A. Langkah-langkah

1. Input data

X1 <- c(3,3,5,4,6,5,7,4,8,2) X2 <- c(2,3,4,5,6,6,7,6,8,9) X3 <- c(4,3,5,4,6,5,7,4,8,4) Y <- c(8,7,8,8,8,7,8,6,9,9)

2. Gabungkan menjadi data frame

data <- data.frame(X1, X2, X3, Y) data

3. Jalankan regresi linier berganda

model <- lm(Y ~ X1 + X2 + X3, data = data) model

4. Lihat ringkasan hasil regresi

summary(model)

5. Menghitung ANOVA model

anova(model)

B. Persamaan/model regresi linier yang terbentuk

#Menyimpan koefisien ke dalam variabel coef_model coef_model <- coef(model) coef_model

cat(“Persamaan regresi:”) cat(sprintf(“Y_hat = %.4f + (%.4f)X1 + (%.4f)X2 + (%.4f)X3”, coef_model[1], coef_model[2], coef_model[3], coef_model[4]))

C. Uji Signifikansi

1. Input Data

X1 <- c(3,3,5,4,6,5,7,4,8,2) X2 <- c(2,3,4,5,6,6,7,6,8,9) X3 <- c(4,3,5,4,6,5,7,4,8,4) Y <- c(8,7,8,8,8,7,8,6,9,9)

data <- data.frame(X1, X2, X3, Y) data

2. Model Regresi

model <- lm(Y ~ X1 + X2 + X3, data = data) model

Uji Simultan (F-test)

anova_res <- anova(model) f_stat <- summary(model)\(fstatistic[1] p_value_f <- pf(f_stat, summary(model)\)fstatistic[2], summary(model)$fstatistic[3], lower.tail = FALSE)

cat(“=== Uji Simultan (F-test) ===”) cat(sprintf(“F-statistic = %.3f, p-value = %.4f”, f_stat, p_value_f)) if (p_value_f < 0.05) { cat(“Kesimpulan: Tolak H0 → Variabel X1, X2, X3 berpengaruh signifikan secara simultan terhadap Y.”) } else if (p_value_f < 0.10) { cat(“Kesimpulan: Signifikan pada taraf 10%, tetapi tidak signifikan pada taraf 5%.”) } else { cat(“Kesimpulan: Gagal menolak H0 → Tidak ada pengaruh signifikan secara simultan.”) }

Uji Parsial (t-test)

cat(“=== Uji Parsial (t-test) ===”) summary_res <- summary(model)$coefficients

for (i in 2:nrow(summary_res)) { var_name <- rownames(summary_res)[i] t_val <- summary_res[i, “t value”] p_val <- summary_res[i, “Pr(>|t|)”] signif <- ifelse(p_val < 0.05, “Signifikan”, “Tidak Signifikan”) cat(sprintf(“%s: t = %.3f, p-value = %.4f → %s”, var_name, t_val, p_val, signif)) }

D. Koefisien Determinasi

Model Regresi

model <- lm(Y ~ X1 + X2 + X3, data = data)

Ambil nilai R-squared dan Adjusted R-squared

r2 <- summary(model)\(r.squared adj_r2 <- summary(model)\)adj.r.squared

Tampilkan hasil

cat(“=== Koefisien Determinasi ===”) cat(sprintf(“R-squared = %.3f (%.2f%%)”, r2, r2100)) cat(sprintf(“Adjusted R-squared = %.3f (%.2f%%)”, adj_r2, adj_r2100))

Interpretasi

cat(“:”) cat(sprintf(“Sebesar %.2f%% variasi variabel dependen (Y) dapat dijelaskan oleh variabel independen X1, X2, dan X3.”, r2100)) cat(sprintf(“Sisanya sebesar %.2f%% dijelaskan oleh faktor lain di luar model.”, (1 - r2)100))