{r} coef(model)
{r} coeffs <- coef(model) cat(“Persamaan model regresi linear:”) cat(“Ŷ =”, round(coeffs[1], 3), “+”, round(coeffs[2], 3), “* X1 +”, round(coeffs[3], 3), “* X2 +”, round(coeffs[4], 3), “* X3”)
{r} summary(model)$coefficients
{r} # Ambil p-value X3 dari hasil regresi pvalue_X3 <- summary(model)$coefficients[“X3”, 4]
pvalue_X3_satu_arah <- pvalue_X3 / 2
pvalue_X3_satu_arah
{r} # Uji satu arah X3 > 0 if(pvalue_X3_satu_arah < 0.05) { cat(“X3 berpengaruh positif signifikan terhadap Y (p =”, pvalue_X3_satu_arah, “)”) } else { cat(“X3 tidak signifikan secara satu arah (p =”, pvalue_X3_satu_arah, “)”) }
{r} # P-value tiap variabel (uji t) summary(model)$coefficients[,4]
anova(model)
| Variabel | Koefisien | Makna | Signifikansi |
|---|---|---|---|
| X1 | 0.1558 | Jika X1 naik 1, Y naik 0.156 (tidak signifikan) | p = 0.4754 |
| X2 | -0.1725 | Jika X2 naik 1, Y turun 0.173 (tidak signifikan) | p = 0.3842 |
| X3 | 0.6762 | Jika X3 naik 1, Y naik 0.676 (signifikan) | p = 0.0172 ✅ |
{r} # Ambil nilai R-squared rsq <- summary(model)\(r.squared adj_rsq <- summary(model)\)adj.r.squared
cat(“Koefisien Determinasi (R²):”, round(rsq, 4), “”) cat(“Koefisien Determinasi Disesuaikan (Adjusted R²):”, round(adj_rsq, 4), “”)
coeff <- summary(model)$coefficients print(coeff)