===============================

A. Memasukkan data dan membuat model

===============================

X1 <- c(3,3,5,4,4,5,7,4,8,2) X2 <- c(2,3,4,5,6,6,7,8,6,9) X3 <- c(4,3,5,4,3,5,7,4,8,4) Y <- c(8,7,8,8,6,7,7,6,5,9)

data <- data.frame(X1, X2, X3, Y)

Membuat model regresi linier berganda

model <- lm(Y ~ X1 + X2 + X3, data = data)

Menampilkan ringkasan model

summary(model)

===============================

B. Menuliskan persamaan regresi

===============================

coef_model <- coef(model) persamaan <- paste0(“Y =”, round(coef_model[1], 3), ” + “, round(coef_model[2], 3),” X1 + “, round(coef_model[3], 3),” X2 + “, round(coef_model[4], 3),” X3”) persamaan

===============================

C. Uji Hipotesis

===============================

— Uji F (model keseluruhan) —

H0: β1 = β2 = β3 = 0

H1: minimal ada satu βj ≠ 0

anova(model)

— Uji t (parsial) —

H0: βj = 0

H1: βj ≠ 0

summary(model)

Menampilkan p-value tiap variabel untuk interpretasi cepat

pvals <- summary(model)\(coefficients[,4] names(pvals) <- rownames(summary(model)\)coefficients) pvals

===============================

D. Pengaruh & Koefisien Determinasi

===============================

Beta standar (tanpa paket tambahan)

data_std <- as.data.frame(scale(data)) model_std <- lm(Y ~ X1 + X2 + X3, data = data_std) beta_standar <- coef(model_std) # koefisien beta standar beta_standar

Koefisien determinasi

R2 <- summary(model)\(r.squared adjR2 <- summary(model)\)adj.r.squared

cat(“R-squared =”, round(R2,3), “→”, round(R2*100,1), “% variasi Y dijelaskan oleh model.”) cat(“Adjusted R-squared =”, round(adjR2,3), “→ proporsi penjelasan setelah penyesuaian jumlah variabel.”)