Ejercicio 1. Módelo Econométrico

¿Qué factores afectan a la plusvalía de una propiedad?

M^2 (Construcción) - Metros cuadrados de construcción de la propiedad

M^2 (Terreno) - Metros cuadrados de terreno de la propiedad

Antigüedad - Años que tiene la propiedad

Municipio - Neighborhood index

Modelo Económico Plusvalía = f(M^2 Construcción, M^2 Terreno, Antigüedad, Municipio)

Modelo econométrico: plusvalía = B0 + B1* M^2 Construcción + B2 * M^2 Terreno + B3 * Antigüedad +B4 * Municipio + u

Aplicación de Shiny

Aplicación de Shiny

Ejercicio 2. Good to great

¿Debe una empresa que lo hace bien, buscar ser sobresaliente?

Yo considero que sí, para poder buscar nuevas opciones. Cómo venderla para poder retirarse en caso de que no se quiera seguir trabajando o de ser una empresa mejor posicionada, que genere mejores cosas para los stakeholders. Siempre sobresalir por cosas buenas y un impacto positivo. Al mismo tiempo hay factores económicos que pueden beneficiarse como aumento de ventas, creación de empleo debido al crecimiento de la empresa, etc…

Instalar paquetes y llamar librerias

#install.packages("WDI")
library(WDI)
#install.packages("wdstats")
library(wbstats)
#install.packages("tidyverse")
library(tidyverse) 
#install.packages("plm") #paquete para realizar modelos lineales para datos de panel
library(plm)
#install.packages("cachem")
#install.packages("bslib")
#install.packages("rmarkdown")
#install.packages("gplots")
library(gplots)
#install.packages("PKI")
#install.packages("rsconnect", type = "source")
# install.packages("readxl")
library(readxl)
#install.packages("lmtest")
library(lmtest)

Paso 1. Generar conjunto de Datos de Panel

# Obtener información de varios países
gdp <- wb_data(country=c("MX", "US", "CA"), indicator=c("NY.GDP.PCAP.CD", "SM.POP.NETM"), start_date=1950, end_date=2025)

# Generar conjunto de datos de panel
panel_1 <- select(gdp, country, date, NY.GDP.PCAP.CD, SM.POP.NETM)
panel_1 <- subset(panel_1, date == 1960 | date == 1970 | date == 1980 | date == 1990 | date == 2000 | date == 2010 | date == 2020)
panel_1 <- pdata.frame(panel_1, index=c("country", "date"))

Paso 2. Prueba de heterogeneidad

plotmeans(NY.GDP.PCAP.CD ~ country, main="Prueba de Heterogeneidad entre países para el PIB, data=panel_1", data=panel_1)

plotmeans(SM.POP.NETM ~ country, main="Prueba de Heterogeneidad entre países para la Migración Neta, data=panel_1", data=panel_1)

#Si la linea sale casi horizontal, hay poca o nula heterogeneidad, por lo que no hya diferencias sistemáticas que ajustar.

#Si la línea sale quebrada, sube y baja, hay mucha heterogeneidad, por lo que hay que ajustar.

Paso 3. Prueba de Efectos fijos y Aleatorios

# Modelo 1. Regresión agrupada (pooled)
# Asume que no hay heterogeneidad observada (si la línea esta derecha y no quebrada)
pooled <- plm(NY.GDP.PCAP.CD ~ SM.POP.NETM , data = panel_1, model = "pooling")
summary(pooled)
## Pooling Model
## 
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ SM.POP.NETM, data = panel_1, model = "pooling")
## 
## Balanced Panel: n = 3, T = 7, N = 21
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -21506.0 -10924.8  -3728.9   5274.5  45389.3 
## 
## Coefficients:
##               Estimate Std. Error t-value Pr(>|t|)   
## (Intercept) 1.2873e+04 4.2134e+03  3.0553 0.006511 **
## SM.POP.NETM 1.8616e-02 7.2324e-03  2.5740 0.018588 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    7259500000
## Residual Sum of Squares: 5382600000
## R-Squared:      0.25855
## Adj. R-Squared: 0.21952
## F-statistic: 6.62533 on 1 and 19 DF, p-value: 0.018588
# Modelo 2. Efectos Fijos
# Cuando las diferencias no observadas son constantes en el tiempo
within <- plm(NY.GDP.PCAP.CD ~ SM.POP.NETM , data = panel_1, model = "within")
summary(within)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ SM.POP.NETM, data = panel_1, model = "within")
## 
## Balanced Panel: n = 3, T = 7, N = 21
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -20886.56  -9903.27   -403.03   3407.39  44059.72 
## 
## Coefficients:
##             Estimate Std. Error t-value Pr(>|t|)
## SM.POP.NETM 0.013921   0.014345  0.9705   0.3454
## 
## Total Sum of Squares:    5256100000
## Residual Sum of Squares: 4980200000
## R-Squared:      0.052492
## Adj. R-Squared: -0.11471
## F-statistic: 0.94181 on 1 and 17 DF, p-value: 0.34542
# Prueba 
pFtest(within, pooled)
## 
##  F test for individual effects
## 
## data:  NY.GDP.PCAP.CD ~ SM.POP.NETM
## F = 0.68685, df1 = 2, df2 = 17, p-value = 0.5166
## alternative hypothesis: significant effects
# Si el p-value < 0.05 se prefiere el modelo de efectos fijos
# Si el p-value > 0.05 se prefiere el modelo de efectos aleatorios

# Modelo 3. Efectos aleatorios 
#Cuando las diferenciasno observadas son aleatorias

# Método Walhus
walhus <- plm(NY.GDP.PCAP.CD ~ SM.POP.NETM , data = panel_1, model = "random", random.method="walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ SM.POP.NETM, data = panel_1, model = "random", 
##     random.method = "walhus")
## 
## Balanced Panel: n = 3, T = 7, N = 21
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 278418900     16686     1
## individual            0         0     0
## theta: 0
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -21506.0 -10924.8  -3728.9   5274.5  45389.3 
## 
## Coefficients:
##               Estimate Std. Error z-value Pr(>|z|)   
## (Intercept) 1.2873e+04 4.2134e+03  3.0553 0.002248 **
## SM.POP.NETM 1.8616e-02 7.2324e-03  2.5740 0.010054 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    7259500000
## Residual Sum of Squares: 5382600000
## R-Squared:      0.25855
## Adj. R-Squared: 0.21952
## Chisq: 6.62533 on 1 DF, p-value: 0.010054
# Método amemiya
amemiya <- plm(NY.GDP.PCAP.CD ~ SM.POP.NETM , data = panel_1, model = "random", random.method="amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ SM.POP.NETM, data = panel_1, model = "random", 
##     random.method = "amemiya")
## 
## Balanced Panel: n = 3, T = 7, N = 21
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 276675480     16634     1
## individual            0         0     0
## theta: 0
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -21506.0 -10924.8  -3728.9   5274.5  45389.3 
## 
## Coefficients:
##               Estimate Std. Error z-value Pr(>|z|)   
## (Intercept) 1.2873e+04 4.2134e+03  3.0553 0.002248 **
## SM.POP.NETM 1.8616e-02 7.2324e-03  2.5740 0.010054 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    7259500000
## Residual Sum of Squares: 5382600000
## R-Squared:      0.25855
## Adj. R-Squared: 0.21952
## Chisq: 6.62533 on 1 DF, p-value: 0.010054
# Método nerlove
nerlove <- plm(NY.GDP.PCAP.CD ~ SM.POP.NETM , data = panel_1, model = "random", random.method="nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ SM.POP.NETM, data = panel_1, model = "random", 
##     random.method = "nerlove")
## 
## Balanced Panel: n = 3, T = 7, N = 21
## 
## Effects:
##                     var   std.dev share
## idiosyncratic 237150411     15400 0.864
## individual     37271843      6105 0.136
## theta: 0.31
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -20850.0  -9773.4  -2826.2   3450.7  45608.0 
## 
## Coefficients:
##               Estimate Std. Error z-value Pr(>|z|)  
## (Intercept) 1.3174e+04 5.8290e+03  2.2601  0.02382 *
## SM.POP.NETM 1.7563e-02 9.0595e-03  1.9386  0.05255 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    6.21e+09
## Residual Sum of Squares: 5184500000
## R-Squared:      0.16513
## Adj. R-Squared: 0.12119
## Chisq: 3.75814 on 1 DF, p-value: 0.052551
#Comparar la R^2 ajustada de los 3 métodos y elegir el que tenga el mayor.
phtest(walhus, within)
## 
##  Hausman Test
## 
## data:  NY.GDP.PCAP.CD ~ SM.POP.NETM
## chisq = 0.14364, df = 1, p-value = 0.7047
## alternative hypothesis: one model is inconsistent
#Si el p-value es <0.05, usamos Efectos Fijos (within)

Ejercicio 3. Panel en equipos

# Obtener información de varios países
le <- wb_data(country=c("BR", "JP", "SA"), indicator=c("SP.DYN.LE00.IN", "SP.DYN.IMRT.IN"), start_date=1950, end_date=2025)

#Generar conjunto de datos de panel
panel_2 <- select(le, country, date, SP.DYN.LE00.IN, SP.DYN.IMRT.IN)
panel_2 <- subset(panel_2, date == 1960 | date == 1970 | date == 1980 | date == 1990 | date == 2000 | date == 2010 | date == 2020)
panel_2 <- pdata.frame(panel_2, index=c("country", "date"))

# Prueba de heterogeneidad
plotmeans(SP.DYN.LE00.IN ~ country, main="Prueba de Heterogeneidad entre países para Esperanza de Vida", data=panel_2)

plotmeans(SP.DYN.IMRT.IN ~ country, main="Prueba de Heterogeneidad entre países para Mortalidad Infantil", data=panel_2)

# Modelo 1. Regresión agrupada (pooled)
# Asume que no hay heterogeneidad observada (si la línea esta derecha y no quebrada)
pooled <- plm(SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN , data = panel_2, model = "pooling")
summary(pooled)
## Pooling Model
## 
## Call:
## plm(formula = SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN, data = panel_2, 
##     model = "pooling")
## 
## Unbalanced Panel: n = 3, T = 5-7, N = 19
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -4.38143 -1.48349 -0.75575  1.45971  6.34152 
## 
## Coefficients:
##                 Estimate Std. Error t-value  Pr(>|t|)    
## (Intercept)    78.604999   0.882384  89.082 < 2.2e-16 ***
## SP.DYN.IMRT.IN -0.214735   0.017766 -12.087 9.008e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1303.7
## Residual Sum of Squares: 135.89
## R-Squared:      0.89577
## Adj. R-Squared: 0.88964
## F-statistic: 146.098 on 1 and 17 DF, p-value: 9.0076e-10
# Modelo 2. Efectos Fijos
# Cuando las diferencias no observadas son constantes en el tiempo
within <- plm(SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN , data = panel_2, model = "within")
summary(within)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN, data = panel_2, 
##     model = "within")
## 
## Unbalanced Panel: n = 3, T = 5-7, N = 19
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -5.64597 -1.10959  0.08486  1.07060  5.56936 
## 
## Coefficients:
##                 Estimate Std. Error t-value  Pr(>|t|)    
## SP.DYN.IMRT.IN -0.197520   0.022151 -8.9168 2.209e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    764.69
## Residual Sum of Squares: 121.37
## R-Squared:      0.84129
## Adj. R-Squared: 0.80954
## F-statistic: 79.5093 on 1 and 15 DF, p-value: 2.2086e-07
# Prueba 
pFtest(within, pooled)
## 
##  F test for individual effects
## 
## data:  SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN
## F = 0.89749, df1 = 2, df2 = 15, p-value = 0.4284
## alternative hypothesis: significant effects
# Si el p-value < 0.05 se prefiere el modelo de efectos fijos
# Si el p-value > 0.05 se prefiere el modelo de efectos aleatorios

# Modelo 3. Efectos aleatorios 
#Cuando las diferenciasno observadas son aleatorias

# Método Walhus
walhus <- plm(SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN , data = panel_2, model = "random", random.method="walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN, data = panel_2, 
##     model = "random", random.method = "walhus")
## 
## Unbalanced Panel: n = 3, T = 5-7, N = 19
## 
## Effects:
##                 var std.dev share
## idiosyncratic 8.275   2.877     1
## individual    0.000   0.000     0
## theta:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -4.38143 -1.48349 -0.75575  1.45971  6.34152 
## 
## Coefficients:
##                 Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)    78.604999   0.882384  89.082 < 2.2e-16 ***
## SP.DYN.IMRT.IN -0.214735   0.017766 -12.087 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1303.7
## Residual Sum of Squares: 135.89
## R-Squared:      0.89577
## Adj. R-Squared: 0.88964
## Chisq: 146.098 on 1 DF, p-value: < 2.22e-16
# Método amemiya
amemiya <- plm(SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN , data = panel_2, model = "random", random.method="amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN, data = panel_2, 
##     model = "random", random.method = "amemiya")
## 
## Unbalanced Panel: n = 3, T = 5-7, N = 19
## 
## Effects:
##                  var std.dev share
## idiosyncratic 8.0912  2.8445 0.985
## individual    0.1206  0.3473 0.015
## theta:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.03531 0.04187 0.04843 0.04498 0.04843 0.04843 
## 
## Residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4.4210 -1.4455 -0.7204  0.0008  1.4224  6.3333 
## 
## Coefficients:
##                 Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)    78.566380   0.908529  86.477 < 2.2e-16 ***
## SP.DYN.IMRT.IN -0.213638   0.018004 -11.866 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1256.5
## Residual Sum of Squares: 134.96
## R-Squared:      0.89259
## Adj. R-Squared: 0.88628
## Chisq: 140.809 on 1 DF, p-value: < 2.22e-16
# Método nerlove
nerlove <- plm(SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN , data = panel_2, model = "random", random.method="nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN, data = panel_2, 
##     model = "random", random.method = "nerlove")
## 
## Unbalanced Panel: n = 3, T = 5-7, N = 19
## 
## Effects:
##                 var std.dev share
## idiosyncratic 6.388   2.527 0.786
## individual    1.739   1.319 0.214
## theta:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3492  0.3813  0.4134  0.3965  0.4134  0.4134 
## 
## Residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4.8107 -1.2891 -0.4486  0.0039  1.1310  6.1851 
## 
## Coefficients:
##                Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)    78.27119    1.23232  63.515 < 2.2e-16 ***
## SP.DYN.IMRT.IN -0.20520    0.01962 -10.459 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1028.9
## Residual Sum of Squares: 127.81
## R-Squared:      0.87579
## Adj. R-Squared: 0.86849
## Chisq: 109.381 on 1 DF, p-value: < 2.22e-16
#Comparar la R^2 ajustada de los 3 métodos y elegir el que tenga el mayor.

phtest(walhus, within)
## 
##  Hausman Test
## 
## data:  SP.DYN.LE00.IN ~ SP.DYN.IMRT.IN
## chisq = 1.693, df = 1, p-value = 0.1932
## alternative hypothesis: one model is inconsistent
#Si el p-value es <0.05, usamos Efectos Fijos (within)

Actividad 1. Patentes

Contexto

El entorno de negocios en el que las organizaciones se desarrollan es cada vez más dinámico por lo que las empresas enfrentan constantemente el reto de mantenerse al día y superar los nuevos retos que el ambiente presenta. La innovación es una de las mejores formas que las empresas tienen para conseguirlo. De acuerdo con el artículo “Innovation in business: What it is and why is so important” ´publicado en el Harvard Business Review la innovación presenta tres grandes ventajas para las empresas: les permite adaptarse, promueve el crecimiento y además les ayuda a diferenciarse de su competencia generando ventajas competitivas.

Importar y limpiar la base de datos

patentes <- read_excel("/Users/hugoenrique/Desktop/Universidad/8vo\ Semestre/Generación\ de\ Escenarios/M1/Actividad\ 1.\ Análisis\ y\ aplicación\ de\ datos\ panel/PATENT\ 3.xls")
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.227   1st Qu.:  5.128  
##  Median :501116   Median :0.0000   Median :  3.842   Median :  7.585  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 15.442   3rd Qu.: 10.501  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##                                    NA's   :21        NA's   :8        
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##                                    NA's   :2                             
##     rndeflt             rndstck             sales               sic      
##  Min.   :   0.0000   Min.   :   0.125   Min.   :    1.22   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.152   1st Qu.:   52.99   1st Qu.:2890  
##  Median :   1.4764   Median :  13.353   Median :  174.06   Median :3531  
##  Mean   :  19.7238   Mean   : 163.823   Mean   : 1219.60   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.:  74.563   3rd Qu.:  728.96   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.352   Max.   :44224.00   Max.   :9997  
##                      NA's   :157        NA's   :3                        
##       year     
##  Min.   :2012  
##  1st Qu.:2014  
##  Median :2016  
##  Mean   :2016  
##  3rd Qu.:2019  
##  Max.   :2021  
## 
str(patentes)
## tibble [2,260 × 13] (S3: tbl_df/tbl/data.frame)
##  $ cusip   : num [1:2260] 800 800 800 800 800 800 800 800 800 800 ...
##  $ merger  : num [1:2260] 0 0 0 0 0 0 0 0 0 0 ...
##  $ employ  : num [1:2260] 9.85 12.32 12.2 11.84 12.99 ...
##  $ return  : num [1:2260] 5.82 5.69 4.42 5.28 4.91 ...
##  $ patents : num [1:2260] 22 34 31 32 40 60 57 77 38 5 ...
##  $ patentsg: num [1:2260] 24 32 30 34 28 33 53 47 64 70 ...
##  $ stckpr  : num [1:2260] 47.6 57.9 33 38.5 35.1 ...
##  $ rnd     : num [1:2260] 2.56 3.1 3.27 3.24 3.78 ...
##  $ rndeflt : num [1:2260] 2.56 2.91 2.8 2.52 2.78 ...
##  $ rndstck : num [1:2260] 16.2 17.4 19.6 21.9 23.1 ...
##  $ sales   : num [1:2260] 344 436 535 567 631 ...
##  $ sic     : num [1:2260] 3740 3740 3740 3740 3740 3740 3740 3740 3740 3740 ...
##  $ year    : num [1:2260] 2012 2013 2014 2015 2016 ...
sum(is.na(patentes)) #NA's en la base de datos
## [1] 191
sapply(patentes, function(x) sum (is.na(x))) #NA's por variable
##    cusip   merger   employ   return  patents patentsg   stckpr      rnd 
##        0        0       21        8        0        0        2        0 
##  rndeflt  rndstck    sales      sic     year 
##        0      157        3        0        0
patentes$employ[is.na(patentes$employ)] <- mean(patentes$employ, na.rm=TRUE)
patentes$return[is.na(patentes$return)] <- mean(patentes$return, na.rm=TRUE)
patentes$stckpr[is.na(patentes$stckpr)] <- mean(patentes$stckpr, na.rm=TRUE)
patentes$rndstck[is.na(patentes$rndstck)] <- mean(patentes$rndstck, na.rm=TRUE)
patentes$sales[is.na(patentes$sales)] <- mean(patentes$sales, na.rm=TRUE)
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.242   1st Qu.:  5.139  
##  Median :501116   Median :0.0000   Median :  3.893   Median :  7.601  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 16.034   3rd Qu.: 10.473  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##     rndeflt             rndstck             sales               sic      
##  Min.   :   0.0000   Min.   :   0.125   Min.   :    1.22   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.588   1st Qu.:   53.20   1st Qu.:2890  
##  Median :   1.4764   Median :  16.234   Median :  174.28   Median :3531  
##  Mean   :  19.7238   Mean   : 163.823   Mean   : 1219.60   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.: 119.105   3rd Qu.:  743.42   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.352   Max.   :44224.00   Max.   :9997  
##       year     
##  Min.   :2012  
##  1st Qu.:2014  
##  Median :2016  
##  Mean   :2016  
##  3rd Qu.:2019  
##  Max.   :2021
sum(is.na(patentes)) #NA's en la base d datos
## [1] 0
boxplot(patentes$cusip, horizontal = TRUE)

boxplot(patentes$merger, horizontal = TRUE)

boxplot(patentes$employ, horizontal = TRUE)

boxplot(patentes$return, horizontal = TRUE)

boxplot(patentes$patents, horizontal = TRUE)

boxplot(patentes$patentsg, horizontal = TRUE)

boxplot(patentes$stckpr, horizontal = TRUE)

boxplot(patentes$rnd, horizontal = TRUE)

boxplot(patentes$rndeflt, horizontal = TRUE)

boxplot(patentes$rndstck, horizontal = TRUE)

boxplot(patentes$sales, horizontal = TRUE)

boxplot(patentes$sic, horizontal = TRUE)

boxplot(patentes$year, horizontal = TRUE)

patentes$year <- patentes$year - 40
summary(patentes)
##      cusip            merger           employ            return       
##  Min.   :   800   Min.   :0.0000   Min.   :  0.085   Min.   :-73.022  
##  1st Qu.:368514   1st Qu.:0.0000   1st Qu.:  1.242   1st Qu.:  5.139  
##  Median :501116   Median :0.0000   Median :  3.893   Median :  7.601  
##  Mean   :514536   Mean   :0.0177   Mean   : 18.826   Mean   :  8.003  
##  3rd Qu.:754688   3rd Qu.:0.0000   3rd Qu.: 16.034   3rd Qu.: 10.473  
##  Max.   :878555   Max.   :1.0000   Max.   :506.531   Max.   : 48.675  
##     patents         patentsg           stckpr              rnd           
##  Min.   :  0.0   Min.   :   0.00   Min.   :  0.1875   Min.   :   0.0000  
##  1st Qu.:  1.0   1st Qu.:   1.00   1st Qu.:  7.6250   1st Qu.:   0.6847  
##  Median :  3.0   Median :   4.00   Median : 16.5000   Median :   2.1456  
##  Mean   : 22.9   Mean   :  27.14   Mean   : 22.6270   Mean   :  29.3398  
##  3rd Qu.: 15.0   3rd Qu.:  19.00   3rd Qu.: 29.2500   3rd Qu.:  11.9168  
##  Max.   :906.0   Max.   :1063.00   Max.   :402.0000   Max.   :1719.3535  
##     rndeflt             rndstck             sales               sic      
##  Min.   :   0.0000   Min.   :   0.125   Min.   :    1.22   Min.   :2000  
##  1st Qu.:   0.4788   1st Qu.:   5.588   1st Qu.:   53.20   1st Qu.:2890  
##  Median :   1.4764   Median :  16.234   Median :  174.28   Median :3531  
##  Mean   :  19.7238   Mean   : 163.823   Mean   : 1219.60   Mean   :3333  
##  3rd Qu.:   8.7527   3rd Qu.: 119.105   3rd Qu.:  743.42   3rd Qu.:3661  
##  Max.   :1000.7876   Max.   :9755.352   Max.   :44224.00   Max.   :9997  
##       year     
##  Min.   :1972  
##  1st Qu.:1974  
##  Median :1976  
##  Mean   :1976  
##  3rd Qu.:1979  
##  Max.   :1981

Paso 1. Generar conjunto de Datos de Panel

# Generar conjunto de datos de panel
panel_patentes <- pdata.frame(patentes, index = c("cusip", "year"))

Paso 2. Prueba de heterogeneidad

plotmeans(patents ~ cusip, main="Prueba de Heterogeneidad entre empresas para sus patentes", data=panel_patentes)

#Como la línea sale quebrada, sube y baja, hay mucha heterogeneidad, por lo que hay que ajustar.

Paso 3. Prueba de Efectos fijos y Aleatorios

# Modelo 1. Regresión agrupada (pooled)
# Asume que no hay heterogeneidad observada (si la línea esta derecha y no quebrada)
pooled_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "pooling")
summary(pooled_patentes)
## Pooling Model
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "pooling")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -320.36212  -10.01555    0.94472    7.40861  433.86316 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept) -4.1831e-01  5.2757e+00 -0.0793   0.93681    
## merger      -1.1612e+01  7.2433e+00 -1.6031   0.10905    
## employ       1.3683e+00  4.1969e-02 32.6040 < 2.2e-16 ***
## return      -4.3505e-03  1.8155e-01 -0.0240   0.98088    
## stckpr       6.5137e-01  4.3139e-02 15.0994 < 2.2e-16 ***
## rnd         -1.3853e-01  1.6106e-02 -8.6007 < 2.2e-16 ***
## sales       -3.2049e-03  4.6962e-04 -6.8246  1.13e-11 ***
## sic         -2.6894e-03  1.4820e-03 -1.8146   0.06972 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    10998000
## Residual Sum of Squares: 4600300
## R-Squared:      0.58173
## Adj. R-Squared: 0.58043
## F-statistic: 447.437 on 7 and 2252 DF, p-value: < 2.22e-16
# Modelo 2. Efectos Fijos
# Cuando las diferencias no observadas son constantes en el tiempo
within_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "within")
summary(within_patentes)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "within")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -497.22898   -1.64569   -0.19669    1.64341  184.49423 
## 
## Coefficients:
##           Estimate  Std. Error  t-value  Pr(>|t|)    
## merger  3.30904770  4.16313684   0.7948   0.42680    
## employ  0.11963128  0.07052503   1.6963   0.08998 .  
## return -0.07056694  0.10867769  -0.6493   0.51620    
## stckpr -0.01107952  0.03242512  -0.3417   0.73262    
## rnd    -0.19889614  0.01443066 -13.7829 < 2.2e-16 ***
## sales  -0.00309052  0.00041525  -7.4426 1.451e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1091400
## Residual Sum of Squares: 819280
## R-Squared:      0.24935
## Adj. R-Squared: 0.16385
## F-statistic: 112.278 on 6 and 2028 DF, p-value: < 2.22e-16
# Prueba 
pFtest(within_patentes, pooled_patentes)
## 
##  F test for individual effects
## 
## data:  patents ~ merger + employ + return + stckpr + rnd + sales + sic
## F = 41.782, df1 = 224, df2 = 2028, p-value < 2.2e-16
## alternative hypothesis: significant effects
# Si el p-value < 0.05 se prefiere el modelo de efectos fijos
# Si el p-value > 0.05 se prefiere el modelo de efectos aleatorios
#Como el p-value < 0.05 se avanza a los siguientes modelos

# Modelo 3. Efectos aleatorios 
#Cuando las diferenciasno observadas son aleatorias

# Método Walhus
walhus_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method="walhus")
summary(walhus_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Wallace-Hussain's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "walhus")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  555.26   23.56 0.273
## individual    1480.26   38.47 0.727
## theta: 0.8099
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -433.72438   -3.89667   -1.76198    0.78484  211.91016 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept) 11.84397257 12.78087032  0.9267    0.3541    
## merger       4.47647107  4.51685216  0.9911    0.3217    
## employ       1.10525428  0.04853786 22.7710 < 2.2e-16 ***
## return      -0.12920955  0.11762230 -1.0985    0.2720    
## stckpr       0.17097726  0.03355374  5.0956 3.476e-07 ***
## rnd         -0.14575073  0.01469317 -9.9196 < 2.2e-16 ***
## sales       -0.00393738  0.00042854 -9.1880 < 2.2e-16 ***
## sic         -0.00107515  0.00376075 -0.2859    0.7750    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1449600
## Residual Sum of Squares: 1098300
## R-Squared:      0.24236
## Adj. R-Squared: 0.24
## Chisq: 720.388 on 7 DF, p-value: < 2.22e-16
# Método amemiya
amemiya_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method="amemiya")
summary(amemiya_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Amemiya's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "amemiya")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  402.79   20.07 0.051
## individual    7483.44   86.51 0.949
## theta: 0.9268
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -454.59697   -2.99704   -1.65272    0.59741  193.17353 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  8.58107091 29.77947247   0.2882    0.7732    
## merger       3.91351453  4.11354681   0.9514    0.3414    
## employ       0.49060426  0.06153621   7.9726 1.554e-15 ***
## return      -0.09427795  0.10733800  -0.8783    0.3798    
## stckpr       0.04660332  0.03163610   1.4731    0.1407    
## rnd         -0.17995961  0.01406835 -12.7918 < 2.2e-16 ***
## sales       -0.00342554  0.00040647  -8.4275 < 2.2e-16 ***
## sic          0.00425278  0.00877425   0.4847    0.6279    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1144500
## Residual Sum of Squares: 891720
## R-Squared:      0.22085
## Adj. R-Squared: 0.21842
## Chisq: 638.312 on 7 DF, p-value: < 2.22e-16
# Método nerlove
nerlove_patentes <- plm(patents ~ merger + employ + return + stckpr + rnd + sales + sic, data = panel_patentes, model = "random", random.method="nerlove")
summary(nerlove_patentes)
## Oneway (individual) effect Random Effect Model 
##    (Nerlove's transformation)
## 
## Call:
## plm(formula = patents ~ merger + employ + return + stckpr + rnd + 
##     sales + sic, data = panel_patentes, model = "random", random.method = "nerlove")
## 
## Balanced Panel: n = 226, T = 10, N = 2260
## 
## Effects:
##                   var std.dev share
## idiosyncratic  362.51   19.04 0.046
## individual    7557.16   86.93 0.954
## theta: 0.9309
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -455.94828   -2.93752   -1.60035    0.62863  192.36375 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  8.38498937 31.41700295   0.2669    0.7896    
## merger       3.86675065  4.09938561   0.9433    0.3456    
## employ       0.46018862  0.06203371   7.4184 1.186e-13 ***
## return      -0.09236163  0.10697310  -0.8634    0.3879    
## stckpr       0.04167663  0.03156299   1.3204    0.1867    
## rnd         -0.18153379  0.01403810 -12.9315 < 2.2e-16 ***
## sales       -0.00339833  0.00040545  -8.3816 < 2.2e-16 ***
## sic          0.00451640  0.00925634   0.4879    0.6256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    1138700
## Residual Sum of Squares: 885220
## R-Squared:      0.22262
## Adj. R-Squared: 0.22021
## Chisq: 644.925 on 7 DF, p-value: < 2.22e-16
#Comparar la R^2 ajustada de los 3 métodos y elegir el que tenga el mayor.

phtest(walhus_patentes, within_patentes)
## 
##  Hausman Test
## 
## data:  patents ~ merger + employ + return + stckpr + rnd + sales + sic
## chisq = 352.48, df = 6, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
#Si el p-value es <0.05, usamos Efectos Fijos (within)

# Por lo tanto nos quedamos con el modelo de efectos fijos (within)

Paso 4. Pruebas de Heterocedasticidad y Autocorrelación serial

#Prueba de heterocedasticidad
bptest(within_patentes)
## 
##  studentized Breusch-Pagan test
## 
## data:  within_patentes
## BP = 1447.6, df = 7, p-value < 2.2e-16
#Si el p-value es < 0.05 hay heterocedasticidad en los residuos (problema detectado)
pwartest(within_patentes)
## 
##  Wooldridge's test for serial correlation in FE panels
## 
## data:  within_patentes
## F = 104.29, df1 = 1, df2 = 2032, p-value < 2.2e-16
## alternative hypothesis: serial correlation
#Si el p-value < 0.05, hay autocorrelación serial en errores (problema detectado)

# Modelo de Correción con Errores Estándar Robustos #Solo se hace si en uno de los test de heterocedasticidad hay problema detectado
coeficientes_corregidos <- coeftest(within_patentes, vcov=vcovHC(within_patentes, type = "HC0"))
solo_coeficientes <- coeficientes_corregidos[,1]
print(solo_coeficientes)
##       merger       employ       return       stckpr          rnd        sales 
##  3.309047705  0.119631283 -0.070566939 -0.011079520 -0.198896143 -0.003090525

Paso 5. Generar Pronósticos y Evaluar Modelo

datos_de_prueba <- data.frame(merger = 0, employ = 10,  return = 6,  stckpr = 48, rnd = 3, sales = 344)
prediccion <- sum(solo_coeficientes*datos_de_prueba)
prediccion
## [1] -1.418735

Paso 6. Conclusiones

En conclusión este ejercicio nos permite generar pronósticos en bases de datos con panel, tomando en cuenta los tratamientos para distintos efectos en los datos y sus errores.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkMSIKYXV0aG9yOiAiSHVnbyBFbnJpcXVlIEVzcHJvbmNlZGEgQW5heWEgLyBBMDEyODQ4MjciCmRhdGU6ICIyMDI1LTA4LTEyIgpvdXRwdXQ6IAogaHRtbF9kb2N1bWVudDoKICAgdG9jOiBUUlVFCiAgIHRvY19mbG9hdDogVHJ1ZQogICBjb2RlX2Rvd25sb2FkOiBUcnVlCiAgIHRoZW1lOiBjb3NtbwotLS0KCiFbXShodHRwczovL21lZGlhLnRlbm9yLmNvbS9hUGJ0NWpiWUhHZ0FBQUFNL2JhdG1hbi1sYXVnaC1sZWdvLWJhdG1hbi5naWYpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gRWplcmNpY2lvIDEuIE3Ds2RlbG8gRWNvbm9tw6l0cmljbyA8L3NwYW4+CsK/UXXDqSBmYWN0b3JlcyBhZmVjdGFuIGEgbGEgcGx1c3ZhbMOtYSBkZSB1bmEgcHJvcGllZGFkPwoKTV4yIChDb25zdHJ1Y2Npw7NuKSAgLSBNZXRyb3MgY3VhZHJhZG9zIGRlIGNvbnN0cnVjY2nDs24gZGUgbGEgcHJvcGllZGFkCgpNXjIgKFRlcnJlbm8pIC0gTWV0cm9zIGN1YWRyYWRvcyBkZSB0ZXJyZW5vIGRlIGxhIHByb3BpZWRhZAoKQW50aWfDvGVkYWQgLSBBw7FvcyBxdWUgdGllbmUgbGEgcHJvcGllZGFkCgpNdW5pY2lwaW8gLSBOZWlnaGJvcmhvb2QgaW5kZXgKCk1vZGVsbyBFY29uw7NtaWNvClBsdXN2YWzDrWEgPSBmKE1eMiBDb25zdHJ1Y2Npw7NuLCBNXjIgVGVycmVubywgQW50aWfDvGVkYWQsIE11bmljaXBpbykKCk1vZGVsbyBlY29ub23DqXRyaWNvOiAKcGx1c3ZhbMOtYSA9IEIwICsgQjEqIE1eMiBDb25zdHJ1Y2Npw7NuICsgQjIgKiBNXjIgVGVycmVubyArIEIzICogQW50aWfDvGVkYWQgK0I0ICogTXVuaWNpcGlvICsgdQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6b3JhbmdlOyI+IEFwbGljYWNpw7NuIGRlIFNoaW55IDwvc3Bhbj4KW0FwbGljYWNpw7NuIGRlIFNoaW55XShodHRwczovL2EwMTI4NDgyNy5zaGlueWFwcHMuaW8vTTFfR0VGQV9BMS8pCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gRWplcmNpY2lvIDIuIEdvb2QgdG8gZ3JlYXQgPC9zcGFuPgrCv0RlYmUgdW5hIGVtcHJlc2EgcXVlIGxvIGhhY2UgYmllbiwgYnVzY2FyIHNlciBzb2JyZXNhbGllbnRlPwoKWW8gY29uc2lkZXJvIHF1ZSBzw60sIHBhcmEgcG9kZXIgYnVzY2FyIG51ZXZhcyBvcGNpb25lcy4gQ8OzbW8gdmVuZGVybGEgcGFyYSBwb2RlciByZXRpcmFyc2UgZW4gY2FzbyBkZSBxdWUgbm8gc2UgcXVpZXJhIHNlZ3VpciB0cmFiYWphbmRvIG8gZGUgc2VyIHVuYSBlbXByZXNhIG1lam9yIHBvc2ljaW9uYWRhLCBxdWUgZ2VuZXJlIG1lam9yZXMgY29zYXMgcGFyYSBsb3Mgc3Rha2Vob2xkZXJzLiBTaWVtcHJlIHNvYnJlc2FsaXIgcG9yIGNvc2FzIGJ1ZW5hcyB5IHVuIGltcGFjdG8gcG9zaXRpdm8uIEFsIG1pc21vIHRpZW1wbyBoYXkgZmFjdG9yZXMgZWNvbsOzbWljb3MgcXVlIHB1ZWRlbiBiZW5lZmljaWFyc2UgY29tbyBhdW1lbnRvIGRlIHZlbnRhcywgY3JlYWNpw7NuIGRlIGVtcGxlbyBkZWJpZG8gYWwgY3JlY2ltaWVudG8gZGUgbGEgZW1wcmVzYSwgZXRj4oCmCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzIDwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KI2luc3RhbGwucGFja2FnZXMoIldESSIpCmxpYnJhcnkoV0RJKQojaW5zdGFsbC5wYWNrYWdlcygid2RzdGF0cyIpCmxpYnJhcnkod2JzdGF0cykKI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCmxpYnJhcnkodGlkeXZlcnNlKSAKI2luc3RhbGwucGFja2FnZXMoInBsbSIpICNwYXF1ZXRlIHBhcmEgcmVhbGl6YXIgbW9kZWxvcyBsaW5lYWxlcyBwYXJhIGRhdG9zIGRlIHBhbmVsCmxpYnJhcnkocGxtKQojaW5zdGFsbC5wYWNrYWdlcygiY2FjaGVtIikKI2luc3RhbGwucGFja2FnZXMoImJzbGliIikKI2luc3RhbGwucGFja2FnZXMoInJtYXJrZG93biIpCiNpbnN0YWxsLnBhY2thZ2VzKCJncGxvdHMiKQpsaWJyYXJ5KGdwbG90cykKI2luc3RhbGwucGFja2FnZXMoIlBLSSIpCiNpbnN0YWxsLnBhY2thZ2VzKCJyc2Nvbm5lY3QiLCB0eXBlID0gInNvdXJjZSIpCiMgaW5zdGFsbC5wYWNrYWdlcygicmVhZHhsIikKbGlicmFyeShyZWFkeGwpCiNpbnN0YWxsLnBhY2thZ2VzKCJsbXRlc3QiKQpsaWJyYXJ5KGxtdGVzdCkKYGBgCiMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBQYXNvIDEuIEdlbmVyYXIgY29uanVudG8gZGUgRGF0b3MgZGUgUGFuZWw8L3NwYW4+CmBgYHtyfQojIE9idGVuZXIgaW5mb3JtYWNpw7NuIGRlIHZhcmlvcyBwYcOtc2VzCmdkcCA8LSB3Yl9kYXRhKGNvdW50cnk9YygiTVgiLCAiVVMiLCAiQ0EiKSwgaW5kaWNhdG9yPWMoIk5ZLkdEUC5QQ0FQLkNEIiwgIlNNLlBPUC5ORVRNIiksIHN0YXJ0X2RhdGU9MTk1MCwgZW5kX2RhdGU9MjAyNSkKCiMgR2VuZXJhciBjb25qdW50byBkZSBkYXRvcyBkZSBwYW5lbApwYW5lbF8xIDwtIHNlbGVjdChnZHAsIGNvdW50cnksIGRhdGUsIE5ZLkdEUC5QQ0FQLkNELCBTTS5QT1AuTkVUTSkKcGFuZWxfMSA8LSBzdWJzZXQocGFuZWxfMSwgZGF0ZSA9PSAxOTYwIHwgZGF0ZSA9PSAxOTcwIHwgZGF0ZSA9PSAxOTgwIHwgZGF0ZSA9PSAxOTkwIHwgZGF0ZSA9PSAyMDAwIHwgZGF0ZSA9PSAyMDEwIHwgZGF0ZSA9PSAyMDIwKQpwYW5lbF8xIDwtIHBkYXRhLmZyYW1lKHBhbmVsXzEsIGluZGV4PWMoImNvdW50cnkiLCAiZGF0ZSIpKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBQYXNvIDIuIFBydWViYSBkZSBoZXRlcm9nZW5laWRhZDwvc3Bhbj4KYGBge3J9CnBsb3RtZWFucyhOWS5HRFAuUENBUC5DRCB+IGNvdW50cnksIG1haW49IlBydWViYSBkZSBIZXRlcm9nZW5laWRhZCBlbnRyZSBwYcOtc2VzIHBhcmEgZWwgUElCLCBkYXRhPXBhbmVsXzEiLCBkYXRhPXBhbmVsXzEpCgpwbG90bWVhbnMoU00uUE9QLk5FVE0gfiBjb3VudHJ5LCBtYWluPSJQcnVlYmEgZGUgSGV0ZXJvZ2VuZWlkYWQgZW50cmUgcGHDrXNlcyBwYXJhIGxhIE1pZ3JhY2nDs24gTmV0YSwgZGF0YT1wYW5lbF8xIiwgZGF0YT1wYW5lbF8xKQoKI1NpIGxhIGxpbmVhIHNhbGUgY2FzaSBob3Jpem9udGFsLCBoYXkgcG9jYSBvIG51bGEgaGV0ZXJvZ2VuZWlkYWQsIHBvciBsbyBxdWUgbm8gaHlhIGRpZmVyZW5jaWFzIHNpc3RlbcOhdGljYXMgcXVlIGFqdXN0YXIuCgojU2kgbGEgbMOtbmVhIHNhbGUgcXVlYnJhZGEsIHN1YmUgeSBiYWphLCBoYXkgbXVjaGEgaGV0ZXJvZ2VuZWlkYWQsIHBvciBsbyBxdWUgaGF5IHF1ZSBhanVzdGFyLgpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBQYXNvIDMuIFBydWViYSBkZSBFZmVjdG9zIGZpam9zIHkgQWxlYXRvcmlvcyA8L3NwYW4+CmBgYHtyfQojIE1vZGVsbyAxLiBSZWdyZXNpw7NuIGFncnVwYWRhIChwb29sZWQpCiMgQXN1bWUgcXVlIG5vIGhheSBoZXRlcm9nZW5laWRhZCBvYnNlcnZhZGEgKHNpIGxhIGzDrW5lYSBlc3RhIGRlcmVjaGEgeSBubyBxdWVicmFkYSkKcG9vbGVkIDwtIHBsbShOWS5HRFAuUENBUC5DRCB+IFNNLlBPUC5ORVRNICwgZGF0YSA9IHBhbmVsXzEsIG1vZGVsID0gInBvb2xpbmciKQpzdW1tYXJ5KHBvb2xlZCkKCiMgTW9kZWxvIDIuIEVmZWN0b3MgRmlqb3MKIyBDdWFuZG8gbGFzIGRpZmVyZW5jaWFzIG5vIG9ic2VydmFkYXMgc29uIGNvbnN0YW50ZXMgZW4gZWwgdGllbXBvCndpdGhpbiA8LSBwbG0oTlkuR0RQLlBDQVAuQ0QgfiBTTS5QT1AuTkVUTSAsIGRhdGEgPSBwYW5lbF8xLCBtb2RlbCA9ICJ3aXRoaW4iKQpzdW1tYXJ5KHdpdGhpbikKCiMgUHJ1ZWJhIApwRnRlc3Qod2l0aGluLCBwb29sZWQpCiMgU2kgZWwgcC12YWx1ZSA8IDAuMDUgc2UgcHJlZmllcmUgZWwgbW9kZWxvIGRlIGVmZWN0b3MgZmlqb3MKIyBTaSBlbCBwLXZhbHVlID4gMC4wNSBzZSBwcmVmaWVyZSBlbCBtb2RlbG8gZGUgZWZlY3RvcyBhbGVhdG9yaW9zCgojIE1vZGVsbyAzLiBFZmVjdG9zIGFsZWF0b3Jpb3MgCiNDdWFuZG8gbGFzIGRpZmVyZW5jaWFzbm8gb2JzZXJ2YWRhcyBzb24gYWxlYXRvcmlhcwoKIyBNw6l0b2RvIFdhbGh1cwp3YWxodXMgPC0gcGxtKE5ZLkdEUC5QQ0FQLkNEIH4gU00uUE9QLk5FVE0gLCBkYXRhID0gcGFuZWxfMSwgbW9kZWwgPSAicmFuZG9tIiwgcmFuZG9tLm1ldGhvZD0id2FsaHVzIikKc3VtbWFyeSh3YWxodXMpCgojIE3DqXRvZG8gYW1lbWl5YQphbWVtaXlhIDwtIHBsbShOWS5HRFAuUENBUC5DRCB+IFNNLlBPUC5ORVRNICwgZGF0YSA9IHBhbmVsXzEsIG1vZGVsID0gInJhbmRvbSIsIHJhbmRvbS5tZXRob2Q9ImFtZW1peWEiKQpzdW1tYXJ5KGFtZW1peWEpCgojIE3DqXRvZG8gbmVybG92ZQpuZXJsb3ZlIDwtIHBsbShOWS5HRFAuUENBUC5DRCB+IFNNLlBPUC5ORVRNICwgZGF0YSA9IHBhbmVsXzEsIG1vZGVsID0gInJhbmRvbSIsIHJhbmRvbS5tZXRob2Q9Im5lcmxvdmUiKQpzdW1tYXJ5KG5lcmxvdmUpCgojQ29tcGFyYXIgbGEgUl4yIGFqdXN0YWRhIGRlIGxvcyAzIG3DqXRvZG9zIHkgZWxlZ2lyIGVsIHF1ZSB0ZW5nYSBlbCBtYXlvci4KcGh0ZXN0KHdhbGh1cywgd2l0aGluKQojU2kgZWwgcC12YWx1ZSBlcyA8MC4wNSwgdXNhbW9zIEVmZWN0b3MgRmlqb3MgKHdpdGhpbikKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gRWplcmNpY2lvIDMuIFBhbmVsIGVuIGVxdWlwb3MgPC9zcGFuPgpgYGB7cn0KIyBPYnRlbmVyIGluZm9ybWFjacOzbiBkZSB2YXJpb3MgcGHDrXNlcwpsZSA8LSB3Yl9kYXRhKGNvdW50cnk9YygiQlIiLCAiSlAiLCAiU0EiKSwgaW5kaWNhdG9yPWMoIlNQLkRZTi5MRTAwLklOIiwgIlNQLkRZTi5JTVJULklOIiksIHN0YXJ0X2RhdGU9MTk1MCwgZW5kX2RhdGU9MjAyNSkKCiNHZW5lcmFyIGNvbmp1bnRvIGRlIGRhdG9zIGRlIHBhbmVsCnBhbmVsXzIgPC0gc2VsZWN0KGxlLCBjb3VudHJ5LCBkYXRlLCBTUC5EWU4uTEUwMC5JTiwgU1AuRFlOLklNUlQuSU4pCnBhbmVsXzIgPC0gc3Vic2V0KHBhbmVsXzIsIGRhdGUgPT0gMTk2MCB8IGRhdGUgPT0gMTk3MCB8IGRhdGUgPT0gMTk4MCB8IGRhdGUgPT0gMTk5MCB8IGRhdGUgPT0gMjAwMCB8IGRhdGUgPT0gMjAxMCB8IGRhdGUgPT0gMjAyMCkKcGFuZWxfMiA8LSBwZGF0YS5mcmFtZShwYW5lbF8yLCBpbmRleD1jKCJjb3VudHJ5IiwgImRhdGUiKSkKCiMgUHJ1ZWJhIGRlIGhldGVyb2dlbmVpZGFkCnBsb3RtZWFucyhTUC5EWU4uTEUwMC5JTiB+IGNvdW50cnksIG1haW49IlBydWViYSBkZSBIZXRlcm9nZW5laWRhZCBlbnRyZSBwYcOtc2VzIHBhcmEgRXNwZXJhbnphIGRlIFZpZGEiLCBkYXRhPXBhbmVsXzIpCgpwbG90bWVhbnMoU1AuRFlOLklNUlQuSU4gfiBjb3VudHJ5LCBtYWluPSJQcnVlYmEgZGUgSGV0ZXJvZ2VuZWlkYWQgZW50cmUgcGHDrXNlcyBwYXJhIE1vcnRhbGlkYWQgSW5mYW50aWwiLCBkYXRhPXBhbmVsXzIpCmBgYAoKYGBge3J9CiMgTW9kZWxvIDEuIFJlZ3Jlc2nDs24gYWdydXBhZGEgKHBvb2xlZCkKIyBBc3VtZSBxdWUgbm8gaGF5IGhldGVyb2dlbmVpZGFkIG9ic2VydmFkYSAoc2kgbGEgbMOtbmVhIGVzdGEgZGVyZWNoYSB5IG5vIHF1ZWJyYWRhKQpwb29sZWQgPC0gcGxtKFNQLkRZTi5MRTAwLklOIH4gU1AuRFlOLklNUlQuSU4gLCBkYXRhID0gcGFuZWxfMiwgbW9kZWwgPSAicG9vbGluZyIpCnN1bW1hcnkocG9vbGVkKQoKIyBNb2RlbG8gMi4gRWZlY3RvcyBGaWpvcwojIEN1YW5kbyBsYXMgZGlmZXJlbmNpYXMgbm8gb2JzZXJ2YWRhcyBzb24gY29uc3RhbnRlcyBlbiBlbCB0aWVtcG8Kd2l0aGluIDwtIHBsbShTUC5EWU4uTEUwMC5JTiB+IFNQLkRZTi5JTVJULklOICwgZGF0YSA9IHBhbmVsXzIsIG1vZGVsID0gIndpdGhpbiIpCnN1bW1hcnkod2l0aGluKQoKIyBQcnVlYmEgCnBGdGVzdCh3aXRoaW4sIHBvb2xlZCkKIyBTaSBlbCBwLXZhbHVlIDwgMC4wNSBzZSBwcmVmaWVyZSBlbCBtb2RlbG8gZGUgZWZlY3RvcyBmaWpvcwojIFNpIGVsIHAtdmFsdWUgPiAwLjA1IHNlIHByZWZpZXJlIGVsIG1vZGVsbyBkZSBlZmVjdG9zIGFsZWF0b3Jpb3MKCiMgTW9kZWxvIDMuIEVmZWN0b3MgYWxlYXRvcmlvcyAKI0N1YW5kbyBsYXMgZGlmZXJlbmNpYXNubyBvYnNlcnZhZGFzIHNvbiBhbGVhdG9yaWFzCgojIE3DqXRvZG8gV2FsaHVzCndhbGh1cyA8LSBwbG0oU1AuRFlOLkxFMDAuSU4gfiBTUC5EWU4uSU1SVC5JTiAsIGRhdGEgPSBwYW5lbF8yLCBtb2RlbCA9ICJyYW5kb20iLCByYW5kb20ubWV0aG9kPSJ3YWxodXMiKQpzdW1tYXJ5KHdhbGh1cykKCiMgTcOpdG9kbyBhbWVtaXlhCmFtZW1peWEgPC0gcGxtKFNQLkRZTi5MRTAwLklOIH4gU1AuRFlOLklNUlQuSU4gLCBkYXRhID0gcGFuZWxfMiwgbW9kZWwgPSAicmFuZG9tIiwgcmFuZG9tLm1ldGhvZD0iYW1lbWl5YSIpCnN1bW1hcnkoYW1lbWl5YSkKCiMgTcOpdG9kbyBuZXJsb3ZlCm5lcmxvdmUgPC0gcGxtKFNQLkRZTi5MRTAwLklOIH4gU1AuRFlOLklNUlQuSU4gLCBkYXRhID0gcGFuZWxfMiwgbW9kZWwgPSAicmFuZG9tIiwgcmFuZG9tLm1ldGhvZD0ibmVybG92ZSIpCnN1bW1hcnkobmVybG92ZSkKCiNDb21wYXJhciBsYSBSXjIgYWp1c3RhZGEgZGUgbG9zIDMgbcOpdG9kb3MgeSBlbGVnaXIgZWwgcXVlIHRlbmdhIGVsIG1heW9yLgoKcGh0ZXN0KHdhbGh1cywgd2l0aGluKQojU2kgZWwgcC12YWx1ZSBlcyA8MC4wNSwgdXNhbW9zIEVmZWN0b3MgRmlqb3MgKHdpdGhpbikKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gQWN0aXZpZGFkIDEuIFBhdGVudGVzIDwvc3Bhbj4KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBDb250ZXh0byA8L3NwYW4+CkVsIGVudG9ybm8gZGUgbmVnb2Npb3MgZW4gZWwgcXVlIGxhcyBvcmdhbml6YWNpb25lcyBzZSBkZXNhcnJvbGxhbiBlcyBjYWRhIHZleiBtw6FzIGRpbsOhbWljbyBwb3IgbG8gcXVlIGxhcyBlbXByZXNhcyBlbmZyZW50YW4gY29uc3RhbnRlbWVudGUgZWwgcmV0byBkZSBtYW50ZW5lcnNlIGFsIGTDrWEgeSBzdXBlcmFyIGxvcyBudWV2b3MgcmV0b3MgcXVlIGVsIGFtYmllbnRlIHByZXNlbnRhLiBMYSBpbm5vdmFjacOzbiBlcyB1bmEgZGUgbGFzIG1lam9yZXMgZm9ybWFzIHF1ZSBsYXMgZW1wcmVzYXMgdGllbmVuIHBhcmEgY29uc2VndWlybG8uIERlIGFjdWVyZG8gY29uIGVsIGFydMOtY3VsbyAiSW5ub3ZhdGlvbiBpbiBidXNpbmVzczogV2hhdCBpdCBpcyBhbmQgd2h5IGlzIHNvIGltcG9ydGFudCIgwrRwdWJsaWNhZG8gZW4gZWwgSGFydmFyZCBCdXNpbmVzcyBSZXZpZXcgbGEgaW5ub3ZhY2nDs24gcHJlc2VudGEgdHJlcyBncmFuZGVzIHZlbnRhamFzIHBhcmEgbGFzIGVtcHJlc2FzOiBsZXMgcGVybWl0ZSBhZGFwdGFyc2UsIHByb211ZXZlIGVsIGNyZWNpbWllbnRvIHkgYWRlbcOhcyBsZXMgYXl1ZGEgYSBkaWZlcmVuY2lhcnNlIGRlIHN1IGNvbXBldGVuY2lhIGdlbmVyYW5kbyB2ZW50YWphcyBjb21wZXRpdGl2YXMuIAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBJbXBvcnRhciB5IGxpbXBpYXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CnBhdGVudGVzIDwtIHJlYWRfZXhjZWwoIi9Vc2Vycy9odWdvZW5yaXF1ZS9EZXNrdG9wL1VuaXZlcnNpZGFkLzh2b1wgU2VtZXN0cmUvR2VuZXJhY2lvzIFuXCBkZVwgRXNjZW5hcmlvcy9NMS9BY3RpdmlkYWRcIDEuXCBBbmHMgWxpc2lzXCB5XCBhcGxpY2FjaW/MgW5cIGRlXCBkYXRvc1wgcGFuZWwvUEFURU5UXCAzLnhscyIpCnN1bW1hcnkocGF0ZW50ZXMpCnN0cihwYXRlbnRlcykKc3VtKGlzLm5hKHBhdGVudGVzKSkgI05BJ3MgZW4gbGEgYmFzZSBkZSBkYXRvcwpzYXBwbHkocGF0ZW50ZXMsIGZ1bmN0aW9uKHgpIHN1bSAoaXMubmEoeCkpKSAjTkEncyBwb3IgdmFyaWFibGUKcGF0ZW50ZXMkZW1wbG95W2lzLm5hKHBhdGVudGVzJGVtcGxveSldIDwtIG1lYW4ocGF0ZW50ZXMkZW1wbG95LCBuYS5ybT1UUlVFKQpwYXRlbnRlcyRyZXR1cm5baXMubmEocGF0ZW50ZXMkcmV0dXJuKV0gPC0gbWVhbihwYXRlbnRlcyRyZXR1cm4sIG5hLnJtPVRSVUUpCnBhdGVudGVzJHN0Y2twcltpcy5uYShwYXRlbnRlcyRzdGNrcHIpXSA8LSBtZWFuKHBhdGVudGVzJHN0Y2twciwgbmEucm09VFJVRSkKcGF0ZW50ZXMkcm5kc3Rja1tpcy5uYShwYXRlbnRlcyRybmRzdGNrKV0gPC0gbWVhbihwYXRlbnRlcyRybmRzdGNrLCBuYS5ybT1UUlVFKQpwYXRlbnRlcyRzYWxlc1tpcy5uYShwYXRlbnRlcyRzYWxlcyldIDwtIG1lYW4ocGF0ZW50ZXMkc2FsZXMsIG5hLnJtPVRSVUUpCnN1bW1hcnkocGF0ZW50ZXMpCnN1bShpcy5uYShwYXRlbnRlcykpICNOQSdzIGVuIGxhIGJhc2UgZCBkYXRvcwpib3hwbG90KHBhdGVudGVzJGN1c2lwLCBob3Jpem9udGFsID0gVFJVRSkKYm94cGxvdChwYXRlbnRlcyRtZXJnZXIsIGhvcml6b250YWwgPSBUUlVFKQpib3hwbG90KHBhdGVudGVzJGVtcGxveSwgaG9yaXpvbnRhbCA9IFRSVUUpCmJveHBsb3QocGF0ZW50ZXMkcmV0dXJuLCBob3Jpem9udGFsID0gVFJVRSkKYm94cGxvdChwYXRlbnRlcyRwYXRlbnRzLCBob3Jpem9udGFsID0gVFJVRSkKYm94cGxvdChwYXRlbnRlcyRwYXRlbnRzZywgaG9yaXpvbnRhbCA9IFRSVUUpCmJveHBsb3QocGF0ZW50ZXMkc3Rja3ByLCBob3Jpem9udGFsID0gVFJVRSkKYm94cGxvdChwYXRlbnRlcyRybmQsIGhvcml6b250YWwgPSBUUlVFKQpib3hwbG90KHBhdGVudGVzJHJuZGVmbHQsIGhvcml6b250YWwgPSBUUlVFKQpib3hwbG90KHBhdGVudGVzJHJuZHN0Y2ssIGhvcml6b250YWwgPSBUUlVFKQpib3hwbG90KHBhdGVudGVzJHNhbGVzLCBob3Jpem9udGFsID0gVFJVRSkKYm94cGxvdChwYXRlbnRlcyRzaWMsIGhvcml6b250YWwgPSBUUlVFKQpib3hwbG90KHBhdGVudGVzJHllYXIsIGhvcml6b250YWwgPSBUUlVFKQpwYXRlbnRlcyR5ZWFyIDwtIHBhdGVudGVzJHllYXIgLSA0MApzdW1tYXJ5KHBhdGVudGVzKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gUGFzbyAxLiBHZW5lcmFyIGNvbmp1bnRvIGRlIERhdG9zIGRlIFBhbmVsPC9zcGFuPgpgYGB7cn0KIyBHZW5lcmFyIGNvbmp1bnRvIGRlIGRhdG9zIGRlIHBhbmVsCnBhbmVsX3BhdGVudGVzIDwtIHBkYXRhLmZyYW1lKHBhdGVudGVzLCBpbmRleCA9IGMoImN1c2lwIiwgInllYXIiKSkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6b3JhbmdlOyI+IFBhc28gMi4gUHJ1ZWJhIGRlIGhldGVyb2dlbmVpZGFkPC9zcGFuPgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpwbG90bWVhbnMocGF0ZW50cyB+IGN1c2lwLCBtYWluPSJQcnVlYmEgZGUgSGV0ZXJvZ2VuZWlkYWQgZW50cmUgZW1wcmVzYXMgcGFyYSBzdXMgcGF0ZW50ZXMiLCBkYXRhPXBhbmVsX3BhdGVudGVzKQoKI0NvbW8gbGEgbMOtbmVhIHNhbGUgcXVlYnJhZGEsIHN1YmUgeSBiYWphLCBoYXkgbXVjaGEgaGV0ZXJvZ2VuZWlkYWQsIHBvciBsbyBxdWUgaGF5IHF1ZSBhanVzdGFyLgpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gUGFzbyAzLiBQcnVlYmEgZGUgRWZlY3RvcyBmaWpvcyB5IEFsZWF0b3Jpb3MgPC9zcGFuPgpgYGB7cn0KIyBNb2RlbG8gMS4gUmVncmVzacOzbiBhZ3J1cGFkYSAocG9vbGVkKQojIEFzdW1lIHF1ZSBubyBoYXkgaGV0ZXJvZ2VuZWlkYWQgb2JzZXJ2YWRhIChzaSBsYSBsw61uZWEgZXN0YSBkZXJlY2hhIHkgbm8gcXVlYnJhZGEpCnBvb2xlZF9wYXRlbnRlcyA8LSBwbG0ocGF0ZW50cyB+IG1lcmdlciArIGVtcGxveSArIHJldHVybiArIHN0Y2twciArIHJuZCArIHNhbGVzICsgc2ljLCBkYXRhID0gcGFuZWxfcGF0ZW50ZXMsIG1vZGVsID0gInBvb2xpbmciKQpzdW1tYXJ5KHBvb2xlZF9wYXRlbnRlcykKCiMgTW9kZWxvIDIuIEVmZWN0b3MgRmlqb3MKIyBDdWFuZG8gbGFzIGRpZmVyZW5jaWFzIG5vIG9ic2VydmFkYXMgc29uIGNvbnN0YW50ZXMgZW4gZWwgdGllbXBvCndpdGhpbl9wYXRlbnRlcyA8LSBwbG0ocGF0ZW50cyB+IG1lcmdlciArIGVtcGxveSArIHJldHVybiArIHN0Y2twciArIHJuZCArIHNhbGVzICsgc2ljLCBkYXRhID0gcGFuZWxfcGF0ZW50ZXMsIG1vZGVsID0gIndpdGhpbiIpCnN1bW1hcnkod2l0aGluX3BhdGVudGVzKQoKIyBQcnVlYmEgCnBGdGVzdCh3aXRoaW5fcGF0ZW50ZXMsIHBvb2xlZF9wYXRlbnRlcykKIyBTaSBlbCBwLXZhbHVlIDwgMC4wNSBzZSBwcmVmaWVyZSBlbCBtb2RlbG8gZGUgZWZlY3RvcyBmaWpvcwojIFNpIGVsIHAtdmFsdWUgPiAwLjA1IHNlIHByZWZpZXJlIGVsIG1vZGVsbyBkZSBlZmVjdG9zIGFsZWF0b3Jpb3MKI0NvbW8gZWwgcC12YWx1ZSA8IDAuMDUgc2UgYXZhbnphIGEgbG9zIHNpZ3VpZW50ZXMgbW9kZWxvcwoKIyBNb2RlbG8gMy4gRWZlY3RvcyBhbGVhdG9yaW9zIAojQ3VhbmRvIGxhcyBkaWZlcmVuY2lhc25vIG9ic2VydmFkYXMgc29uIGFsZWF0b3JpYXMKCiMgTcOpdG9kbyBXYWxodXMKd2FsaHVzX3BhdGVudGVzIDwtIHBsbShwYXRlbnRzIH4gbWVyZ2VyICsgZW1wbG95ICsgcmV0dXJuICsgc3Rja3ByICsgcm5kICsgc2FsZXMgKyBzaWMsIGRhdGEgPSBwYW5lbF9wYXRlbnRlcywgbW9kZWwgPSAicmFuZG9tIiwgcmFuZG9tLm1ldGhvZD0id2FsaHVzIikKc3VtbWFyeSh3YWxodXNfcGF0ZW50ZXMpCgojIE3DqXRvZG8gYW1lbWl5YQphbWVtaXlhX3BhdGVudGVzIDwtIHBsbShwYXRlbnRzIH4gbWVyZ2VyICsgZW1wbG95ICsgcmV0dXJuICsgc3Rja3ByICsgcm5kICsgc2FsZXMgKyBzaWMsIGRhdGEgPSBwYW5lbF9wYXRlbnRlcywgbW9kZWwgPSAicmFuZG9tIiwgcmFuZG9tLm1ldGhvZD0iYW1lbWl5YSIpCnN1bW1hcnkoYW1lbWl5YV9wYXRlbnRlcykKCiMgTcOpdG9kbyBuZXJsb3ZlCm5lcmxvdmVfcGF0ZW50ZXMgPC0gcGxtKHBhdGVudHMgfiBtZXJnZXIgKyBlbXBsb3kgKyByZXR1cm4gKyBzdGNrcHIgKyBybmQgKyBzYWxlcyArIHNpYywgZGF0YSA9IHBhbmVsX3BhdGVudGVzLCBtb2RlbCA9ICJyYW5kb20iLCByYW5kb20ubWV0aG9kPSJuZXJsb3ZlIikKc3VtbWFyeShuZXJsb3ZlX3BhdGVudGVzKQoKI0NvbXBhcmFyIGxhIFJeMiBhanVzdGFkYSBkZSBsb3MgMyBtw6l0b2RvcyB5IGVsZWdpciBlbCBxdWUgdGVuZ2EgZWwgbWF5b3IuCgpwaHRlc3Qod2FsaHVzX3BhdGVudGVzLCB3aXRoaW5fcGF0ZW50ZXMpCiNTaSBlbCBwLXZhbHVlIGVzIDwwLjA1LCB1c2Ftb3MgRWZlY3RvcyBGaWpvcyAod2l0aGluKQoKIyBQb3IgbG8gdGFudG8gbm9zIHF1ZWRhbW9zIGNvbiBlbCBtb2RlbG8gZGUgZWZlY3RvcyBmaWpvcyAod2l0aGluKQpgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm9yYW5nZTsiPiBQYXNvIDQuIFBydWViYXMgZGUgSGV0ZXJvY2VkYXN0aWNpZGFkIHkgQXV0b2NvcnJlbGFjacOzbiBzZXJpYWwgPC9zcGFuPgpgYGB7cn0KI1BydWViYSBkZSBoZXRlcm9jZWRhc3RpY2lkYWQKYnB0ZXN0KHdpdGhpbl9wYXRlbnRlcykKI1NpIGVsIHAtdmFsdWUgZXMgPCAwLjA1IGhheSBoZXRlcm9jZWRhc3RpY2lkYWQgZW4gbG9zIHJlc2lkdW9zIChwcm9ibGVtYSBkZXRlY3RhZG8pCnB3YXJ0ZXN0KHdpdGhpbl9wYXRlbnRlcykKI1NpIGVsIHAtdmFsdWUgPCAwLjA1LCBoYXkgYXV0b2NvcnJlbGFjacOzbiBzZXJpYWwgZW4gZXJyb3JlcyAocHJvYmxlbWEgZGV0ZWN0YWRvKQoKIyBNb2RlbG8gZGUgQ29ycmVjacOzbiBjb24gRXJyb3JlcyBFc3TDoW5kYXIgUm9idXN0b3MgI1NvbG8gc2UgaGFjZSBzaSBlbiB1bm8gZGUgbG9zIHRlc3QgZGUgaGV0ZXJvY2VkYXN0aWNpZGFkIGhheSBwcm9ibGVtYSBkZXRlY3RhZG8KY29lZmljaWVudGVzX2NvcnJlZ2lkb3MgPC0gY29lZnRlc3Qod2l0aGluX3BhdGVudGVzLCB2Y292PXZjb3ZIQyh3aXRoaW5fcGF0ZW50ZXMsIHR5cGUgPSAiSEMwIikpCnNvbG9fY29lZmljaWVudGVzIDwtIGNvZWZpY2llbnRlc19jb3JyZWdpZG9zWywxXQpwcmludChzb2xvX2NvZWZpY2llbnRlcykKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpvcmFuZ2U7Ij4gUGFzbyA1LiBHZW5lcmFyIFByb27Ds3N0aWNvcyB5IEV2YWx1YXIgTW9kZWxvIDwvc3Bhbj4KYGBge3J9CmRhdG9zX2RlX3BydWViYSA8LSBkYXRhLmZyYW1lKG1lcmdlciA9IDAsIGVtcGxveSA9IDEwLCAgcmV0dXJuID0gNiwgIHN0Y2twciA9IDQ4LCBybmQgPSAzLCBzYWxlcyA9IDM0NCkKcHJlZGljY2lvbiA8LSBzdW0oc29sb19jb2VmaWNpZW50ZXMqZGF0b3NfZGVfcHJ1ZWJhKQpwcmVkaWNjaW9uCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6b3JhbmdlOyI+IFBhc28gNi4gQ29uY2x1c2lvbmVzIDwvc3Bhbj4KRW4gY29uY2x1c2nDs24gZXN0ZSBlamVyY2ljaW8gbm9zIHBlcm1pdGUgZ2VuZXJhciBwcm9uw7NzdGljb3MgZW4gYmFzZXMgZGUgZGF0b3MgY29uIHBhbmVsLCB0b21hbmRvIGVuIGN1ZW50YSBsb3MgdHJhdGFtaWVudG9zIHBhcmEgZGlzdGludG9zIGVmZWN0b3MgZW4gbG9zIGRhdG9zIHkgc3VzIGVycm9yZXMuCgoK