934
## Age -0.01385096 0.00726054 -1.907703 0.0573
## SexAtBirth -0.00152792 0.04634286 -0.032970 0.9737
## site -0.03840622 0.02172691 -1.767680 0.0780
## val1:proc1 0.03270315 0.00871872 3.750910 0.0002
## val1:dep_composite 0.02151591 0.01734504 1.240464 0.2156
## proc1:dep_composite -0.00346701 0.01715919 -0.202050 0.8400
## val1:N_z 0.00196981 0.00829756 0.237396 0.8125
## proc1:N_z -0.01421247 0.00827111 -1.718327 0.0866
## val1:anx_composite -0.02360915 0.01464652 -1.611930 0.1079
## proc1:anx_composite 0.03163976 0.01446063 2.187992 0.0293
## val1:proc1:dep_composite -0.00251394 0.01717929 -0.146336 0.8837
## val1:proc1:N_z -0.01621124 0.00830044 -1.953057 0.0516
## val1:proc1:anx_composite 0.00764120 0.01467313 0.520762 0.6029
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.001
## proc1 0.003 -0.024
## dep_composite 0.082 -0.004 0.002
## N_z -0.251 -0.006 0.001 -0.568
## anx_composite 0.165 0.007 -0.006 -0.520 -0.242
## Age -0.975 0.000 -0.003 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.003 0.004 0.131 0.021 -0.320 0.110
## site 0.225 0.005 0.012 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.007 -0.036 0.015 -0.011 -0.001 -0.005
## val1:dep_composite -0.004 0.282 -0.042 0.001 -0.002 -0.001 0.002
## proc1:dep_composite 0.001 -0.042 0.294 -0.007 0.007 0.001 -0.001
## val1:N_z 0.000 -0.578 0.029 -0.003 0.007 -0.002 0.000
## proc1:N_z -0.003 0.029 -0.578 0.006 -0.008 0.001 0.005
## val1:anx_composite 0.003 0.162 0.007 0.001 -0.005 0.006 -0.002
## proc1:anx_composite 0.000 0.007 0.158 0.002 0.000 -0.005 -0.002
## val1:proc1:dep_composite 0.002 -0.011 0.009 0.015 -0.010 -0.005 0.000
## val1:proc1:N_z -0.002 -0.004 0.022 -0.011 0.011 -0.001 0.001
## val1:proc1:anx_composite 0.000 0.022 -0.022 -0.004 -0.002 0.005 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.004 -0.002
## val1:dep_composite 0.006 0.000 -0.010
## proc1:dep_composite -0.001 -0.002 0.009 -0.041
## val1:N_z -0.005 -0.001 -0.004 -0.575 0.029
## proc1:N_z -0.005 0.000 0.020 0.028 -0.578 -0.030
## val1:anx_composite -0.002 -0.002 0.022 -0.513 0.015 -0.241 0.005
## proc1:anx_composite 0.004 -0.002 -0.021 0.014 -0.502 0.005 -0.245
## val1:proc1:dep_composite -0.001 -0.003 0.288 0.019 -0.001 -0.022 0.010
## val1:proc1:N_z -0.002 0.003 -0.587 -0.023 0.010 0.028 -0.024
## val1:proc1:anx_composite 0.004 0.001 0.175 0.000 -0.006 -0.001 0.013
## vl1:n_ prc1:n_ vl1:prc1:d_ v1:1:N
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite -0.015
## val1:proc1:dep_composite 0.000 -0.005
## val1:proc1:N_z 0.000 0.012 -0.568
## val1:proc1:anx_composite 0.007 -0.014 -0.509 -0.257
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.4107210 -0.6819256 0.1029704 0.6571508 3.6320231
##
## Residual standard error: 0.2205722
## Degrees of freedom: 368 total; 349 residual
## just symptoms get 3 ways
spgacc_DA <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*dep_composite + N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_DA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * dep_composite + N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -196.7319 -106.846 121.366
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.591
## 3 0.555 0.647
## 4 0.585 0.682 0.679
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.02262243 0.17117837 -0.132157 0.8949
## val1 -0.02207280 0.00718174 -3.073460 0.0023
## proc1 0.00654827 0.00716320 0.914155 0.3613
## dep_composite 0.05898706 0.04963554 1.188404 0.2355
## N_z -0.00278078 0.02375622 -0.117055 0.9069
## anx_composite -0.04658522 0.04393136 -1.060409 0.2897
## Age -0.01368179 0.00723529 -1.890980 0.0594
## SexAtBirth -0.00237966 0.04618099 -0.051529 0.9589
## site -0.03880293 0.02165105 -1.792196 0.0740
## val1:proc1 0.02266117 0.00713303 3.176933 0.0016
## val1:dep_composite 0.02410090 0.01430641 1.684622 0.0929
## proc1:dep_composite -0.02110987 0.01415944 -1.490869 0.1369
## val1:anx_composite -0.02235703 0.01433906 -1.559170 0.1199
## proc1:anx_composite 0.02639065 0.01418140 1.860934 0.0636
## val1:proc1:dep_composite -0.02120873 0.01426237 -1.487041 0.1379
## val1:proc1:anx_composite 0.00052277 0.01429833 0.036561 0.9709
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.001
## proc1 0.000 0.001
## dep_composite 0.082 -0.006 0.007
## N_z -0.251 -0.003 -0.004 -0.567
## anx_composite 0.165 0.005 -0.008 -0.520 -0.242
## Age -0.975 0.000 0.001 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.000 0.002 0.131 0.021 -0.320 0.110
## site 0.225 0.003 0.014 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.004 -0.022 0.010 -0.005 -0.002 -0.006
## val1:dep_composite -0.005 -0.074 -0.027 -0.004 0.003 -0.001 0.003
## proc1:dep_composite -0.001 -0.027 -0.062 -0.004 0.003 0.002 0.003
## val1:anx_composite 0.004 0.028 0.016 0.002 -0.002 0.002 -0.003
## proc1:anx_composite -0.001 0.015 0.021 0.004 -0.003 -0.004 -0.001
## val1:proc1:dep_composite 0.002 -0.026 0.026 0.012 -0.005 -0.008 0.000
## val1:proc1:anx_composite -0.001 0.031 -0.013 -0.009 0.001 0.006 0.000
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:n_ prc1:n_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.007 -0.002
## val1:dep_composite 0.003 -0.001 -0.026
## proc1:dep_composite -0.005 -0.003 0.027 -0.031
## val1:anx_composite -0.002 -0.001 0.032 -0.820 0.030
## proc1:anx_composite 0.003 -0.003 -0.013 0.029 -0.816 -0.020
## val1:proc1:dep_composite -0.003 -0.002 -0.067 0.004 0.011 -0.002 -0.005
## val1:proc1:anx_composite 0.004 0.003 0.029 -0.003 -0.005 0.009 -0.003
## vl1:prc1:d_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:dep_composite
## val1:proc1:anx_composite -0.821
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.4185573 -0.6334061 0.1055899 0.6774633 3.5310998
##
## Residual standard error: 0.2214074
## Degrees of freedom: 368 total; 352 residual
#does including the N 3way improve fit?
anova(spgacc_NDA,spgacc_DA)
## Model df AIC BIC logLik Test L.Ratio p-value
## spgacc_NDA 1 26 -197.8463 -96.23616 124.9232
## spgacc_DA 2 23 -196.7319 -106.84600 121.3660 1 vs 2 7.114407 0.0683
## Neuroticism and one of t he two symptom measures gets 3ways
spgacc_ND <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*dep_composite + val*proc*N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_ND)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * dep_composite + val * proc * N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -196.2534 -106.3675 121.1267
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.589
## 3 0.543 0.636
## 4 0.586 0.706 0.692
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.01956465 0.17223744 -0.113591 0.9096
## val1 -0.02215472 0.00862593 -2.568386 0.0106
## proc1 0.01199411 0.00864691 1.387098 0.1663
## dep_composite 0.06016861 0.04995153 1.204540 0.2292
## N_z -0.00299737 0.02390713 -0.125376 0.9003
## anx_composite -0.04612252 0.04420225 -1.043443 0.2975
## Age -0.01376655 0.00728008 -1.890989 0.0594
## SexAtBirth -0.00220078 0.04646758 -0.047362 0.9623
## site -0.03887408 0.02178665 -1.784308 0.0752
## val1:proc1 0.03302303 0.00861681 3.832396 0.0002
## val1:dep_composite 0.00633689 0.01492218 0.424663 0.6713
## proc1:dep_composite 0.01534948 0.01492296 1.028581 0.3044
## val1:N_z -0.00104035 0.00806659 -0.128971 0.8975
## proc1:N_z -0.00954702 0.00807491 -1.182306 0.2379
## val1:proc1:dep_composite 0.00291019 0.01485214 0.195944 0.8448
## val1:proc1:N_z -0.01560222 0.00804742 -1.938786 0.0533
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.001
## proc1 0.004 -0.035
## dep_composite 0.082 -0.005 0.002
## N_z -0.251 -0.005 0.001 -0.568
## anx_composite 0.165 0.006 -0.007 -0.520 -0.242
## Age -0.975 0.000 -0.004 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.003 0.006 0.131 0.021 -0.320 0.110
## site 0.225 0.006 0.016 -0.084 -0.019 0.085 -0.237
## val1:proc1 0.007 -0.019 -0.033 0.020 -0.013 -0.003 -0.005
## val1:dep_composite -0.002 0.427 -0.060 0.001 -0.004 0.002 0.001
## proc1:dep_composite 0.001 -0.061 0.438 -0.008 0.009 -0.001 -0.002
## val1:N_z 0.000 -0.561 0.042 -0.001 0.004 -0.002 0.001
## proc1:N_z -0.005 0.041 -0.564 0.008 -0.009 -0.001 0.006
## val1:proc1:dep_composite 0.002 0.000 0.001 0.020 -0.018 -0.003 0.000
## val1:proc1:N_z -0.001 0.002 0.015 -0.016 0.014 0.000 -0.001
## SxAtBr site vl1:p1 vl1:d_ prc1:_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.005 0.000
## val1:dep_composite 0.007 -0.001 0.003
## proc1:dep_composite 0.002 -0.005 0.004 -0.059
## val1:N_z -0.006 -0.002 0.002 -0.838 0.054
## proc1:N_z -0.006 -0.001 0.013 0.054 -0.837 -0.041
## val1:proc1:dep_composite 0.002 -0.003 0.449 0.033 -0.009 -0.030 0.011
## val1:proc1:N_z -0.002 0.003 -0.572 -0.031 0.011 0.036 -0.014
## v1:1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:proc1:dep_composite
## val1:proc1:N_z -0.840
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.3793304 -0.6792302 0.1059741 0.6209562 3.6047498
##
## Residual standard error: 0.2228033
## Degrees of freedom: 368 total; 352 residual
#does D model improve by adding N ineeractions
anova(spgacc_ND,spgacc_D)
## Model df AIC BIC logLik Test L.Ratio p-value
## spgacc_ND 1 23 -196.2534 -106.3675 121.1267
## spgacc_D 2 20 -196.9864 -118.8247 118.4932 1 vs 2 5.26703 0.1533
spgacc_NA <- gls(brant_extract_BN_Atlas_187_188_spgACC ~ val*proc*N_z + N_z + val*proc*anx_composite +dep_composite+ Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(spgacc_NA)
## Generalized least squares fit by maximum likelihood
## Model: brant_extract_BN_Atlas_187_188_spgACC ~ val * proc * N_z + N_z + val * proc * anx_composite + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -202.2166 -112.3306 124.1083
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.594
## 3 0.559 0.639
## 4 0.594 0.694 0.694
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.01854588 0.17148510 -0.108149 0.9139
## val1 -0.02696943 0.00833884 -3.234192 0.0013
## proc1 0.01581079 0.00829373 1.906354 0.0574
## N_z -0.00306481 0.02379986 -0.128774 0.8976
## anx_composite -0.04655120 0.04401061 -1.057727 0.2909
## dep_composite 0.05988604 0.04972160 1.204427 0.2292
## Age -0.01384092 0.00724833 -1.909533 0.0570
## SexAtBirth -0.00190238 0.04626418 -0.041120 0.9672
## site -0.03855171 0.02169058 -1.777348 0.0764
## val1:proc1 0.03333556 0.00832167 4.005873 0.0001
## val1:N_z 0.00781761 0.00676066 1.156339 0.2483
## proc1:N_z -0.01507004 0.00673115 -2.238850 0.0258
## val1:anx_composite -0.01404507 0.01252383 -1.121467 0.2629
## proc1:anx_composite 0.03001442 0.01247163 2.406615 0.0166
## val1:proc1:N_z -0.01683033 0.00681094 -2.471074 0.0139
## val1:proc1:anx_composite 0.00639369 0.01259943 0.507459 0.6122
##
## Correlation:
## (Intr) val1 proc1 N_z anx_cm dp_cmp Age
## val1 0.003
## proc1 0.003 -0.004
## N_z -0.251 -0.006 -0.002
## anx_composite 0.165 0.008 -0.008 -0.242
## dep_composite 0.082 -0.004 0.005 -0.567 -0.520
## Age -0.975 -0.001 -0.003 0.173 -0.089 -0.070
## SexAtBirth -0.275 0.001 0.005 0.021 -0.320 0.131 0.110
## site 0.225 0.006 0.015 -0.019 0.085 -0.084 -0.237
## val1:proc1 0.006 0.000 -0.048 -0.009 0.000 0.012 -0.005
## val1:N_z -0.003 -0.530 0.005 0.007 -0.005 -0.002 0.002
## proc1:N_z -0.004 0.005 -0.523 -0.005 0.003 0.002 0.006
## val1:anx_composite 0.002 0.371 -0.016 -0.007 0.007 0.001 -0.001
## proc1:anx_composite 0.000 -0.016 0.369 0.003 -0.006 0.000 -0.002
## val1:proc1:N_z 0.000 -0.008 0.031 0.007 -0.006 -0.003 0.000
## val1:proc1:anx_composite 0.001 0.018 -0.021 -0.010 0.003 0.004 -0.001
## SxAtBr site vl1:p1 vl1:N_ pr1:N_ vl1:n_ prc1:_
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.004 0.000
## val1:N_z -0.002 -0.001 -0.008
## proc1:N_z -0.007 -0.002 0.031 -0.019
## val1:anx_composite 0.002 -0.002 0.018 -0.763 0.026
## proc1:anx_composite 0.004 -0.003 -0.020 0.025 -0.759 -0.019
## val1:proc1:N_z -0.003 0.001 -0.538 0.013 -0.020 -0.010 0.022
## val1:proc1:anx_composite 0.004 0.000 0.392 -0.010 0.022 0.018 -0.029
## v1:1:N
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:N_z
## val1:proc1:anx_composite -0.770
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.3446493 -0.6662116 0.1048877 0.6469078 3.6596894
##
## Residual standard error: 0.221208
## Degrees of freedom: 368 total; 352 residual
#does A model improve by adding N ineeractions
anova(spgacc_NA,spgacc_A)
## Model df AIC BIC logLik Test L.Ratio p-value
## spgacc_NA 1 23 -202.2166 -112.3307 124.1083
## spgacc_A 2 20 -195.5440 -117.3823 117.7720 1 vs 2 12.67256 0.0054
Rins models:
# Test 1: subject cor struct
# Different var/cov by Site
nositemodel1rins <- gls(mag1_mask_Rins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub), method = "ML",na.action = "na.omit")
summary(nositemodel1rins)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_Rins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -223.2799 -145.1183 131.64
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.714
## 3 0.669 0.679
## 4 0.673 0.773 0.711
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.08872067 0.18735847 0.4735343 0.6361
## val1 -0.00548021 0.00725855 -0.7550006 0.4507
## proc1 0.00749453 0.00728819 1.0283113 0.3045
## N_z -0.00181708 0.02600113 -0.0698845 0.9443
## dep_composite 0.05443283 0.05432067 1.0020648 0.3170
## anx_composite -0.06965838 0.04808194 -1.4487433 0.1483
## Age -0.00363591 0.00791930 -0.4591200 0.6464
## SexAtBirth 0.11275228 0.05054662 2.2306591 0.0263
## site -0.01123602 0.02369662 -0.4741611 0.6357
## val1:proc1 0.00099514 0.00712481 0.1396728 0.8890
## val1:N_z -0.00521953 0.00407756 -1.2800617 0.2014
## proc1:N_z -0.00191715 0.00417024 -0.4597216 0.6460
## val1:proc1:N_z -0.00885850 0.00404603 -2.1894284 0.0292
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.004
## N_z -0.251 -0.002 -0.001
## dep_composite 0.082 -0.002 0.002 -0.567
## anx_composite 0.165 0.001 -0.005 -0.242 -0.520
## Age -0.975 0.000 -0.002 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.005 0.021 0.131 -0.320 0.110
## site 0.225 -0.002 0.010 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.001 -0.016 -0.021 -0.001 0.007 -0.003 -0.001 -0.003 0.004
## val1:N_z -0.001 -0.418 -0.022 -0.001 0.002 0.001 0.001 0.000 0.001
## proc1:N_z -0.004 -0.023 -0.401 -0.003 0.002 0.000 0.005 -0.006 -0.007
## val1:proc1:N_z 0.003 0.012 0.023 -0.003 0.001 -0.002 -0.003 -0.002 0.001
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.014
## proc1:N_z 0.024 0.027
## val1:proc1:N_z -0.397 0.021 -0.009
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.09711351 -0.60176263 0.02755367 0.63820147 3.32516188
##
## Residual standard error: 0.2334598
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2rins <- gls(mag1_mask_Rins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2rins)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_Rins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -227.3517 -168.7305 128.6759
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7080195
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.09039021 0.18906337 0.4780948 0.6329
## val1 -0.00646584 0.00736273 -0.8781853 0.3804
## proc1 0.01131339 0.00736273 1.5365755 0.1253
## N_z -0.00066040 0.02623769 -0.0251699 0.9799
## dep_composite 0.05141995 0.05481379 0.9380842 0.3488
## anx_composite -0.07022871 0.04851909 -1.4474450 0.1487
## Age -0.00387090 0.00799138 -0.4843849 0.6284
## SexAtBirth 0.11784442 0.05100602 2.3104022 0.0214
## site -0.00889103 0.02391101 -0.3718381 0.7102
## val1:proc1 0.00100412 0.00736273 0.1363786 0.8916
## val1:N_z -0.00455709 0.00417487 -1.0915537 0.2758
## proc1:N_z -0.00172887 0.00417487 -0.4141137 0.6790
## val1:proc1:N_z -0.00982720 0.00417487 -2.3538947 0.0191
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.07498614 -0.59787848 0.02452095 0.62227780 3.30100201
##
## Residual standard error: 0.2347246
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1rins,nositemodel2rins)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1rins 1 20 -223.2799 -145.1182 131.6399
## nositemodel2rins 2 15 -227.3517 -168.7305 128.6759 1 vs 2 5.928171 0.3133
# Different var/cov by Site
sitemodel1rins <- gls(mag1_mask_Rins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1rins)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_Rins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -226.4534 -163.9241 129.2267
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7128503
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.9217494
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.08457655 0.18767210 0.4506613 0.6525
## val1 -0.00596249 0.00733821 -0.8125269 0.4170
## proc1 0.01153898 0.00733821 1.5724528 0.1167
## N_z -0.00236296 0.02646274 -0.0892939 0.9289
## dep_composite 0.05287454 0.05503801 0.9606913 0.3374
## anx_composite -0.06980745 0.04846643 -1.4403257 0.1507
## Age -0.00350972 0.00790720 -0.4438645 0.6574
## SexAtBirth 0.11603614 0.05080314 2.2840348 0.0230
## site -0.00937313 0.02368922 -0.3956707 0.6926
## val1:proc1 0.00110293 0.00733821 0.1503002 0.8806
## val1:N_z -0.00425847 0.00420225 -1.0133774 0.3116
## proc1:N_z -0.00183459 0.00420225 -0.4365738 0.6627
## val1:proc1:N_z -0.00968366 0.00420225 -2.3043969 0.0218
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.272 0.000 0.000
## dep_composite 0.096 0.000 0.000 -0.573
## anx_composite 0.177 0.000 0.000 -0.239 -0.513
## Age -0.974 0.000 0.000 0.193 -0.082 -0.103
## SexAtBirth -0.281 0.000 0.000 0.032 0.118 -0.314 0.115
## site 0.214 0.000 0.000 -0.020 -0.085 0.090 -0.236 0.154
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.410 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.410 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.410 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.21389730 -0.60206864 0.02466245 0.62445840 3.46155451
##
## Residual standard error: 0.2433445
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2rins <- gls(mag1_mask_Rins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2rins)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_Rins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -227.3517 -168.7305 128.6759
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7080195
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.09039021 0.18906337 0.4780948 0.6329
## val1 -0.00646584 0.00736273 -0.8781853 0.3804
## proc1 0.01131339 0.00736273 1.5365755 0.1253
## N_z -0.00066040 0.02623769 -0.0251699 0.9799
## dep_composite 0.05141995 0.05481379 0.9380842 0.3488
## anx_composite -0.07022871 0.04851909 -1.4474450 0.1487
## Age -0.00387090 0.00799138 -0.4843849 0.6284
## SexAtBirth 0.11784442 0.05100602 2.3104022 0.0214
## site -0.00889103 0.02391101 -0.3718381 0.7102
## val1:proc1 0.00100412 0.00736273 0.1363786 0.8916
## val1:N_z -0.00455709 0.00417487 -1.0915537 0.2758
## proc1:N_z -0.00172887 0.00417487 -0.4141137 0.6790
## val1:proc1:N_z -0.00982720 0.00417487 -2.3538947 0.0191
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.07498614 -0.59787848 0.02452095 0.62227780 3.30100201
##
## Residual standard error: 0.2347246
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1rins,sitemodel2rins)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1rins 1 16 -226.4534 -163.9241 129.2267
## sitemodel2rins 2 15 -227.3517 -168.7305 128.6759 1 vs 2 1.101663 0.2939
# rename winning model
rins_N <- gls(mag1_mask_Rins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(rins_N)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_Rins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -227.3517 -168.7305 128.6759
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7080195
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.09039021 0.18906337 0.4780948 0.6329
## val1 -0.00646584 0.00736273 -0.8781853 0.3804
## proc1 0.01131339 0.00736273 1.5365755 0.1253
## N_z -0.00066040 0.02623769 -0.0251699 0.9799
## dep_composite 0.05141995 0.05481379 0.9380842 0.3488
## anx_composite -0.07022871 0.04851909 -1.4474450 0.1487
## Age -0.00387090 0.00799138 -0.4843849 0.6284
## SexAtBirth 0.11784442 0.05100602 2.3104022 0.0214
## site -0.00889103 0.02391101 -0.3718381 0.7102
## val1:proc1 0.00100412 0.00736273 0.1363786 0.8916
## val1:N_z -0.00455709 0.00417487 -1.0915537 0.2758
## proc1:N_z -0.00172887 0.00417487 -0.4141137 0.6790
## val1:proc1:N_z -0.00982720 0.00417487 -2.3538947 0.0191
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.07498614 -0.59787848 0.02452095 0.62227780 3.30100201
##
## Residual standard error: 0.2347246
## Degrees of freedom: 368 total; 355 residual
dlPFC models:
# Different var/cov by Site
nositemodel1dlpfc <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1dlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -455.1545 -376.9928 247.5772
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.640
## 3 0.734 0.663
## 4 0.646 0.720 0.731
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.10929219 0.13394260 0.8159629 0.4151
## val1 -0.00347342 0.00530535 -0.6547006 0.5131
## proc1 0.01027751 0.00536909 1.9142006 0.0564
## N_z -0.02043576 0.01858824 -1.0993919 0.2723
## dep_composite 0.00516798 0.03883372 0.1330798 0.8942
## anx_composite 0.02120959 0.03437342 0.6170346 0.5376
## Age -0.00069986 0.00566152 -0.1236169 0.9017
## SexAtBirth 0.05136743 0.03613540 1.4215266 0.1560
## site -0.01613920 0.01694111 -0.9526648 0.3414
## val1:proc1 0.00713673 0.00521987 1.3672248 0.1724
## val1:N_z -0.00179023 0.00297757 -0.6012378 0.5481
## proc1:N_z 0.00456625 0.00307651 1.4842311 0.1386
## val1:proc1:N_z -0.00320628 0.00295929 -1.0834629 0.2793
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.002
## proc1 -0.001 0.003
## N_z -0.251 -0.001 -0.001
## dep_composite 0.082 -0.003 0.003 -0.567
## anx_composite 0.166 0.004 0.000 -0.242 -0.520
## Age -0.975 0.000 0.002 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 -0.004 0.021 0.131 -0.320 0.110
## site 0.225 0.009 0.002 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.005 0.004 -0.022 -0.004 0.001 0.003 -0.005 -0.003 -0.009
## val1:N_z -0.002 -0.419 0.004 0.005 -0.005 0.000 0.001 -0.001 -0.005
## proc1:N_z 0.001 0.004 -0.401 0.001 0.000 -0.002 -0.001 0.003 0.002
## val1:proc1:N_z -0.003 -0.007 0.002 0.003 -0.001 -0.002 0.003 0.003 0.001
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z -0.007
## proc1:N_z 0.003 -0.005
## val1:proc1:N_z -0.395 -0.003 0.003
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.874878248 -0.584112659 -0.003565874 0.664503714 2.722587139
##
## Residual standard error: 0.168034
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2dlpfc <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2dlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -457.9361 -399.3148 243.968
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6942579
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11475005 0.13516944 0.8489349 0.3965
## val1 -0.00453453 0.00542250 -0.8362443 0.4036
## proc1 0.01132490 0.00542250 2.0885024 0.0375
## N_z -0.01930145 0.01875844 -1.0289476 0.3042
## dep_composite 0.00139448 0.03918871 0.0355838 0.9716
## anx_composite 0.02347200 0.03468836 0.6766537 0.4991
## Age -0.00088822 0.00571338 -0.1554626 0.8765
## SexAtBirth 0.04919528 0.03646637 1.3490589 0.1782
## site -0.01616353 0.01709500 -0.9455122 0.3450
## val1:proc1 0.00630465 0.00542250 1.1626844 0.2457
## val1:N_z -0.00072833 0.00307470 -0.2368775 0.8129
## proc1:N_z 0.00455360 0.00307470 1.4809889 0.1395
## val1:proc1:N_z -0.00312825 0.00307470 -1.0174163 0.3096
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.885714782 -0.585214020 -0.009491253 0.649897037 2.700670417
##
## Residual standard error: 0.1689346
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1dlpfc,nositemodel2dlpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1dlpfc 1 20 -455.1545 -376.9928 247.5772
## nositemodel2dlpfc 2 15 -457.9361 -399.3148 243.9680 1 vs 2 7.218381 0.2049
# Different var/cov by Site
sitemodel1dlpfc <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1dlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -462.1789 -399.6495 247.0894
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6892239
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 0.823023
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.12508305 0.12814651 0.9760941 0.3297
## val1 -0.00526664 0.00537395 -0.9800312 0.3277
## proc1 0.01218662 0.00537395 2.2677208 0.0239
## N_z -0.02115514 0.01845960 -1.1460242 0.2526
## dep_composite 0.00900886 0.03814076 0.2362004 0.8134
## anx_composite 0.02315242 0.03334726 0.6942825 0.4880
## Age -0.00128835 0.00537452 -0.2397139 0.8107
## SexAtBirth 0.04809073 0.03480490 1.3817229 0.1679
## site -0.01629654 0.01626242 -1.0020984 0.3170
## val1:proc1 0.00728794 0.00537395 1.3561604 0.1759
## val1:N_z -0.00062635 0.00312212 -0.2006165 0.8411
## proc1:N_z 0.00449957 0.00312212 1.4411922 0.1504
## val1:proc1:N_z -0.00306683 0.00312212 -0.9822929 0.3266
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.299 0.000 0.000
## dep_composite 0.116 0.000 0.000 -0.582
## anx_composite 0.193 0.000 0.000 -0.235 -0.502
## Age -0.974 0.000 0.000 0.219 -0.098 -0.122
## SexAtBirth -0.290 0.000 0.000 0.047 0.101 -0.307 0.122
## site 0.196 0.000 0.000 -0.022 -0.085 0.095 -0.231 0.154
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.417 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.417 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.417 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.63383176 -0.58630122 -0.01241893 0.66136728 2.53805142
##
## Residual standard error: 0.17978
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2dlpfc <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2dlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -457.9361 -399.3148 243.968
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6942579
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11475005 0.13516944 0.8489349 0.3965
## val1 -0.00453453 0.00542250 -0.8362443 0.4036
## proc1 0.01132490 0.00542250 2.0885024 0.0375
## N_z -0.01930145 0.01875844 -1.0289476 0.3042
## dep_composite 0.00139448 0.03918871 0.0355838 0.9716
## anx_composite 0.02347200 0.03468836 0.6766537 0.4991
## Age -0.00088822 0.00571338 -0.1554626 0.8765
## SexAtBirth 0.04919528 0.03646637 1.3490589 0.1782
## site -0.01616353 0.01709500 -0.9455122 0.3450
## val1:proc1 0.00630465 0.00542250 1.1626844 0.2457
## val1:N_z -0.00072833 0.00307470 -0.2368775 0.8129
## proc1:N_z 0.00455360 0.00307470 1.4809889 0.1395
## val1:proc1:N_z -0.00312825 0.00307470 -1.0174163 0.3096
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.885714782 -0.585214020 -0.009491253 0.649897037 2.700670417
##
## Residual standard error: 0.1689346
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1dlpfc,sitemodel2dlpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1dlpfc 1 16 -462.1789 -399.6495 247.0894
## sitemodel2dlpfc 2 15 -457.9361 -399.3148 243.9680 1 vs 2 6.242792 0.0125
#rename winning model
dlpfc_N <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(dlpfc_N)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -462.1789 -399.6495 247.0894
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6892239
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 0.823023
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.12508305 0.12814651 0.9760941 0.3297
## val1 -0.00526664 0.00537395 -0.9800312 0.3277
## proc1 0.01218662 0.00537395 2.2677208 0.0239
## N_z -0.02115514 0.01845960 -1.1460242 0.2526
## dep_composite 0.00900886 0.03814076 0.2362004 0.8134
## anx_composite 0.02315242 0.03334726 0.6942825 0.4880
## Age -0.00128835 0.00537452 -0.2397139 0.8107
## SexAtBirth 0.04809073 0.03480490 1.3817229 0.1679
## site -0.01629654 0.01626242 -1.0020984 0.3170
## val1:proc1 0.00728794 0.00537395 1.3561604 0.1759
## val1:N_z -0.00062635 0.00312212 -0.2006165 0.8411
## proc1:N_z 0.00449957 0.00312212 1.4411922 0.1504
## val1:proc1:N_z -0.00306683 0.00312212 -0.9822929 0.3266
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.299 0.000 0.000
## dep_composite 0.116 0.000 0.000 -0.582
## anx_composite 0.193 0.000 0.000 -0.235 -0.502
## Age -0.974 0.000 0.000 0.219 -0.098 -0.122
## SexAtBirth -0.290 0.000 0.000 0.047 0.101 -0.307 0.122
## site 0.196 0.000 0.000 -0.022 -0.085 0.095 -0.231 0.154
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.417 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.417 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.417 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.63383176 -0.58630122 -0.01241893 0.66136728 2.53805142
##
## Residual standard error: 0.17978
## Degrees of freedom: 368 total; 355 residual
#rename winning model
dlpfc_D <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*dep_composite + N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(dlpfc_D)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * dep_composite + N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -462.2379 -399.7086 247.119
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6892449
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.8221445
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.12514593 0.12811006 0.9768626 0.3293
## val1 -0.00542744 0.00490418 -1.1066964 0.2692
## proc1 0.01468131 0.00490418 2.9936314 0.0029
## dep_composite 0.00905191 0.03813495 0.2373653 0.8125
## N_z -0.02116585 0.01845796 -1.1467055 0.2523
## anx_composite 0.02315226 0.03333995 0.6944299 0.4879
## Age -0.00129079 0.00537276 -0.2402478 0.8103
## SexAtBirth 0.04808406 0.03479583 1.3818917 0.1679
## site -0.01629713 0.01625934 -1.0023246 0.3169
## val1:proc1 0.00524851 0.00490418 1.0702120 0.2853
## val1:dep_composite -0.00366212 0.00574167 -0.6378144 0.5240
## proc1:dep_composite 0.00928253 0.00574167 1.6166947 0.1068
## val1:proc1:dep_composite -0.00197526 0.00574167 -0.3440214 0.7310
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.000
## proc1 0.000 0.000
## dep_composite 0.116 0.000 0.000
## N_z -0.300 0.000 0.000 -0.582
## anx_composite 0.193 0.000 0.000 -0.502 -0.235
## Age -0.974 0.000 0.000 -0.099 0.219 -0.122
## SexAtBirth -0.290 0.000 0.000 0.100 0.048 -0.307 0.123
## site 0.196 0.000 0.000 -0.085 -0.022 0.095 -0.231
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:dep_composite 0.000 -0.094 0.000 0.000 0.000 0.000 0.000
## proc1:dep_composite 0.000 0.000 -0.094 0.000 0.000 0.000 0.000
## val1:proc1:dep_composite 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## SxAtBr site vl1:p1 vl1:d_ prc1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.154
## val1:proc1 0.000 0.000
## val1:dep_composite 0.000 0.000 0.000
## proc1:dep_composite 0.000 0.000 0.000 0.000
## val1:proc1:dep_composite 0.000 0.000 -0.094 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.6587448600 -0.5906296363 0.0007177856 0.6713808813 2.5622586556
##
## Residual standard error: 0.1798448
## Degrees of freedom: 368 total; 355 residual
dlpfc_DN <- gls(mag1_mask_bilatdlpfc_b ~ val*proc*dep_composite + val*proc*N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(dlpfc_DN)
## Generalized least squares fit by maximum likelihood
## Model: mag1_mask_bilatdlpfc_b ~ val * proc * dep_composite + val * proc * N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -458.2628 -384.0092 248.1314
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6907341
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.8142329
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.12571806 0.12832468 0.9796874 0.3279
## val1 -0.00743144 0.00592625 -1.2539875 0.2107
## proc1 0.01412300 0.00592625 2.3831253 0.0177
## dep_composite 0.00944209 0.03824436 0.2468885 0.8051
## N_z -0.02126296 0.01852162 -1.1480077 0.2517
## anx_composite 0.02315170 0.03341542 0.6928448 0.4889
## Age -0.00131306 0.00537963 -0.2440790 0.8073
## SexAtBirth 0.04802342 0.03486135 1.3775548 0.1692
## site -0.01630241 0.01630123 -1.0000727 0.3180
## val1:proc1 0.00947413 0.00592625 1.5986718 0.1108
## val1:dep_composite -0.00872344 0.01026700 -0.8496589 0.3961
## proc1:dep_composite 0.00775563 0.01026700 0.7553943 0.4505
## val1:N_z 0.00331107 0.00558402 0.5929547 0.5536
## proc1:N_z 0.00100115 0.00558402 0.1792892 0.8578
## val1:proc1:dep_composite 0.00875524 0.01026700 0.8527555 0.3944
## val1:proc1:N_z -0.00700884 0.00558402 -1.2551598 0.2103
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.000
## proc1 0.000 0.000
## dep_composite 0.118 0.000 0.000
## N_z -0.302 0.000 0.000 -0.582
## anx_composite 0.194 0.000 0.000 -0.501 -0.234
## Age -0.974 0.000 0.000 -0.100 0.221 -0.123
## SexAtBirth -0.291 0.000 0.000 0.099 0.049 -0.306 0.123
## site 0.194 0.000 0.000 -0.084 -0.022 0.096 -0.231
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:dep_composite 0.000 0.422 0.000 0.000 0.000 0.000 0.000
## proc1:dep_composite 0.000 0.000 0.422 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.562 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.562 0.000 0.000 0.000 0.000
## val1:proc1:dep_composite 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## SxAtBr site vl1:p1 vl1:d_ prc1:_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 0.000 0.000
## val1:dep_composite 0.000 0.000 0.000
## proc1:dep_composite 0.000 0.000 0.000 0.000
## val1:N_z 0.000 0.000 0.000 -0.829 0.000
## proc1:N_z 0.000 0.000 0.000 0.000 -0.829 0.000
## val1:proc1:dep_composite 0.000 0.000 0.422 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 -0.562 0.000 0.000 0.000 0.000
## v1:1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:proc1:dep_composite
## val1:proc1:N_z -0.829
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.623345783 -0.589331843 -0.001839483 0.657642700 2.564367577
##
## Residual standard error: 0.1803224
## Degrees of freedom: 368 total; 352 residual
vlPFC models:
# Different var/cov by Site
nositemodel1vlpfc <- gls(mag2_mask_bilatvlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1vlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag2_mask_bilatvlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -273.5209 -195.3593 156.7605
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.735
## 3 0.719 0.764
## 4 0.670 0.788 0.732
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.4874019 0.18458387 2.6405445 0.0086
## val1 0.0078976 0.00661909 1.1931570 0.2336
## proc1 0.0092588 0.00668549 1.3849049 0.1670
## N_z -0.0070949 0.02561730 -0.2769579 0.7820
## dep_composite 0.0609469 0.05351546 1.1388659 0.2555
## anx_composite -0.0529896 0.04737057 -1.1186182 0.2641
## Age -0.0154395 0.00780196 -1.9789310 0.0486
## SexAtBirth 0.0223344 0.04979763 0.4485035 0.6541
## site -0.0699717 0.02334849 -2.9968391 0.0029
## val1:proc1 -0.0039555 0.00658105 -0.6010437 0.5482
## val1:N_z -0.0052460 0.00373837 -1.4032947 0.1614
## proc1:N_z -0.0021111 0.00381437 -0.5534594 0.5803
## val1:proc1:N_z -0.0074833 0.00373079 -2.0058255 0.0456
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 -0.002
## proc1 -0.003 0.016
## N_z -0.251 -0.004 0.007
## dep_composite 0.082 0.000 0.002 -0.567
## anx_composite 0.166 -0.003 -0.008 -0.242 -0.520
## Age -0.975 0.001 0.003 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.001 0.001 0.021 0.131 -0.320 0.110
## site 0.225 -0.013 0.006 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.001 0.000 -0.011 0.000 0.005 0.000 -0.001 -0.007 -0.012
## val1:N_z 0.000 -0.412 -0.023 0.001 -0.004 0.005 -0.001 -0.001 0.005
## proc1:N_z 0.000 -0.024 -0.404 -0.008 0.005 -0.001 0.001 -0.001 -0.009
## val1:proc1:N_z 0.006 -0.009 0.037 -0.007 0.001 0.000 -0.005 -0.001 0.008
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z -0.008
## proc1:N_z 0.038 0.041
## val1:proc1:N_z -0.399 0.028 -0.010
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.65532773 -0.57802302 -0.03731492 0.60087397 2.75541900
##
## Residual standard error: 0.2267857
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2vlpfc <- gls(mag2_mask_bilatvlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2vlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag2_mask_bilatvlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -276.9589 -218.3376 153.4794
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7313777
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.4776923 0.18387710 2.5978890 0.0098
## val1 0.0065930 0.00679260 0.9706156 0.3324
## proc1 0.0111269 0.00679260 1.6380874 0.1023
## N_z -0.0063749 0.02551796 -0.2498198 0.8029
## dep_composite 0.0566780 0.05331017 1.0631742 0.2884
## anx_composite -0.0482875 0.04718814 -1.0232971 0.3069
## Age -0.0150337 0.00777216 -1.9343065 0.0539
## SexAtBirth 0.0232562 0.04960685 0.4688100 0.6395
## site -0.0672972 0.02325510 -2.8938686 0.0040
## val1:proc1 -0.0037427 0.00679260 -0.5510023 0.5820
## val1:N_z -0.0049242 0.00385159 -1.2784878 0.2019
## proc1:N_z -0.0021841 0.00385159 -0.5670737 0.5710
## val1:proc1:N_z -0.0068901 0.00385159 -1.7889005 0.0745
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.67448205 -0.57553465 -0.02964829 0.61808301 2.78797859
##
## Residual standard error: 0.2257678
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1vlpfc,nositemodel2vlpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1vlpfc 1 20 -273.5209 -195.3593 156.7605
## nositemodel2vlpfc 2 15 -276.9589 -218.3376 153.4794 1 vs 2 6.562035 0.2553
# Different var/cov by Site
sitemodel1vlpfc <- gls(mag2_mask_bilatvlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1vlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag2_mask_bilatvlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -283.1387 -220.6094 157.5694
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7389704
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.7986848
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.4976954 0.17641733 2.8211254 0.0051
## val1 0.0082070 0.00665256 1.2336632 0.2181
## proc1 0.0121522 0.00665256 1.8266948 0.0686
## N_z -0.0127879 0.02555225 -0.5004624 0.6171
## dep_composite 0.0639787 0.05270050 1.2140053 0.2256
## anx_composite -0.0437539 0.04599106 -0.9513556 0.3421
## Age -0.0155357 0.00738994 -2.1022764 0.0362
## SexAtBirth 0.0153585 0.04794464 0.3203372 0.7489
## site -0.0677691 0.02245529 -3.0179562 0.0027
## val1:proc1 -0.0030192 0.00665256 -0.4538445 0.6502
## val1:N_z -0.0049127 0.00388014 -1.2661068 0.2063
## proc1:N_z -0.0016350 0.00388014 -0.4213706 0.6737
## val1:proc1:N_z -0.0063607 0.00388014 -1.6392986 0.1020
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.307 0.000 0.000
## dep_composite 0.121 0.000 0.000 -0.584
## anx_composite 0.197 0.000 0.000 -0.233 -0.499
## Age -0.974 0.000 0.000 0.225 -0.103 -0.126
## SexAtBirth -0.292 0.000 0.000 0.052 0.096 -0.305 0.124
## site 0.191 0.000 0.000 -0.022 -0.084 0.097 -0.230 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.419 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.419 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.419 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.39368280 -0.59360236 -0.04407989 0.61852101 2.99007379
##
## Residual standard error: 0.2462182
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2vlpfc <- gls(mag2_mask_bilatvlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2vlpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag2_mask_bilatvlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -276.9589 -218.3376 153.4794
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7313777
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.4776923 0.18387710 2.5978890 0.0098
## val1 0.0065930 0.00679260 0.9706156 0.3324
## proc1 0.0111269 0.00679260 1.6380874 0.1023
## N_z -0.0063749 0.02551796 -0.2498198 0.8029
## dep_composite 0.0566780 0.05331017 1.0631742 0.2884
## anx_composite -0.0482875 0.04718814 -1.0232971 0.3069
## Age -0.0150337 0.00777216 -1.9343065 0.0539
## SexAtBirth 0.0232562 0.04960685 0.4688100 0.6395
## site -0.0672972 0.02325510 -2.8938686 0.0040
## val1:proc1 -0.0037427 0.00679260 -0.5510023 0.5820
## val1:N_z -0.0049242 0.00385159 -1.2784878 0.2019
## proc1:N_z -0.0021841 0.00385159 -0.5670737 0.5710
## val1:proc1:N_z -0.0068901 0.00385159 -1.7889005 0.0745
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.67448205 -0.57553465 -0.02964829 0.61808301 2.78797859
##
## Residual standard error: 0.2257678
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1vlpfc,sitemodel2vlpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1vlpfc 1 16 -283.1387 -220.6094 157.5693
## sitemodel2vlpfc 2 15 -276.9589 -218.3376 153.4794 1 vs 2 8.179827 0.0042
#rename winning model
vlpfc_N <- gls(mag2_mask_bilatvlpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(vlpfc_N)
## Generalized least squares fit by maximum likelihood
## Model: mag2_mask_bilatvlpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -283.1387 -220.6094 157.5694
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7389704
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.7986848
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.4976954 0.17641733 2.8211254 0.0051
## val1 0.0082070 0.00665256 1.2336632 0.2181
## proc1 0.0121522 0.00665256 1.8266948 0.0686
## N_z -0.0127879 0.02555225 -0.5004624 0.6171
## dep_composite 0.0639787 0.05270050 1.2140053 0.2256
## anx_composite -0.0437539 0.04599106 -0.9513556 0.3421
## Age -0.0155357 0.00738994 -2.1022764 0.0362
## SexAtBirth 0.0153585 0.04794464 0.3203372 0.7489
## site -0.0677691 0.02245529 -3.0179562 0.0027
## val1:proc1 -0.0030192 0.00665256 -0.4538445 0.6502
## val1:N_z -0.0049127 0.00388014 -1.2661068 0.2063
## proc1:N_z -0.0016350 0.00388014 -0.4213706 0.6737
## val1:proc1:N_z -0.0063607 0.00388014 -1.6392986 0.1020
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.307 0.000 0.000
## dep_composite 0.121 0.000 0.000 -0.584
## anx_composite 0.197 0.000 0.000 -0.233 -0.499
## Age -0.974 0.000 0.000 0.225 -0.103 -0.126
## SexAtBirth -0.292 0.000 0.000 0.052 0.096 -0.305 0.124
## site 0.191 0.000 0.000 -0.022 -0.084 0.097 -0.230 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.419 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.419 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.419 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.39368280 -0.59360236 -0.04407989 0.61852101 2.99007379
##
## Residual standard error: 0.2462182
## Degrees of freedom: 368 total; 355 residual
amyg models:
# Different var/cov by Site
nositemodel1amyg <- gls(mag3_mask_bilatamyg_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1amyg)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_bilatamyg_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -454.191 -376.0293 247.0955
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.767
## 3 0.764 0.754
## 4 0.729 0.711 0.749
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.03897720 0.14658970 -0.2658932 0.7905
## val1 -0.00987989 0.00523760 -1.8863396 0.0601
## proc1 -0.00901620 0.00518549 -1.7387380 0.0829
## N_z 0.04626689 0.02034328 2.2743081 0.0235
## dep_composite -0.05596947 0.04250009 -1.3169257 0.1887
## anx_composite -0.00770881 0.03761920 -0.2049170 0.8378
## Age -0.00326918 0.00619609 -0.5276205 0.5981
## SexAtBirth -0.04160059 0.03954746 -1.0519157 0.2936
## site -0.01046014 0.01854007 -0.5641909 0.5730
## val1:proc1 -0.00602284 0.00518249 -1.1621516 0.2460
## val1:N_z -0.00389243 0.00296027 -1.3148890 0.1894
## proc1:N_z 0.00033614 0.00294275 0.1142256 0.9091
## val1:proc1:N_z -0.00537910 0.00294488 -1.8265963 0.0686
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 -0.001
## proc1 -0.003 0.003
## N_z -0.251 0.001 0.003
## dep_composite 0.082 0.002 -0.002 -0.567
## anx_composite 0.165 -0.002 0.002 -0.242 -0.520
## Age -0.975 0.000 0.003 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 -0.003 0.021 0.131 -0.320 0.110
## site 0.225 -0.003 -0.007 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 -0.001 0.012 0.016 0.002 -0.005 0.002 0.001 0.001 -0.006
## val1:N_z 0.001 -0.409 0.008 0.001 -0.002 0.000 -0.001 0.000 0.001
## proc1:N_z 0.003 0.008 -0.401 0.000 0.000 0.000 -0.004 0.004 0.003
## val1:proc1:N_z -0.001 -0.012 -0.005 0.000 -0.001 0.002 0.000 0.001 0.002
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z -0.012
## proc1:N_z -0.005 -0.005
## val1:proc1:N_z -0.405 -0.006 0.003
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.68551018 -0.73655517 0.06829994 0.74065574 3.15403165
##
## Residual standard error: 0.178883
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2amyg <- gls(mag3_mask_bilatamyg_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2amyg)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_bilatamyg_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -462.3293 -403.7081 246.1647
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7479641
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.03392126 0.14724575 -0.2303718 0.8179
## val1 -0.00938418 0.00522823 -1.7949050 0.0735
## proc1 -0.00873229 0.00522823 -1.6702180 0.0958
## N_z 0.04455260 0.02043436 2.1802788 0.0299
## dep_composite -0.05428521 0.04268991 -1.2716171 0.2043
## anx_composite -0.00703722 0.03778749 -0.1862316 0.8524
## Age -0.00345910 0.00622382 -0.5557845 0.5787
## SexAtBirth -0.04039507 0.03972435 -1.0168845 0.3099
## site -0.01059010 0.01862230 -0.5686785 0.5699
## val1:proc1 -0.00572695 0.00522823 -1.0953888 0.2741
## val1:N_z -0.00400945 0.00296455 -1.3524641 0.1771
## proc1:N_z 0.00040748 0.00296455 0.1374508 0.8908
## val1:proc1:N_z -0.00479760 0.00296455 -1.6183244 0.1065
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.69031793 -0.74263900 0.05125709 0.73490157 3.13828338
##
## Residual standard error: 0.1793991
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1amyg,nositemodel2amyg)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1amyg 1 20 -454.1910 -376.0293 247.0955
## nositemodel2amyg 2 15 -462.3293 -403.7081 246.1646 1 vs 2 1.861704 0.8679
# Different var/cov by Site
sitemodel1amyg <- gls(mag3_mask_bilatamyg_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1amyg)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_bilatamyg_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -460.5069 -397.9776 246.2534
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7465092
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 1.033046
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.03923000 0.14753961 -0.2658947 0.7905
## val1 -0.00930146 0.00522551 -1.7800080 0.0759
## proc1 -0.00884531 0.00522551 -1.6927158 0.0914
## N_z 0.04447763 0.02034370 2.1863096 0.0294
## dep_composite -0.05433687 0.04257270 -1.2763313 0.2027
## anx_composite -0.00701158 0.03776108 -0.1856827 0.8528
## Age -0.00328215 0.00624402 -0.5256468 0.5995
## SexAtBirth -0.03813264 0.03974039 -0.9595436 0.3379
## site -0.01049078 0.01869902 -0.5610335 0.5751
## val1:proc1 -0.00589625 0.00522551 -1.1283570 0.2599
## val1:N_z -0.00401828 0.00295178 -1.3613079 0.1743
## proc1:N_z 0.00037300 0.00295178 0.1263631 0.8995
## val1:proc1:N_z -0.00473862 0.00295178 -1.6053443 0.1093
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.242 0.000 0.000
## dep_composite 0.076 0.000 0.000 -0.565
## anx_composite 0.161 0.000 0.000 -0.244 -0.522
## Age -0.975 0.000 0.000 0.166 -0.065 -0.084
## SexAtBirth -0.273 0.000 0.000 0.017 0.136 -0.322 0.108
## site 0.229 0.000 0.000 -0.018 -0.084 0.083 -0.237 0.152
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.403 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.403 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.6450345 -0.7445877 0.0464514 0.7371171 3.0760830
##
## Residual standard error: 0.1767365
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2amyg <- gls(mag3_mask_bilatamyg_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2amyg)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_bilatamyg_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -462.3293 -403.7081 246.1647
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.7479641
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.03392126 0.14724575 -0.2303718 0.8179
## val1 -0.00938418 0.00522823 -1.7949050 0.0735
## proc1 -0.00873229 0.00522823 -1.6702180 0.0958
## N_z 0.04455260 0.02043436 2.1802788 0.0299
## dep_composite -0.05428521 0.04268991 -1.2716171 0.2043
## anx_composite -0.00703722 0.03778749 -0.1862316 0.8524
## Age -0.00345910 0.00622382 -0.5557845 0.5787
## SexAtBirth -0.04039507 0.03972435 -1.0168845 0.3099
## site -0.01059010 0.01862230 -0.5686785 0.5699
## val1:proc1 -0.00572695 0.00522823 -1.0953888 0.2741
## val1:N_z -0.00400945 0.00296455 -1.3524641 0.1771
## proc1:N_z 0.00040748 0.00296455 0.1374508 0.8908
## val1:proc1:N_z -0.00479760 0.00296455 -1.6183244 0.1065
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.69031793 -0.74263900 0.05125709 0.73490157 3.13828338
##
## Residual standard error: 0.1793991
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1amyg,sitemodel2amyg)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1amyg 1 16 -460.5069 -397.9776 246.2534
## sitemodel2amyg 2 15 -462.3293 -403.7081 246.1646 1 vs 2 0.1775891 0.6735
#rename winning model:
amyg_N <- gls(mag3_mask_bilatamyg_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
anova(amyg_N)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 38.75008 <.0001
## val 1 6.56575 0.0108
## proc 1 3.11841 0.0783
## N_z 1 2.08230 0.1499
## dep_composite 1 3.14889 0.0768
## anx_composite 1 0.24781 0.6189
## Age 1 0.33014 0.5659
## SexAtBirth 1 0.88559 0.3473
## site 1 0.32340 0.5699
## val:proc 1 3.66747 0.0563
## val:N_z 1 1.82916 0.1771
## proc:N_z 1 0.01889 0.8908
## val:proc:N_z 1 2.61897 0.1065
mpfc models:
# Different var/cov by Site
nositemodel1mpfc <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub), method = "ML",na.action = "na.omit")
summary(nositemodel1mpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.7755 256.9372 -69.38776
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.682
## 3 0.576 0.742
## 4 0.627 0.792 0.757
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11509149 0.3231043 0.356205 0.7219
## val1 -0.03913614 0.0123720 -3.163281 0.0017
## proc1 0.00309380 0.0122856 0.251824 0.8013
## N_z 0.03148977 0.0448418 0.702241 0.4830
## dep_composite 0.00304918 0.0936883 0.032546 0.9741
## anx_composite 0.02054551 0.0829234 0.247765 0.8045
## Age -0.02190188 0.0136568 -1.603739 0.1097
## SexAtBirth -0.18324830 0.0871724 -2.102137 0.0362
## site -0.03486447 0.0408744 -0.852967 0.3943
## val1:proc1 0.03351636 0.0121871 2.750158 0.0063
## val1:N_z 0.00261383 0.0069858 0.374162 0.7085
## proc1:N_z -0.00554389 0.0069962 -0.792415 0.4286
## val1:proc1:N_z -0.02210865 0.0069328 -3.188982 0.0016
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.019
## N_z -0.251 -0.006 0.002
## dep_composite 0.082 -0.004 0.006 -0.567
## anx_composite 0.165 0.001 -0.014 -0.242 -0.520
## Age -0.975 0.001 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.001 0.009 0.021 0.131 -0.320 0.110
## site 0.225 -0.008 0.024 -0.019 -0.084 0.084 -0.237 0.153
## val1:proc1 0.004 -0.018 -0.048 -0.004 0.016 -0.004 -0.003 -0.011 -0.003
## val1:N_z -0.003 -0.414 -0.038 0.000 -0.001 0.005 0.001 -0.002 0.003
## proc1:N_z -0.007 -0.041 -0.402 -0.011 0.007 -0.002 0.009 -0.011 -0.018
## val1:proc1:N_z 0.009 0.004 0.055 -0.009 0.003 -0.005 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.007
## proc1:N_z 0.057 0.057
## val1:proc1:N_z -0.403 0.042 -0.014
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87259611 -0.56629998 0.01541648 0.65999634 3.38633117
##
## Residual standard error: 0.4066082
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2mpfc <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2mpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 187.8397 246.4609 -78.91984
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6974995
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.12458410 0.3267254 0.381311 0.7032
## val1 -0.04141097 0.0130168 -3.181340 0.0016
## proc1 0.00155973 0.0130168 0.119824 0.9047
## N_z 0.02523743 0.0453420 0.556601 0.5782
## dep_composite 0.00319005 0.0947251 0.033677 0.9732
## anx_composite 0.03019730 0.0838471 0.360147 0.7190
## Age -0.02221410 0.0138101 -1.608539 0.1086
## SexAtBirth -0.18367901 0.0881448 -2.083832 0.0379
## site -0.02991036 0.0413213 -0.723849 0.4696
## val1:proc1 0.03041047 0.0130168 2.336242 0.0200
## val1:N_z 0.00488951 0.0073809 0.662454 0.5081
## proc1:N_z -0.00563648 0.0073809 -0.763658 0.4456
## val1:proc1:N_z -0.01968956 0.0073809 -2.667639 0.0080
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.84718479 -0.55756746 0.02434608 0.65312712 3.37644291
##
## Residual standard error: 0.4076983
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1mpfc,nositemodel2mpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1mpfc 1 20 178.7755 256.9372 -69.38776
## nositemodel2mpfc 2 15 187.8397 246.4609 -78.91984 1 vs 2 19.06416 0.0019
# Different var/cov by Site
sitemodel1mpfc <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1mpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 180.7146 262.7843 -69.35729
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.680
## 3 0.577 0.742
## 4 0.625 0.791 0.758
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 1.019812
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11327811 0.3239023 0.349729 0.7267
## val1 -0.03929878 0.0123619 -3.179022 0.0016
## proc1 0.00305873 0.0122821 0.249041 0.8035
## N_z 0.03092127 0.0447784 0.690540 0.4903
## dep_composite 0.00248982 0.0936521 0.026586 0.9788
## anx_composite 0.02090932 0.0829941 0.251937 0.8012
## Age -0.02182187 0.0137008 -1.592740 0.1121
## SexAtBirth -0.18252462 0.0873048 -2.090659 0.0373
## site -0.03479281 0.0410235 -0.848120 0.3969
## val1:proc1 0.03337712 0.0121789 2.740562 0.0064
## val1:N_z 0.00260327 0.0069640 0.373817 0.7088
## proc1:N_z -0.00549069 0.0069789 -0.786760 0.4319
## val1:proc1:N_z -0.02194840 0.0069119 -3.175458 0.0016
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.018
## N_z -0.246 -0.007 0.002
## dep_composite 0.078 -0.004 0.006 -0.566
## anx_composite 0.162 0.001 -0.014 -0.243 -0.522
## Age -0.975 0.001 -0.003 0.169 -0.067 -0.086
## SexAtBirth -0.274 0.001 0.009 0.019 0.134 -0.321 0.108
## site 0.227 -0.008 0.023 -0.018 -0.084 0.083 -0.237 0.153
## val1:proc1 0.005 -0.016 -0.048 -0.004 0.016 -0.004 -0.003 -0.011 -0.003
## val1:N_z -0.003 -0.413 -0.038 0.000 -0.001 0.004 0.001 -0.002 0.002
## proc1:N_z -0.007 -0.041 -0.401 -0.011 0.007 -0.002 0.009 -0.011 -0.017
## val1:proc1:N_z 0.008 0.003 0.054 -0.009 0.002 -0.005 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.006
## proc1:N_z 0.056 0.057
## val1:proc1:N_z -0.402 0.044 -0.014
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.89498953 -0.57519758 0.01303851 0.65455912 3.34977425
##
## Residual standard error: 0.4033167
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2mpfc <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2mpfc)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.7755 256.9372 -69.38776
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.682
## 3 0.576 0.742
## 4 0.627 0.792 0.757
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11509149 0.3231043 0.356205 0.7219
## val1 -0.03913614 0.0123720 -3.163281 0.0017
## proc1 0.00309380 0.0122856 0.251824 0.8013
## N_z 0.03148977 0.0448418 0.702241 0.4830
## dep_composite 0.00304918 0.0936883 0.032546 0.9741
## anx_composite 0.02054551 0.0829234 0.247765 0.8045
## Age -0.02190188 0.0136568 -1.603739 0.1097
## SexAtBirth -0.18324830 0.0871724 -2.102137 0.0362
## site -0.03486447 0.0408744 -0.852967 0.3943
## val1:proc1 0.03351636 0.0121871 2.750158 0.0063
## val1:N_z 0.00261383 0.0069858 0.374162 0.7085
## proc1:N_z -0.00554389 0.0069962 -0.792415 0.4286
## val1:proc1:N_z -0.02210865 0.0069328 -3.188982 0.0016
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.019
## N_z -0.251 -0.006 0.002
## dep_composite 0.082 -0.004 0.006 -0.567
## anx_composite 0.165 0.001 -0.014 -0.242 -0.520
## Age -0.975 0.001 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.001 0.009 0.021 0.131 -0.320 0.110
## site 0.225 -0.008 0.024 -0.019 -0.084 0.084 -0.237 0.153
## val1:proc1 0.004 -0.018 -0.048 -0.004 0.016 -0.004 -0.003 -0.011 -0.003
## val1:N_z -0.003 -0.414 -0.038 0.000 -0.001 0.005 0.001 -0.002 0.003
## proc1:N_z -0.007 -0.041 -0.402 -0.011 0.007 -0.002 0.009 -0.011 -0.018
## val1:proc1:N_z 0.009 0.004 0.055 -0.009 0.003 -0.005 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.007
## proc1:N_z 0.057 0.057
## val1:proc1:N_z -0.403 0.042 -0.014
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87259611 -0.56629998 0.01541648 0.65999634 3.38633117
##
## Residual standard error: 0.4066082
## Degrees of freedom: 368 total; 355 residual
anova(sitemodel2mpfc)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 147.51065 <.0001
## val 1 10.33914 0.0014
## proc 1 0.02293 0.8797
## N_z 1 1.96908 0.1614
## dep_composite 1 0.03393 0.8540
## anx_composite 1 0.17702 0.6742
## Age 1 2.48747 0.1156
## SexAtBirth 1 3.97559 0.0469
## site 1 0.71880 0.3971
## val:proc 1 2.68020 0.1025
## val:N_z 1 0.31245 0.5765
## proc:N_z 1 0.70329 0.4022
## val:proc:N_z 1 10.16960 0.0016
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1mpfc,sitemodel2mpfc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1mpfc 1 21 180.7146 262.7843 -69.35729
## sitemodel2mpfc 2 20 178.7755 256.9372 -69.38776 1 vs 2 0.06093169 0.805
#rename winning model:
mpfc_N <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub), method = "ML",na.action = "na.omit")
summary(mpfc_N)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.7755 256.9372 -69.38776
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.682
## 3 0.576 0.742
## 4 0.627 0.792 0.757
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11509149 0.3231043 0.356205 0.7219
## val1 -0.03913614 0.0123720 -3.163281 0.0017
## proc1 0.00309380 0.0122856 0.251824 0.8013
## N_z 0.03148977 0.0448418 0.702241 0.4830
## dep_composite 0.00304918 0.0936883 0.032546 0.9741
## anx_composite 0.02054551 0.0829234 0.247765 0.8045
## Age -0.02190188 0.0136568 -1.603739 0.1097
## SexAtBirth -0.18324830 0.0871724 -2.102137 0.0362
## site -0.03486447 0.0408744 -0.852967 0.3943
## val1:proc1 0.03351636 0.0121871 2.750158 0.0063
## val1:N_z 0.00261383 0.0069858 0.374162 0.7085
## proc1:N_z -0.00554389 0.0069962 -0.792415 0.4286
## val1:proc1:N_z -0.02210865 0.0069328 -3.188982 0.0016
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.019
## N_z -0.251 -0.006 0.002
## dep_composite 0.082 -0.004 0.006 -0.567
## anx_composite 0.165 0.001 -0.014 -0.242 -0.520
## Age -0.975 0.001 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.001 0.009 0.021 0.131 -0.320 0.110
## site 0.225 -0.008 0.024 -0.019 -0.084 0.084 -0.237 0.153
## val1:proc1 0.004 -0.018 -0.048 -0.004 0.016 -0.004 -0.003 -0.011 -0.003
## val1:N_z -0.003 -0.414 -0.038 0.000 -0.001 0.005 0.001 -0.002 0.003
## proc1:N_z -0.007 -0.041 -0.402 -0.011 0.007 -0.002 0.009 -0.011 -0.018
## val1:proc1:N_z 0.009 0.004 0.055 -0.009 0.003 -0.005 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.007
## proc1:N_z 0.057 0.057
## val1:proc1:N_z -0.403 0.042 -0.014
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87259611 -0.56629998 0.01541648 0.65999634 3.38633117
##
## Residual standard error: 0.4066082
## Degrees of freedom: 368 total; 355 residual
anova(mpfc_N)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 147.51065 <.0001
## val 1 10.33914 0.0014
## proc 1 0.02293 0.8797
## N_z 1 1.96908 0.1614
## dep_composite 1 0.03393 0.8540
## anx_composite 1 0.17702 0.6742
## Age 1 2.48747 0.1156
## SexAtBirth 1 3.97559 0.0469
## site 1 0.71880 0.3971
## val:proc 1 2.68020 0.1025
## val:N_z 1 0.31245 0.5765
## proc:N_z 1 0.70329 0.4022
## val:proc:N_z 1 10.16960 0.0016
mpfc models:comparing more complex N, dpression, and anxiety
models
mpfc_N <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_N)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.7755 256.9372 -69.38776
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.682
## 3 0.576 0.742
## 4 0.627 0.792 0.757
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11509149 0.3231043 0.356205 0.7219
## val1 -0.03913614 0.0123720 -3.163281 0.0017
## proc1 0.00309380 0.0122856 0.251824 0.8013
## N_z 0.03148977 0.0448418 0.702241 0.4830
## dep_composite 0.00304918 0.0936883 0.032546 0.9741
## anx_composite 0.02054551 0.0829234 0.247765 0.8045
## Age -0.02190188 0.0136568 -1.603739 0.1097
## SexAtBirth -0.18324830 0.0871724 -2.102137 0.0362
## site -0.03486447 0.0408744 -0.852967 0.3943
## val1:proc1 0.03351636 0.0121871 2.750158 0.0063
## val1:N_z 0.00261383 0.0069858 0.374162 0.7085
## proc1:N_z -0.00554389 0.0069962 -0.792415 0.4286
## val1:proc1:N_z -0.02210865 0.0069328 -3.188982 0.0016
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.002 0.019
## N_z -0.251 -0.006 0.002
## dep_composite 0.082 -0.004 0.006 -0.567
## anx_composite 0.165 0.001 -0.014 -0.242 -0.520
## Age -0.975 0.001 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.001 0.009 0.021 0.131 -0.320 0.110
## site 0.225 -0.008 0.024 -0.019 -0.084 0.084 -0.237 0.153
## val1:proc1 0.004 -0.018 -0.048 -0.004 0.016 -0.004 -0.003 -0.011 -0.003
## val1:N_z -0.003 -0.414 -0.038 0.000 -0.001 0.005 0.001 -0.002 0.003
## proc1:N_z -0.007 -0.041 -0.402 -0.011 0.007 -0.002 0.009 -0.011 -0.018
## val1:proc1:N_z 0.009 0.004 0.055 -0.009 0.003 -0.005 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.007
## proc1:N_z 0.057 0.057
## val1:proc1:N_z -0.403 0.042 -0.014
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87259611 -0.56629998 0.01541648 0.65999634 3.38633117
##
## Residual standard error: 0.4066082
## Degrees of freedom: 368 total; 355 residual
#depression with N and A as main effects only
mpfc_D <- gls(mag3_mask_mpfc_b ~ val*proc*dep_composite + N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_D)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * dep_composite + N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.3654 256.527 -69.18269
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.678
## 3 0.572 0.748
## 4 0.623 0.792 0.757
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11453616 0.3225534 0.355092 0.7227
## val1 -0.03662046 0.0113053 -3.239234 0.0013
## proc1 -0.00008228 0.0112672 -0.007303 0.9942
## dep_composite -0.00096036 0.0935470 -0.010266 0.9918
## N_z 0.03283343 0.0447719 0.733349 0.4638
## anx_composite 0.02129206 0.0827867 0.257192 0.7972
## Age -0.02193823 0.0136332 -1.609174 0.1085
## SexAtBirth -0.18375218 0.0870239 -2.111515 0.0354
## site -0.03484197 0.0408067 -0.853830 0.3938
## val1:proc1 0.01997931 0.0111760 1.787704 0.0747
## val1:dep_composite 0.00578481 0.0128853 0.448945 0.6537
## proc1:dep_composite -0.01467410 0.0129084 -1.136786 0.2564
## val1:proc1:dep_composite -0.04040368 0.0127624 -3.165845 0.0017
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 -0.001
## proc1 -0.001 0.003
## dep_composite 0.082 -0.003 0.011
## N_z -0.251 -0.009 -0.003 -0.568
## anx_composite 0.165 0.003 -0.017 -0.520 -0.242
## Age -0.975 0.001 0.001 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.001 0.006 0.131 0.021 -0.320 0.110
## site 0.225 -0.009 0.020 -0.084 -0.019 0.084 -0.237
## val1:proc1 0.008 -0.011 -0.012 0.017 -0.007 -0.006 -0.006
## val1:dep_composite -0.003 -0.096 -0.045 -0.011 0.010 0.004 0.000
## proc1:dep_composite -0.004 -0.048 -0.076 -0.002 0.000 -0.002 0.005
## val1:proc1:dep_composite 0.008 0.006 0.054 0.016 -0.018 -0.009 -0.005
## SxAtBr site vl1:p1 vl1:d_ prc1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.013 -0.001
## val1:dep_composite 0.000 0.000 0.009
## proc1:dep_composite -0.009 -0.019 0.056 0.026
## val1:proc1:dep_composite 0.000 0.007 -0.072 0.033 0.006
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.8251948 -0.5827237 0.0275136 0.6546350 3.3750026
##
## Residual standard error: 0.4063602
## Degrees of freedom: 368 total; 355 residual
#Anxiety with N and D as main effects only
mpfc_A <- gls(mag3_mask_mpfc_b ~ val*proc*anx_composite + N_z + dep_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_A)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * anx_composite + N_z + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 185.6852 263.8469 -72.84262
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.683
## 3 0.579 0.743
## 4 0.619 0.785 0.743
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11638158 0.3233170 0.359961 0.7191
## val1 -0.03737878 0.0114432 -3.266454 0.0012
## proc1 -0.00049133 0.0114151 -0.043042 0.9657
## anx_composite 0.01820854 0.0829834 0.219424 0.8264
## N_z 0.03136204 0.0448752 0.698872 0.4851
## dep_composite 0.00345076 0.0937518 0.036807 0.9707
## Age -0.02192409 0.0136659 -1.604294 0.1095
## SexAtBirth -0.18504171 0.0872308 -2.121289 0.0346
## site -0.03573897 0.0409057 -0.873691 0.3829
## val1:proc1 0.01903146 0.0113316 1.679503 0.0939
## val1:anx_composite 0.00618515 0.0131144 0.471632 0.6375
## proc1:anx_composite 0.00856232 0.0131321 0.652016 0.5148
## val1:proc1:anx_composite -0.02428841 0.0130042 -1.867735 0.0626
##
## Correlation:
## (Intr) val1 proc1 anx_cm N_z dp_cmp Age
## val1 -0.002
## proc1 -0.002 -0.001
## anx_composite 0.165 0.002 -0.016
## N_z -0.251 -0.008 -0.001 -0.242
## dep_composite 0.082 -0.004 0.009 -0.520 -0.567
## Age -0.975 0.002 0.002 -0.090 0.173 -0.070
## SexAtBirth -0.275 0.001 0.005 -0.320 0.021 0.131 0.110
## site 0.225 -0.011 0.017 0.085 -0.019 -0.084 -0.237
## val1:proc1 0.008 -0.011 0.000 -0.006 -0.007 0.017 -0.006
## val1:anx_composite 0.002 -0.061 -0.014 -0.001 0.009 -0.004 -0.005
## proc1:anx_composite -0.002 -0.016 -0.051 -0.007 -0.003 0.004 0.001
## val1:proc1:anx_composite 0.003 0.039 0.038 0.003 -0.013 0.000 -0.001
## SxAtBr site vl1:p1 vl1:n_ prc1:_
## val1
## proc1
## anx_composite
## N_z
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.013 -0.002
## val1:anx_composite 0.002 0.003 0.041
## proc1:anx_composite -0.005 -0.019 0.040 0.040
## val1:proc1:anx_composite 0.002 0.011 -0.041 0.039 -0.011
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.90115309 -0.56737007 0.03943237 0.65293357 3.44481297
##
## Residual standard error: 0.4076334
## Degrees of freedom: 368 total; 355 residual
#which fits better?
anova(mpfc_N,mpfc_D)
## Model df AIC BIC logLik
## mpfc_N 1 20 178.7755 256.9372 -69.38776
## mpfc_D 2 20 178.3654 256.5270 -69.18269
anova(mpfc_N,mpfc_A)
## Model df AIC BIC logLik
## mpfc_N 1 20 178.7755 256.9372 -69.38776
## mpfc_A 2 20 185.6852 263.8469 -72.84262
#including multiple 3 way interactions:
## all three constructs get their own 3 way interaction
mpfc_NDA <- gls(mag3_mask_mpfc_b ~ val*proc*dep_composite + val*proc*N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_NDA)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * dep_composite + val * proc * N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 178.369 279.9792 -63.18451
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.675
## 3 0.575 0.764
## 4 0.648 0.795 0.767
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11637436 0.3249004 0.3581848 0.7204
## val1 -0.03452220 0.0137798 -2.5052795 0.0127
## proc1 0.00407534 0.0136213 0.2991882 0.7650
## dep_composite 0.00185202 0.0942740 0.0196451 0.9843
## N_z 0.03126382 0.0451074 0.6930980 0.4887
## anx_composite 0.02035152 0.0833989 0.2440261 0.8074
## Age -0.02214617 0.0137327 -1.6126543 0.1077
## SexAtBirth -0.18156571 0.0876570 -2.0713213 0.0391
## site -0.03492488 0.0411021 -0.8497112 0.3961
## val1:proc1 0.03077513 0.0136609 2.2527868 0.0249
## val1:dep_composite 0.01349566 0.0274688 0.4913092 0.6235
## proc1:dep_composite -0.06050803 0.0270084 -2.2403404 0.0257
## val1:N_z -0.00118013 0.0131037 -0.0900609 0.9283
## proc1:N_z -0.00603093 0.0128756 -0.4683996 0.6398
## val1:anx_composite -0.00478856 0.0231222 -0.2070984 0.8361
## proc1:anx_composite 0.06586078 0.0226841 2.9033937 0.0039
## val1:proc1:dep_composite -0.04392165 0.0268187 -1.6377221 0.1024
## val1:proc1:N_z -0.01805765 0.0130457 -1.3841847 0.1672
## val1:proc1:anx_composite 0.03776746 0.0228829 1.6504702 0.0997
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.001
## proc1 0.004 -0.033
## dep_composite 0.082 -0.010 0.003
## N_z -0.251 -0.002 0.005 -0.568
## anx_composite 0.165 0.004 -0.015 -0.520 -0.242
## Age -0.975 -0.001 -0.006 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.003 0.010 0.131 0.021 -0.320 0.110
## site 0.225 -0.005 0.020 -0.084 -0.019 0.084 -0.237
## val1:proc1 0.004 0.003 -0.029 0.025 -0.014 -0.004 -0.001
## val1:dep_composite -0.005 0.294 -0.072 -0.012 0.011 0.001 0.003
## proc1:dep_composite 0.002 -0.074 0.294 -0.013 0.013 0.005 -0.001
## val1:N_z -0.003 -0.584 0.041 0.009 -0.009 0.001 0.004
## proc1:N_z -0.006 0.040 -0.580 0.011 -0.016 0.002 0.009
## val1:anx_composite 0.008 0.157 0.018 0.003 -0.002 0.001 -0.008
## proc1:anx_composite 0.000 0.019 0.154 0.007 -0.001 -0.011 -0.004
## val1:proc1:dep_composite 0.004 -0.012 0.029 0.031 -0.017 -0.015 -0.001
## val1:proc1:N_z 0.005 -0.027 0.013 -0.017 0.014 -0.001 -0.006
## val1:proc1:anx_composite -0.007 0.048 -0.018 -0.015 -0.003 0.017 0.005
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.007 0.001
## val1:dep_composite 0.002 -0.004 -0.010
## proc1:dep_composite -0.001 -0.004 0.032 -0.086
## val1:N_z -0.005 0.003 -0.025 -0.579 0.046
## proc1:N_z -0.009 -0.003 0.010 0.045 -0.576 -0.037
## val1:anx_composite 0.002 0.002 0.048 -0.515 0.046 -0.235 0.005
## proc1:anx_composite 0.005 -0.004 -0.018 0.045 -0.510 0.004 -0.240
## val1:proc1:dep_composite 0.001 -0.002 0.285 0.040 0.037 -0.047 -0.020
## val1:proc1:N_z -0.007 0.001 -0.582 -0.050 -0.017 0.065 0.012
## val1:proc1:anx_composite 0.006 0.005 0.171 -0.001 -0.015 -0.005 0.001
## vl1:n_ prc1:n_ vl1:prc1:d_ v1:1:N
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite -0.049
## val1:proc1:dep_composite -0.002 -0.013
## val1:proc1:N_z -0.002 -0.001 -0.569
## val1:proc1:anx_composite 0.016 0.008 -0.503 -0.259
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.858777834 -0.572453536 0.002749666 0.664234885 3.250981142
##
## Residual standard error: 0.4040964
## Degrees of freedom: 368 total; 349 residual
## just symptoms get 3 ways
mpfc_DA <- gls(mag3_mask_mpfc_b ~ val*proc*dep_composite + N_z + val*proc*anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_DA)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * dep_composite + N_z + val * proc * anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 174.5515 264.4374 -64.27575
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.672
## 3 0.571 0.765
## 4 0.643 0.796 0.761
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11574915 0.3232013 0.3581333 0.7205
## val1 -0.03458684 0.0111671 -3.0972025 0.0021
## proc1 0.00065153 0.0110885 0.0587572 0.9532
## dep_composite -0.00022907 0.0937629 -0.0024431 0.9981
## N_z 0.03205159 0.0448610 0.7144642 0.4754
## anx_composite 0.02017806 0.0829673 0.2432051 0.8080
## Age -0.02213106 0.0136605 -1.6200830 0.1061
## SexAtBirth -0.18265733 0.0871959 -2.0947919 0.0369
## site -0.03506063 0.0408890 -0.8574582 0.3918
## val1:proc1 0.01985250 0.0111067 1.7874380 0.0747
## val1:dep_composite 0.01148906 0.0223355 0.5143861 0.6073
## proc1:dep_composite -0.06846999 0.0220786 -3.1011924 0.0021
## val1:anx_composite -0.00423016 0.0224191 -0.1886858 0.8504
## proc1:anx_composite 0.06374638 0.0220438 2.8918053 0.0041
## val1:proc1:dep_composite -0.06499691 0.0220420 -2.9487738 0.0034
## val1:proc1:anx_composite 0.02935452 0.0220937 1.3286386 0.1848
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 -0.001
## proc1 0.001 0.004
## dep_composite 0.082 -0.005 0.012
## N_z -0.251 -0.008 -0.005 -0.568
## anx_composite 0.165 0.005 -0.017 -0.520 -0.242
## Age -0.975 0.001 0.000 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.001 0.006 0.131 0.021 -0.320 0.110
## site 0.225 -0.006 0.022 -0.084 -0.019 0.084 -0.237
## val1:proc1 0.009 -0.009 -0.014 0.018 -0.007 -0.006 -0.007
## val1:dep_composite -0.008 -0.066 -0.053 -0.010 0.008 0.003 0.006
## proc1:dep_composite -0.002 -0.055 -0.060 -0.009 0.004 0.007 0.005
## val1:anx_composite 0.007 0.025 0.034 0.007 -0.004 -0.001 -0.007
## proc1:anx_composite -0.001 0.034 0.020 0.010 -0.005 -0.011 -0.002
## val1:proc1:dep_composite 0.009 -0.049 0.043 0.027 -0.012 -0.019 -0.006
## val1:proc1:anx_composite -0.006 0.063 -0.014 -0.021 0.001 0.017 0.004
## SxAtBr site vl1:p1 vl1:d_ prc1:d_ vl1:n_ prc1:n_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.013 0.002
## val1:dep_composite -0.001 -0.003 -0.050
## proc1:dep_composite -0.008 -0.006 0.048 -0.072
## val1:anx_composite 0.002 0.003 0.065 -0.822 0.073
## proc1:anx_composite 0.003 -0.006 -0.017 0.071 -0.818 -0.055
## val1:proc1:dep_composite -0.004 -0.002 -0.067 0.011 0.034 -0.007 -0.024
## val1:proc1:anx_composite 0.005 0.006 0.026 -0.009 -0.025 0.020 0.013
## vl1:prc1:d_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:dep_composite
## val1:proc1:anx_composite -0.819
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.868490980 -0.584120878 0.006025221 0.664172601 3.266239743
##
## Residual standard error: 0.404356
## Degrees of freedom: 368 total; 352 residual
#does including the N 3way improve fit?
anova(mpfc_NDA,mpfc_DA)
## Model df AIC BIC logLik Test L.Ratio p-value
## mpfc_NDA 1 26 178.3690 279.9792 -63.18451
## mpfc_DA 2 23 174.5515 264.4374 -64.27575 1 vs 2 2.18249 0.5354
## Neuroticism and one of t he two symptom measures gets 3ways
mpfc_ND <- gls(mag3_mask_mpfc_b ~ val*proc*dep_composite + val*proc*N_z + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_ND)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * dep_composite + val * proc * N_z + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 183.2953 273.1812 -68.64763
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.678
## 3 0.572 0.749
## 4 0.623 0.794 0.759
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11280994 0.3239332 0.3482506 0.7279
## val1 -0.03666614 0.0137321 -2.6701028 0.0079
## proc1 -0.00211396 0.0136971 -0.1543355 0.8774
## dep_composite 0.00123425 0.0939819 0.0131329 0.9895
## N_z 0.03217750 0.0449775 0.7154138 0.4748
## anx_composite 0.02092293 0.0831395 0.2516604 0.8015
## Age -0.02183975 0.0136919 -1.5950872 0.1116
## SexAtBirth -0.18349088 0.0873969 -2.0995130 0.0365
## site -0.03502249 0.0409814 -0.8545947 0.3934
## val1:proc1 0.02781141 0.0136498 2.0374996 0.0423
## val1:dep_composite 0.00637726 0.0237919 0.2680436 0.7888
## proc1:dep_composite -0.01896866 0.0236419 -0.8023321 0.4229
## val1:N_z -0.00032716 0.0128666 -0.0254270 0.9797
## proc1:N_z 0.00299701 0.0127576 0.2349195 0.8144
## val1:proc1:dep_composite -0.02123328 0.0235312 -0.9023446 0.3675
## val1:proc1:N_z -0.01252596 0.0127767 -0.9803787 0.3276
##
## Correlation:
## (Intr) val1 proc1 dp_cmp N_z anx_cm Age
## val1 0.000
## proc1 0.003 -0.039
## dep_composite 0.082 -0.010 0.001
## N_z -0.251 0.000 0.008 -0.568
## anx_composite 0.165 0.001 -0.014 -0.520 -0.242
## Age -0.975 0.000 -0.004 -0.070 0.173 -0.089
## SexAtBirth -0.275 0.002 0.009 0.131 0.021 -0.320 0.110
## site 0.225 -0.010 0.020 -0.084 -0.019 0.084 -0.237
## val1:proc1 0.004 -0.011 -0.020 0.025 -0.011 -0.007 -0.002
## val1:dep_composite -0.001 0.432 -0.079 -0.016 0.016 0.000 -0.001
## proc1:dep_composite 0.003 -0.079 0.439 -0.012 0.016 -0.001 -0.004
## val1:N_z -0.001 -0.565 0.048 0.013 -0.014 0.003 0.002
## proc1:N_z -0.006 0.046 -0.565 0.014 -0.019 0.000 0.008
## val1:proc1:dep_composite 0.001 0.015 0.028 0.025 -0.017 -0.009 0.002
## val1:proc1:N_z 0.004 -0.016 0.005 -0.019 0.009 0.005 -0.006
## SxAtBr site vl1:p1 vl1:d_ prc1:_ vl1:N_ pr1:N_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.008 -0.003
## val1:dep_composite 0.002 -0.006 0.019
## proc1:dep_composite 0.001 -0.006 0.033 -0.072
## val1:N_z -0.002 0.006 -0.017 -0.839 0.064
## proc1:N_z -0.007 -0.005 0.002 0.064 -0.836 -0.039
## val1:proc1:dep_composite 0.004 0.002 0.448 0.058 0.043 -0.057 -0.034
## val1:proc1:N_z -0.005 0.003 -0.572 -0.060 -0.034 0.070 0.022
## v1:1:_
## val1
## proc1
## dep_composite
## N_z
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:dep_composite
## proc1:dep_composite
## val1:N_z
## proc1:N_z
## val1:proc1:dep_composite
## val1:proc1:N_z -0.839
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.8389790 -0.5862404 0.0263696 0.6594723 3.3744613
##
## Residual standard error: 0.4062711
## Degrees of freedom: 368 total; 352 residual
#does D model improve by adding N ineeractions
anova(mpfc_ND,mpfc_D)
## Model df AIC BIC logLik Test L.Ratio p-value
## mpfc_ND 1 23 183.2953 273.1812 -68.64763
## mpfc_D 2 20 178.3654 256.5270 -69.18269 1 vs 2 1.07011 0.7843
mpfc_NA <- gls(mag3_mask_mpfc_b ~ val*proc*N_z + N_z + val*proc*anx_composite +dep_composite+ Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(mpfc_NA)
## Generalized least squares fit by maximum likelihood
## Model: mag3_mask_mpfc_b ~ val * proc * N_z + N_z + val * proc * anx_composite + dep_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## 179.7862 269.6721 -66.8931
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.688
## 3 0.583 0.744
## 4 0.646 0.790 0.759
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.11873519 0.3248342 0.3655255 0.7149
## val1 -0.03918906 0.0133024 -2.9460038 0.0034
## proc1 0.01320747 0.0131508 1.0043080 0.3159
## N_z 0.03090065 0.0450845 0.6853947 0.4935
## anx_composite 0.02006519 0.0833716 0.2406716 0.8099
## dep_composite 0.00386255 0.0941877 0.0410091 0.9673
## Age -0.02213106 0.0137302 -1.6118515 0.1079
## SexAtBirth -0.18199018 0.0876397 -2.0765726 0.0386
## site -0.03494650 0.0410925 -0.8504354 0.3957
## val1:proc1 0.03808108 0.0132368 2.8769028 0.0043
## val1:N_z 0.00284934 0.0107818 0.2642724 0.7917
## proc1:N_z -0.02204132 0.0106519 -2.0692302 0.0393
## val1:anx_composite 0.00046694 0.0199908 0.0233576 0.9814
## proc1:anx_composite 0.03965369 0.0197414 2.0086523 0.0453
## val1:proc1:N_z -0.03008003 0.0108632 -2.7689733 0.0059
## val1:proc1:anx_composite 0.01925721 0.0200491 0.9605014 0.3375
##
## Correlation:
## (Intr) val1 proc1 N_z anx_cm dp_cmp Age
## val1 0.003
## proc1 0.003 0.003
## N_z -0.251 -0.004 0.003
## anx_composite 0.165 0.002 -0.016 -0.242
## dep_composite 0.082 -0.006 0.006 -0.567 -0.520
## Age -0.975 -0.002 -0.005 0.173 -0.089 -0.070
## SexAtBirth -0.275 0.003 0.010 0.021 -0.320 0.131 0.110
## site 0.225 -0.005 0.020 -0.019 0.084 -0.084 -0.237
## val1:proc1 0.002 0.012 -0.045 -0.009 0.000 0.015 -0.001
## val1:N_z -0.007 -0.531 0.000 -0.004 0.002 0.003 0.006
## proc1:N_z -0.006 -0.002 -0.522 -0.011 0.006 0.004 0.010
## val1:anx_composite 0.006 0.373 -0.022 0.005 0.000 -0.004 -0.007
## proc1:anx_composite 0.001 -0.022 0.367 0.006 -0.009 0.000 -0.005
## val1:proc1:N_z 0.009 -0.028 0.033 0.004 -0.011 0.001 -0.008
## val1:proc1:anx_composite -0.005 0.042 -0.006 -0.012 0.010 0.001 0.006
## SxAtBr site vl1:p1 vl1:N_ pr1:N_ vl1:n_ prc1:_
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site 0.153
## val1:proc1 -0.006 0.002
## val1:N_z -0.004 0.001 -0.027
## proc1:N_z -0.011 -0.006 0.034 -0.021
## val1:anx_composite 0.004 0.000 0.043 -0.762 0.043
## proc1:anx_composite 0.005 -0.007 -0.005 0.042 -0.757 -0.036
## val1:proc1:N_z -0.007 0.000 -0.538 0.033 0.003 -0.023 -0.006
## val1:proc1:anx_composite 0.007 0.005 0.390 -0.023 -0.006 0.032 0.001
## v1:1:N
## val1
## proc1
## N_z
## anx_composite
## dep_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z
## proc1:N_z
## val1:anx_composite
## proc1:anx_composite
## val1:proc1:N_z
## val1:proc1:anx_composite -0.770
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.904118860 -0.566969455 0.008952133 0.659659407 3.331986408
##
## Residual standard error: 0.4056199
## Degrees of freedom: 368 total; 352 residual
#does A model improve by adding N ineeractions
anova(mpfc_NA,mpfc_A)
## Model df AIC BIC logLik Test L.Ratio p-value
## mpfc_NA 1 23 179.7862 269.6721 -66.89310
## mpfc_A 2 20 185.6852 263.8469 -72.84262 1 vs 2 11.89903 0.0077
Lins
# Different var/cov by Site
nositemodel1Lins <- gls(mag4_mask_Lins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1Lins)
## Generalized least squares fit by maximum likelihood
## Model: mag4_mask_Lins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -324.3308 -246.1692 182.1654
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.595
## 3 0.599 0.700
## 4 0.572 0.716 0.715
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.04129644 0.15057516 0.274258 0.7840
## val1 -0.02890990 0.00647000 -4.468302 0.0000
## proc1 -0.02149860 0.00647994 -3.317714 0.0010
## N_z 0.01844966 0.02089684 0.882892 0.3779
## dep_composite -0.00440548 0.04365868 -0.100907 0.9197
## anx_composite -0.00557637 0.03864256 -0.144306 0.8853
## Age -0.00347690 0.00636451 -0.546296 0.5852
## SexAtBirth 0.10543884 0.04062254 2.595575 0.0098
## site -0.00229633 0.01904589 -0.120568 0.9041
## val1:proc1 -0.00728523 0.00642539 -1.133820 0.2576
## val1:N_z -0.00214796 0.00365627 -0.587473 0.5573
## proc1:N_z 0.00492006 0.00368616 1.334737 0.1828
## val1:proc1:N_z -0.00518898 0.00364494 -1.423613 0.1554
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.001
## proc1 -0.002 0.016
## N_z -0.251 -0.005 0.003
## dep_composite 0.082 -0.004 0.005 -0.567
## anx_composite 0.165 0.003 -0.007 -0.242 -0.520
## Age -0.975 0.000 0.003 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 -0.001 0.021 0.131 -0.320 0.110
## site 0.225 0.001 0.012 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.007 -0.002 -0.041 -0.006 0.008 0.002 -0.006 -0.009 -0.015
## val1:N_z -0.003 -0.411 -0.019 0.006 -0.007 0.004 0.001 -0.002 -0.002
## proc1:N_z -0.001 -0.021 -0.404 -0.006 0.004 -0.003 0.002 -0.001 -0.008
## val1:proc1:N_z 0.001 -0.010 0.038 -0.003 -0.001 -0.003 -0.001 0.002 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z -0.008
## proc1:N_z 0.038 0.033
## val1:proc1:N_z -0.403 0.025 -0.007
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.29011196 -0.63351703 0.02050172 0.68512437 2.85727997
##
## Residual standard error: 0.193207
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2Lins <- gls(mag4_mask_Lins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2Lins)
## Generalized least squares fit by maximum likelihood
## Model: mag4_mask_Lins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -325.8269 -267.2056 177.9134
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6399303
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.05370083 0.14905611 0.360273 0.7189
## val1 -0.02866677 0.00666778 -4.299299 0.0000
## proc1 -0.02162074 0.00666778 -3.242570 0.0013
## N_z 0.02009212 0.02068559 0.971310 0.3321
## dep_composite -0.00907204 0.04321477 -0.209929 0.8338
## anx_composite -0.00277471 0.03825208 -0.072538 0.9422
## Age -0.00406193 0.00630034 -0.644715 0.5195
## SexAtBirth 0.10740876 0.04021275 2.671012 0.0079
## site -0.00187062 0.01885126 -0.099231 0.9210
## val1:proc1 -0.00903041 0.00666778 -1.354336 0.1765
## val1:N_z -0.00211944 0.00378081 -0.560578 0.5754
## proc1:N_z 0.00463856 0.00378081 1.226869 0.2207
## val1:proc1:N_z -0.00457849 0.00378081 -1.210982 0.2267
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.285732688 -0.648989476 0.005293426 0.687574160 2.885075517
##
## Residual standard error: 0.1914189
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1Lins,nositemodel2Lins)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1Lins 1 20 -324.3308 -246.1692 182.1654
## nositemodel2Lins 2 15 -325.8269 -267.2056 177.9134 1 vs 2 8.503979 0.1306
# Different var/cov by Site
sitemodel1Lins <- gls(mag4_mask_Lins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1Lins)
## Generalized least squares fit by maximum likelihood
## Model: mag4_mask_Lins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -334.3326 -271.8033 183.1663
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6553883
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.7720986
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.07711553 0.14268829 0.540448 0.5892
## val1 -0.02925943 0.00647176 -4.521091 0.0000
## proc1 -0.01994550 0.00647176 -3.081927 0.0022
## N_z 0.02346722 0.02079222 1.128654 0.2598
## dep_composite -0.01781952 0.04279541 -0.416389 0.6774
## anx_composite -0.00400148 0.03726913 -0.107367 0.9146
## Age -0.00464447 0.00596879 -0.778125 0.4370
## SexAtBirth 0.08818039 0.03879978 2.272704 0.0236
## site -0.00308784 0.01823786 -0.169309 0.8656
## val1:proc1 -0.00891837 0.00647176 -1.378043 0.1691
## val1:N_z -0.00186726 0.00379156 -0.492478 0.6227
## proc1:N_z 0.00348230 0.00379156 0.918434 0.3590
## val1:proc1:N_z -0.00533662 0.00379156 -1.407500 0.1602
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.315 0.000 0.000
## dep_composite 0.127 0.000 0.000 -0.586
## anx_composite 0.201 0.000 0.000 -0.232 -0.496
## Age -0.974 0.000 0.000 0.233 -0.108 -0.132
## SexAtBirth -0.295 0.000 0.000 0.056 0.090 -0.302 0.127
## site 0.186 0.000 0.000 -0.022 -0.084 0.098 -0.228 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.422 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.422 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.422 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.16663431 -0.61369235 0.02411984 0.72812618 2.52079728
##
## Residual standard error: 0.211851
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2Lins <- gls(mag4_mask_Lins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2Lins)
## Generalized least squares fit by maximum likelihood
## Model: mag4_mask_Lins_b ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -325.8269 -267.2056 177.9134
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6399303
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.05370083 0.14905611 0.360273 0.7189
## val1 -0.02866677 0.00666778 -4.299299 0.0000
## proc1 -0.02162074 0.00666778 -3.242570 0.0013
## N_z 0.02009212 0.02068559 0.971310 0.3321
## dep_composite -0.00907204 0.04321477 -0.209929 0.8338
## anx_composite -0.00277471 0.03825208 -0.072538 0.9422
## Age -0.00406193 0.00630034 -0.644715 0.5195
## SexAtBirth 0.10740876 0.04021275 2.671012 0.0079
## site -0.00187062 0.01885126 -0.099231 0.9210
## val1:proc1 -0.00903041 0.00666778 -1.354336 0.1765
## val1:N_z -0.00211944 0.00378081 -0.560578 0.5754
## proc1:N_z 0.00463856 0.00378081 1.226869 0.2207
## val1:proc1:N_z -0.00457849 0.00378081 -1.210982 0.2267
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.285732688 -0.648989476 0.005293426 0.687574160 2.885075517
##
## Residual standard error: 0.1914189
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1Lins,sitemodel2Lins)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1Lins 1 16 -334.3326 -271.8033 183.1663
## sitemodel2Lins 2 15 -325.8269 -267.2056 177.9134 1 vs 2 10.50573 0.0012
#Rename winning model:
lins_N <- gls(mag4_mask_Lins_b ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
anova(lins_N)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 6.505924 0.0112
## val 1 27.195422 <.0001
## proc 1 8.831286 0.0032
## N_z 1 2.717081 0.1002
## dep_composite 1 0.431511 0.5117
## anx_composite 1 0.383602 0.5361
## Age 1 1.555844 0.2131
## SexAtBirth 1 5.409650 0.0206
## site 1 0.028666 0.8656
## val:proc 1 4.727071 0.0304
## val:N_z 1 0.242535 0.6227
## proc:N_z 1 0.843521 0.3590
## val:proc:N_z 1 1.981057 0.1602
PCC
# Different var/cov by Site
nositemodel1pcc <- gls(r3Default_PCC_Foxcoord ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1pcc)
## Generalized least squares fit by maximum likelihood
## Model: r3Default_PCC_Foxcoord ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -145.557 -67.39538 92.77852
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.608
## 3 0.615 0.685
## 4 0.654 0.755 0.717
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.10349017 0.19855316 -0.5212215 0.6025
## val1 -0.00014788 0.00809588 -0.0182662 0.9854
## proc1 -0.00193651 0.00818732 -0.2365252 0.8132
## N_z 0.01046685 0.02755439 0.3798614 0.7043
## dep_composite -0.06646884 0.05756990 -1.1545764 0.2490
## anx_composite 0.03009198 0.05095519 0.5905577 0.5552
## Age -0.01269921 0.00839240 -1.5131797 0.1311
## SexAtBirth 0.07011052 0.05356489 1.3088895 0.1914
## site -0.04081593 0.02511600 -1.6250964 0.1050
## val1:proc1 0.00406319 0.00813505 0.4994671 0.6178
## val1:N_z -0.00175459 0.00459157 -0.3821319 0.7026
## proc1:N_z 0.00105587 0.00464628 0.2272510 0.8204
## val1:proc1:N_z -0.00358343 0.00460219 -0.7786350 0.4367
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.003
## proc1 0.004 0.006
## N_z -0.251 -0.003 -0.006
## dep_composite 0.082 -0.007 0.006 -0.567
## anx_composite 0.165 0.008 -0.005 -0.242 -0.520
## Age -0.975 -0.001 -0.003 0.173 -0.070 -0.089
## SexAtBirth -0.275 0.000 0.004 0.021 0.131 -0.320 0.110
## site 0.225 0.012 0.019 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.008 -0.020 -0.052 -0.007 0.012 -0.001 -0.006 -0.006 0.002
## val1:N_z -0.004 -0.406 -0.024 0.003 -0.001 0.000 0.003 -0.001 -0.007
## proc1:N_z -0.007 -0.024 -0.408 -0.001 0.002 -0.002 0.007 -0.007 -0.006
## val1:proc1:N_z -0.001 0.013 0.029 0.001 0.000 -0.006 0.001 0.001 -0.001
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.015
## proc1:N_z 0.030 0.025
## val1:proc1:N_z -0.403 0.022 -0.008
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.39318440 -0.63284074 -0.02601134 0.78486898 2.51796444
##
## Residual standard error: 0.2517569
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2pcc <- gls(r3Default_PCC_Foxcoord ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2pcc)
## Generalized least squares fit by maximum likelihood
## Model: r3Default_PCC_Foxcoord ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -147.3914 -88.77013 88.69569
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6756626
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.10952655 0.20023182 -0.5469988 0.5847
## val1 -0.00237967 0.00834911 -0.2850210 0.7758
## proc1 -0.00173444 0.00834911 -0.2077396 0.8356
## N_z 0.01170906 0.02778762 0.4213769 0.6737
## dep_composite -0.06923967 0.05805178 -1.1927227 0.2338
## anx_composite 0.02823280 0.05138523 0.5494341 0.5831
## Age -0.01261148 0.00846345 -1.4901108 0.1371
## SexAtBirth 0.07591246 0.05401907 1.4052900 0.1608
## site -0.03528069 0.02532350 -1.3931997 0.1644
## val1:proc1 0.00185951 0.00834911 0.2227198 0.8239
## val1:N_z 0.00002725 0.00473417 0.0057569 0.9954
## proc1:N_z 0.00101928 0.00473417 0.2153016 0.8297
## val1:proc1:N_z -0.00173659 0.00473417 -0.3668195 0.7140
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.38471584 -0.60780362 -0.02333471 0.77331642 2.50400510
##
## Residual standard error: 0.2525449
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1pcc,nositemodel2pcc)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1pcc 1 20 -145.5570 -67.39538 92.77852
## nositemodel2pcc 2 15 -147.3914 -88.77013 88.69569 1 vs 2 8.165671 0.1473
# Different var/cov by Site
sitemodel1pcc <- gls(r3Default_PCC_Foxcoord ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1pcc)
## Generalized least squares fit by maximum likelihood
## Model: r3Default_PCC_Foxcoord ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -145.5598 -83.03049 88.77991
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6747904
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.000000 1.032146
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.11288546 0.20087594 -0.5619661 0.5745
## val1 -0.00218715 0.00834148 -0.2622020 0.7933
## proc1 -0.00215106 0.00834148 -0.2578749 0.7967
## N_z 0.01145593 0.02770285 0.4135290 0.6795
## dep_composite -0.06938345 0.05797039 -1.1968775 0.2322
## anx_composite 0.02939985 0.05141568 0.5718071 0.5678
## Age -0.01247806 0.00850098 -1.4678382 0.1430
## SexAtBirth 0.07676693 0.05410915 1.4187423 0.1569
## site -0.03524426 0.02545712 -1.3844559 0.1671
## val1:proc1 0.00162760 0.00834148 0.1951210 0.8454
## val1:N_z 0.00010922 0.00471239 0.0231773 0.9815
## proc1:N_z 0.00120674 0.00471239 0.2560785 0.7980
## val1:proc1:N_z -0.00160650 0.00471239 -0.3409107 0.7334
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.243 0.000 0.000
## dep_composite 0.076 0.000 0.000 -0.565
## anx_composite 0.161 0.000 0.000 -0.244 -0.522
## Age -0.975 0.000 0.000 0.166 -0.065 -0.084
## SexAtBirth -0.273 0.000 0.000 0.017 0.136 -0.322 0.108
## site 0.229 0.000 0.000 -0.018 -0.084 0.083 -0.237 0.152
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.403 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.403 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.32376673 -0.61572088 -0.02442418 0.77492315 2.51427373
##
## Residual standard error: 0.2491562
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2pcc <- gls(r3Default_PCC_Foxcoord ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2pcc)
## Generalized least squares fit by maximum likelihood
## Model: r3Default_PCC_Foxcoord ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -147.3914 -88.77013 88.69569
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6756626
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.10952655 0.20023182 -0.5469988 0.5847
## val1 -0.00237967 0.00834911 -0.2850210 0.7758
## proc1 -0.00173444 0.00834911 -0.2077396 0.8356
## N_z 0.01170906 0.02778762 0.4213769 0.6737
## dep_composite -0.06923967 0.05805178 -1.1927227 0.2338
## anx_composite 0.02823280 0.05138523 0.5494341 0.5831
## Age -0.01261148 0.00846345 -1.4901108 0.1371
## SexAtBirth 0.07591246 0.05401907 1.4052900 0.1608
## site -0.03528069 0.02532350 -1.3931997 0.1644
## val1:proc1 0.00185951 0.00834911 0.2227198 0.8239
## val1:N_z 0.00002725 0.00473417 0.0057569 0.9954
## proc1:N_z 0.00101928 0.00473417 0.2153016 0.8297
## val1:proc1:N_z -0.00173659 0.00473417 -0.3668195 0.7140
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.38471584 -0.60780362 -0.02333471 0.77331642 2.50400510
##
## Residual standard error: 0.2525449
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1pcc,sitemodel2pcc)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1pcc 1 16 -145.5598 -83.03049 88.77991
## sitemodel2pcc 2 15 -147.3914 -88.77013 88.69569 1 vs 2 0.1684432 0.6815
#rename winning model
pcc_N <- gls(r3Default_PCC_Foxcoord ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
anova(pcc_N)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 195.86090 <.0001
## val 1 0.09560 0.7574
## proc 1 0.01738 0.8952
## N_z 1 0.02492 0.8747
## dep_composite 1 1.94045 0.1645
## anx_composite 1 1.56903 0.2112
## Age 1 4.61102 0.0324
## SexAtBirth 1 2.68088 0.1024
## site 1 1.94101 0.1644
## val:proc 1 0.00657 0.9354
## val:N_z 1 0.00003 0.9954
## proc:N_z 1 0.04635 0.8297
## val:proc:N_z 1 0.13456 0.7140
Prec
# Different var/cov by Site
nositemodel1prec <- gls(r3_Yeo7DMN_Precuneus_LR ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel1prec)
## Generalized least squares fit by maximum likelihood
## Model: r3_Yeo7DMN_Precuneus_LR ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -210.2791 -132.1174 125.1395
##
## Correlation Structure: General
## Formula: ~1 | sub
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.707
## 3 0.682 0.716
## 4 0.648 0.778 0.658
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.19378655 0.18948244 -1.0227151 0.3071
## val1 -0.00241362 0.00727812 -0.3316269 0.7404
## proc1 -0.00494419 0.00742899 -0.6655260 0.5061
## N_z 0.03941142 0.02629734 1.4986847 0.1348
## dep_composite -0.08247277 0.05493489 -1.5012822 0.1342
## anx_composite 0.02578391 0.04862776 0.5302301 0.5963
## Age -0.00221972 0.00800898 -0.2771539 0.7818
## SexAtBirth -0.01039816 0.05111925 -0.2034099 0.8389
## site -0.03812179 0.02396884 -1.5904727 0.1126
## val1:proc1 0.00730263 0.00731115 0.9988345 0.3186
## val1:N_z 0.00066098 0.00412406 0.1602731 0.8728
## proc1:N_z 0.00105511 0.00423558 0.2491056 0.8034
## val1:proc1:N_z -0.00326517 0.00413606 -0.7894397 0.4304
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 -0.002
## proc1 -0.002 0.013
## N_z -0.251 -0.003 0.007
## dep_composite 0.082 0.002 0.001 -0.567
## anx_composite 0.166 -0.005 -0.009 -0.242 -0.520
## Age -0.975 0.001 0.001 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.001 0.005 0.021 0.131 -0.320 0.110
## site 0.225 -0.017 0.006 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 -0.002 -0.008 -0.006 0.002 0.005 -0.002 0.002 -0.005 -0.005
## val1:N_z 0.000 -0.408 -0.027 -0.002 0.000 0.004 -0.001 0.000 0.008
## proc1:N_z -0.001 -0.029 -0.408 -0.009 0.005 0.000 0.002 -0.004 -0.011
## val1:proc1:N_z 0.008 0.000 0.037 -0.009 0.002 0.001 -0.007 -0.003 0.007
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.002
## proc1:N_z 0.038 0.044
## val1:proc1:N_z -0.399 0.031 -0.013
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.75535833 -0.74814507 -0.04655522 0.69177537 2.63395702
##
## Residual standard error: 0.2369884
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
nositemodel2prec <- gls(r3_Yeo7DMN_Precuneus_LR ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(nositemodel2prec)
## Generalized least squares fit by maximum likelihood
## Model: r3_Yeo7DMN_Precuneus_LR ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -212.0641 -153.4429 121.0321
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6945489
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.17865462 0.18886973 -0.9459145 0.3448
## val1 -0.00120829 0.00757208 -0.1595716 0.8733
## proc1 -0.00168354 0.00757208 -0.2223354 0.8242
## N_z 0.03799470 0.02621082 1.4495807 0.1481
## dep_composite -0.08297186 0.05475765 -1.5152561 0.1306
## anx_composite 0.02663550 0.04846939 0.5495324 0.5830
## Age -0.00276239 0.00798319 -0.3460252 0.7295
## SexAtBirth -0.01315367 0.05095378 -0.2581490 0.7964
## site -0.03522583 0.02388653 -1.4747157 0.1412
## val1:proc1 0.00637688 0.00757208 0.8421571 0.4003
## val1:N_z 0.00027235 0.00429357 0.0634327 0.9495
## proc1:N_z 0.00002878 0.00429357 0.0067032 0.9947
## val1:proc1:N_z -0.00270561 0.00429357 -0.6301548 0.5290
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.79346322 -0.72423921 -0.03851973 0.67666294 2.64586735
##
## Residual standard error: 0.2360157
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(nositemodel1prec,nositemodel2prec)
## Model df AIC BIC logLik Test L.Ratio p-value
## nositemodel1prec 1 20 -210.2791 -132.1174 125.1395
## nositemodel2prec 2 15 -212.0641 -153.4429 121.0321 1 vs 2 8.214922 0.1448
# Different var/cov by Site
sitemodel1prec <- gls(r3_Yeo7DMN_Precuneus_LR ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub), weights = varIdent(form = ~ 1 | site),method = "ML",na.action = "na.omit")
summary(sitemodel1prec)
## Generalized least squares fit by maximum likelihood
## Model: r3_Yeo7DMN_Precuneus_LR ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -211.0302 -148.5009 121.5151
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.689893
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | site
## Parameter estimates:
## -1 1
## 1.0000000 0.9260137
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.17479904 0.18481133 -0.9458243 0.3449
## val1 -0.00152127 0.00758727 -0.2005023 0.8412
## proc1 -0.00086511 0.00758727 -0.1140209 0.9093
## N_z 0.03740314 0.02603613 1.4365862 0.1517
## dep_composite -0.08373848 0.05416479 -1.5459949 0.1230
## anx_composite 0.02788027 0.04771145 0.5843516 0.5594
## Age -0.00286755 0.00778810 -0.3681971 0.7129
## SexAtBirth -0.01485582 0.05002022 -0.2969963 0.7666
## site -0.03522741 0.02332765 -1.5101140 0.1319
## val1:proc1 0.00672646 0.00758727 0.8865450 0.3759
## val1:N_z -0.00000886 0.00434240 -0.0020399 0.9984
## proc1:N_z -0.00047664 0.00434240 -0.1097642 0.9127
## val1:proc1:N_z -0.00317005 0.00434240 -0.7300224 0.4659
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.270 0.000 0.000
## dep_composite 0.095 0.000 0.000 -0.573
## anx_composite 0.177 0.000 0.000 -0.239 -0.513
## Age -0.974 0.000 0.000 0.192 -0.081 -0.102
## SexAtBirth -0.281 0.000 0.000 0.031 0.119 -0.315 0.115
## site 0.214 0.000 0.000 -0.020 -0.085 0.089 -0.236 0.154
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.410 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.410 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.410 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.73810377 -0.70777069 -0.03334756 0.69690208 2.57699958
##
## Residual standard error: 0.2416664
## Degrees of freedom: 368 total; 355 residual
# Common var/cov by Site
sitemodel2prec <- gls(r3_Yeo7DMN_Precuneus_LR ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
summary(sitemodel2prec)
## Generalized least squares fit by maximum likelihood
## Model: r3_Yeo7DMN_Precuneus_LR ~ val * proc * N_z + dep_composite + anx_composite + Age + SexAtBirth + site
## Data: uniroi_unharm_df
## AIC BIC logLik
## -212.0641 -153.4429 121.0321
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | sub
## Parameter estimate(s):
## Rho
## 0.6945489
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.17865462 0.18886973 -0.9459145 0.3448
## val1 -0.00120829 0.00757208 -0.1595716 0.8733
## proc1 -0.00168354 0.00757208 -0.2223354 0.8242
## N_z 0.03799470 0.02621082 1.4495807 0.1481
## dep_composite -0.08297186 0.05475765 -1.5152561 0.1306
## anx_composite 0.02663550 0.04846939 0.5495324 0.5830
## Age -0.00276239 0.00798319 -0.3460252 0.7295
## SexAtBirth -0.01315367 0.05095378 -0.2581490 0.7964
## site -0.03522583 0.02388653 -1.4747157 0.1412
## val1:proc1 0.00637688 0.00757208 0.8421571 0.4003
## val1:N_z 0.00027235 0.00429357 0.0634327 0.9495
## proc1:N_z 0.00002878 0.00429357 0.0067032 0.9947
## val1:proc1:N_z -0.00270561 0.00429357 -0.6301548 0.5290
##
## Correlation:
## (Intr) val1 proc1 N_z dp_cmp anx_cm Age SxAtBr site
## val1 0.000
## proc1 0.000 0.000
## N_z -0.251 0.000 0.000
## dep_composite 0.082 0.000 0.000 -0.567
## anx_composite 0.165 0.000 0.000 -0.242 -0.520
## Age -0.975 0.000 0.000 0.173 -0.070 -0.090
## SexAtBirth -0.275 0.000 0.000 0.021 0.131 -0.320 0.110
## site 0.225 0.000 0.000 -0.019 -0.084 0.085 -0.237 0.153
## val1:proc1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## val1:N_z 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## proc1:N_z 0.000 0.000 -0.405 0.000 0.000 0.000 0.000 0.000 0.000
## val1:proc1:N_z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## vl1:p1 vl1:N_ pr1:N_
## val1
## proc1
## N_z
## dep_composite
## anx_composite
## Age
## SexAtBirth
## site
## val1:proc1
## val1:N_z 0.000
## proc1:N_z 0.000 0.000
## val1:proc1:N_z -0.405 0.000 0.000
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.79346322 -0.72423921 -0.03851973 0.67666294 2.64586735
##
## Residual standard error: 0.2360157
## Degrees of freedom: 368 total; 355 residual
# Testing difference of fit between Diff/Common Site var/cov
anova(sitemodel1prec,sitemodel2prec)
## Model df AIC BIC logLik Test L.Ratio p-value
## sitemodel1prec 1 16 -211.0302 -148.5009 121.5151
## sitemodel2prec 2 15 -212.0641 -153.4429 121.0321 1 vs 2 0.9660844 0.3257
#rename winning model
prec_N <- gls(r3_Yeo7DMN_Precuneus_LR ~ val*proc*N_z + dep_composite + anx_composite + Age + SexAtBirth + site, data = uniroi_unharm_df, correlation = corCompSymm(form = ~ 1 | sub),method = "ML",na.action = "na.omit")
anova(prec_N)
## Denom. DF: 355
## numDF F-value p-value
## (Intercept) 1 98.38466 <.0001
## val 1 0.02144 0.8837
## proc 1 0.05770 0.8103
## N_z 1 0.62883 0.4283
## dep_composite 1 2.65537 0.1041
## anx_composite 1 0.47826 0.4897
## Age 1 0.51737 0.4724
## SexAtBirth 1 0.00111 0.9735
## site 1 2.17479 0.1412
## val:proc 1 0.41207 0.5213
## val:N_z 1 0.00402 0.9495
## proc:N_z 1 0.00004 0.9947
## val:proc:N_z 1 0.39710 0.5290
FDR correction for multiple comparison in Apriori ROI models
models <- c("dlpfc_N", "rins_N", "dacc_N", "spgacc_N", "vlpfc_N", "amyg_N", "mpfc_N", "lins_N", "pcc_N", "prec_N")
n_coefficients_list <- list()
n_p_list <- list()
#which terms do we actually care about? Anything w/ N
## Sub model: val,proc,N,dep,anx,age,sex,site,val*proc,val*N,proc*N,val*proc*N
termstokeep <- c(4,11:13)
for (m in 1:length(models)){
thisMod <- models[m]
thisMod_sum <- summary(get(thisMod))
n_coefficients_list[[m]] <- coef(thisMod_sum)[termstokeep]
n_p_list[[m]] <- thisMod_sum$tTable[termstokeep,4]
}
n_allps_uncorrected <- unlist(n_p_list)
getnull<-get.pi0(
n_allps_uncorrected,
set.pi0 = 1,
zvalues = "two.sided",
estim.method = "storey",
threshold = 0.05
)
n_allps_uncorrected <- unlist(n_p_list)
n_allps_FDRcorrected <- p.adjust(n_allps_uncorrected, method = "fdr")
n_allps_FDRcorrected_newnew <- p.fdr(n_allps_uncorrected, set.pi0=getnull)
##see what survives:
n_allps_uncorrected[which(n_allps_uncorrected < .051)] #10 values
## val1:proc1:N_z val1:proc1:N_z val1:proc1:N_z N_z val1:proc1:N_z
## 0.019122301 0.001005234 0.001161329 0.029893060 0.001554740
n_allps_FDRcorrected_newnew
## $fdrs
## [1] 0.77709863 0.98954510 0.66849717 0.72583226 1.00000000 0.64886958
## [7] 0.93660820 0.19122301 1.00000000 0.71680456 0.67371374 0.04020937
## [13] 1.00000000 0.92670931 0.97021711 0.02322658 1.00000000 0.68768348
## [19] 0.96248497 0.68024613 0.23914448 0.64395539 1.00000000 0.60846164
## [25] 0.91997893 0.91420255 0.85729598 0.02072987 0.74230316 0.99629691
## [31] 0.75582184 0.64061648 0.99812581 0.99540990 1.00000000 0.89246530
## [37] 0.74029154 1.00000000 1.00000000 0.96181586
##
## $`Results Matrix`
## BH FDRs Adjusted p-values Raw p-values
## N_z 0.77709863 0.64886958 0.252557056
## val1.N_z 0.98954510 0.98954510 0.841113335
## proc1.N_z 0.66849717 0.64061648 0.150411862
## val1.proc1.N_z 0.72583226 0.72583226 0.326624516
## N_z.1 1.00000000 0.99540990 0.979933554
## val1.N_z.1 0.64886958 0.64886958 0.275769573
## proc1.N_z.1 0.93660820 0.89246530 0.679040948
## val1.proc1.N_z.1 0.19122301 0.19122301 0.019122301
## N_z.2 1.00000000 0.89246530 0.661126684
## val1.N_z.2 0.71680456 0.64886958 0.268801711
## proc1.N_z.2 0.67371374 0.64886958 0.269485496
## val1.proc1.N_z.2 0.04020937 0.02072987 0.001005234
## N_z.3 1.00000000 0.99540990 0.900233215
## val1.N_z.3 0.92670931 0.89246530 0.695031980
## proc1.N_z.3 0.97021711 0.89246530 0.557874837
## val1.proc1.N_z.3 0.02322658 0.02072987 0.001161329
## N_z.4 1.00000000 0.89246530 0.617059639
## val1.N_z.4 0.68768348 0.64886958 0.206305043
## proc1.N_z.4 0.96248497 0.89246530 0.673739476
## val1.proc1.N_z.4 0.68024613 0.60846164 0.102036920
## N_z.5 0.23914448 0.23914448 0.029893060
## val1.N_z.5 0.64395539 0.64395539 0.177087731
## proc1.N_z.5 1.00000000 0.99540990 0.890752367
## val1.proc1.N_z.5 0.60846164 0.60846164 0.106480787
## N_z.6 0.91997893 0.89246530 0.482988936
## val1.N_z.6 0.91420255 0.89246530 0.708506974
## proc1.N_z.6 0.85729598 0.85729598 0.428647990
## val1.proc1.N_z.6 0.02072987 0.02072987 0.001554740
## N_z.7 0.74230316 0.64886958 0.259806106
## val1.N_z.7 0.99629691 0.89246530 0.622685568
## proc1.N_z.7 0.75582184 0.75582184 0.359015375
## val1.proc1.N_z.7 0.64061648 0.64061648 0.160154119
## N_z.8 0.99812581 0.89246530 0.673734920
## val1.N_z.8 0.99540990 0.99540990 0.995409900
## proc1.N_z.8 1.00000000 0.98954510 0.829655806
## val1.proc1.N_z.8 0.89246530 0.89246530 0.713972237
## N_z.9 0.74029154 0.64061648 0.148058308
## val1.N_z.9 1.00000000 0.99540990 0.949457641
## proc1.N_z.9 1.00000000 0.99540990 0.994655386
## val1.proc1.N_z.9 0.96181586 0.89246530 0.528998723
##
## $`Reject Vector`
## [1] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0"
## [7] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "Reject.H0"
## [13] "FTR.H0" "FTR.H0" "FTR.H0" "Reject.H0" "FTR.H0" "FTR.H0"
## [19] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0"
## [25] "FTR.H0" "FTR.H0" "FTR.H0" "Reject.H0" "FTR.H0" "FTR.H0"
## [31] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0"
## [37] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0"
##
## $pi0
## [1] 1
##
## $threshold
## [1] 0.05
##
## $`Adjustment Method`
## [1] "BH"
##
## $Call
## p.fdr(pvalues = n_allps_uncorrected, set.pi0 = getnull)
##
## attr(,"class")
## [1] "p.fdr"
which(n_allps_FDRcorrected< .051)
## val1:proc1:N_z val1:proc1:N_z val1:proc1:N_z
## 12 16 28
#3rd model: all ints w N are significant
#4th model:proc*N and 3way int are significant still