Load Packages
Study 2
Confirmatory Factor Analysis
Three-Factor Model (Efficacy Scales)
ThreeFactor_model <- '
# Factor 1: Bias-Awareness Efficacy
Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3
# Factor 2: Self-Regulation Efficacy
Regulation =~ DSE_Regulate_1 + DSE_Regulate_2 + DSE_Regulate_3 +
DSE_Regulate_4 + DSE_Regulate_5
# Factor 3: Intergroup-Management Efficacy
Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
DSE_Management_4 + DSE_Management_5
'
ThreeFactor_fit <- cfa(ThreeFactor_model, Study_2_CFA, estimator = "ML")
# plot CFA results
semPaths(ThreeFactor_fit, "std", weighted = FALSE, nCharNodes = 7,
shapeMan = "rectangle", sizeMan = 8, sizeMan2 = 5)

## Fit Indices:
##
## chisq df pvalue cfi srmr
## 145.078 62.000 0.000 0.953 0.044
## Standardized Factor Loadings:
##
## Awrnss Regltn Mngmnt
## DSE_Aware_1 0.816 0.000 0.000
## DSE_Aware_2 0.762 0.000 0.000
## DSE_Aware_3 0.748 0.000 0.000
## DSE_Regulate_1 0.000 0.840 0.000
## DSE_Regulate_2 0.000 0.777 0.000
## DSE_Regulate_3 0.000 0.743 0.000
## DSE_Regulate_4 0.000 0.824 0.000
## DSE_Regulate_5 0.000 0.762 0.000
## DSE_Management_1 0.000 0.000 0.840
## DSE_Management_2 0.000 0.000 0.816
## DSE_Management_3 0.000 0.000 0.788
## DSE_Management_4 0.000 0.000 0.787
## DSE_Management_5 0.000 0.000 0.766
##
##
## Explained Variance (R²):
##
## DSE_Aware_1 DSE_Aware_2 DSE_Aware_3 DSE_Regulate_1
## 0.666 0.580 0.559 0.706
## DSE_Regulate_2 DSE_Regulate_3 DSE_Regulate_4 DSE_Regulate_5
## 0.604 0.553 0.680 0.581
## DSE_Management_1 DSE_Management_2 DSE_Management_3 DSE_Management_4
## 0.706 0.666 0.621 0.620
## DSE_Management_5
## 0.586
One-Factor Model (Efficacy Scales)
OneFactor_model <- '
# One Factor: Bias-Awareness, Self-Regulation, & Intergroup-Management Efficacy
OneFactor =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3 +
DSE_Regulate_1 + DSE_Regulate_2 + DSE_Regulate_3 +
DSE_Regulate_4 + DSE_Regulate_5 +
DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
DSE_Management_4 + DSE_Management_5
'
OneFactor_fit <- cfa(OneFactor_model, Study_2_CFA, estimator = "ML")
## Fit Indices:
##
## chisq df pvalue cfi srmr
## 430.646 65.000 0.000 0.794 0.089
## Standardized Factor Loadings:
##
## OnFctr
## DSE_Aware_1 0.558
## DSE_Aware_2 0.479
## DSE_Aware_3 0.536
## DSE_Regulate_1 0.761
## DSE_Regulate_2 0.706
## DSE_Regulate_3 0.714
## DSE_Regulate_4 0.792
## DSE_Regulate_5 0.686
## DSE_Management_1 0.808
## DSE_Management_2 0.779
## DSE_Management_3 0.710
## DSE_Management_4 0.738
## DSE_Management_5 0.703
##
##
## Explained Variance (R²):
##
## DSE_Aware_1 DSE_Aware_2 DSE_Aware_3 DSE_Regulate_1
## 0.311 0.229 0.288 0.579
## DSE_Regulate_2 DSE_Regulate_3 DSE_Regulate_4 DSE_Regulate_5
## 0.498 0.510 0.627 0.471
## DSE_Management_1 DSE_Management_2 DSE_Management_3 DSE_Management_4
## 0.653 0.607 0.504 0.545
## DSE_Management_5
## 0.494
##
##
## Three-Factor vs One-Factor Model:
##
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
## ThreeFactor_fit 62 6405.9 6505.0 145.08
## OneFactor_fit 65 6685.5 6774.3 430.65 285.57 0.64701 3 < 2.2e-16
##
## ThreeFactor_fit
## OneFactor_fit ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Six-Factor Measurement Model (All Six Multi-Item Scales)
SixFactor_model <- '
# Factor 1: Bias-Awareness Efficacy
Awareness =~ DSE_Aware_1 + DSE_Aware_2 + DSE_Aware_3
# Factor 2: Self-Regulation Efficacy
Regulation =~ DSE_Regulate_1 + DSE_Regulate_2 + DSE_Regulate_3 +
DSE_Regulate_4 + DSE_Regulate_5
# Factor 3: Intergroup-Management Efficacy
Management =~ DSE_Management_1 + DSE_Management_2 + DSE_Management_3 +
DSE_Management_4 + DSE_Management_5
# Factor 4: Inclusive Leadership
InclusiveLeadership =~ Inclusive_Leader_1 + Inclusive_Leader_2 +
Inclusive_Leader_3 + Inclusive_Leader_4
# Factor 5: Pro-Diversity Attitudes
ProDiversity =~ ProDiversity_1 + ProDiversity_2 +
ProDiversity_3 + ProDiversity_4
# Factor 6: Organizational Allyship
OrgAlly =~ Org_Allyship_1 + Org_Allyship_2 + Org_Allyship_3 +
Org_Allyship_4 + Org_Allyship_5 + Org_Allyship_6 +
Org_Allyship_7 + Org_Allyship_8 + Org_Allyship_9
'
SixFactor_fit <- cfa(SixFactor_model, Study_2_CFA, estimator = "ML")
## Fit Indices:
##
## chisq df pvalue cfi srmr
## 738.576 390.000 0.000 0.933 0.047
## Standardized Factor Loadings:
##
## Awrnss Regltn Mngmnt InclsL PrDvrs OrgAll
## DSE_Aware_1 0.820 0.000 0.000 0.000 0.000 0.000
## DSE_Aware_2 0.769 0.000 0.000 0.000 0.000 0.000
## DSE_Aware_3 0.749 0.000 0.000 0.000 0.000 0.000
## DSE_Regulate_1 0.000 0.842 0.000 0.000 0.000 0.000
## DSE_Regulate_2 0.000 0.776 0.000 0.000 0.000 0.000
## DSE_Regulate_3 0.000 0.750 0.000 0.000 0.000 0.000
## DSE_Regulate_4 0.000 0.821 0.000 0.000 0.000 0.000
## DSE_Regulate_5 0.000 0.775 0.000 0.000 0.000 0.000
## DSE_Management_1 0.000 0.000 0.834 0.000 0.000 0.000
## DSE_Management_2 0.000 0.000 0.817 0.000 0.000 0.000
## DSE_Management_3 0.000 0.000 0.793 0.000 0.000 0.000
## DSE_Management_4 0.000 0.000 0.797 0.000 0.000 0.000
## DSE_Management_5 0.000 0.000 0.771 0.000 0.000 0.000
## Inclusive_Leader_1 0.000 0.000 0.000 0.818 0.000 0.000
## Inclusive_Leader_2 0.000 0.000 0.000 0.872 0.000 0.000
## Inclusive_Leader_3 0.000 0.000 0.000 0.852 0.000 0.000
## Inclusive_Leader_4 0.000 0.000 0.000 0.901 0.000 0.000
## ProDiversity_1 0.000 0.000 0.000 0.000 0.899 0.000
## ProDiversity_2 0.000 0.000 0.000 0.000 0.890 0.000
## ProDiversity_3 0.000 0.000 0.000 0.000 0.833 0.000
## ProDiversity_4 0.000 0.000 0.000 0.000 0.830 0.000
## Org_Allyship_1 0.000 0.000 0.000 0.000 0.000 0.682
## Org_Allyship_2 0.000 0.000 0.000 0.000 0.000 0.841
## Org_Allyship_3 0.000 0.000 0.000 0.000 0.000 0.794
## Org_Allyship_4 0.000 0.000 0.000 0.000 0.000 0.814
## Org_Allyship_5 0.000 0.000 0.000 0.000 0.000 0.822
## Org_Allyship_6 0.000 0.000 0.000 0.000 0.000 0.871
## Org_Allyship_7 0.000 0.000 0.000 0.000 0.000 0.830
## Org_Allyship_8 0.000 0.000 0.000 0.000 0.000 0.870
## Org_Allyship_9 0.000 0.000 0.000 0.000 0.000 0.873
##
##
## Explained Variance (R²):
##
## DSE_Aware_1 DSE_Aware_2 DSE_Aware_3 DSE_Regulate_1
## 0.672 0.592 0.561 0.708
## DSE_Regulate_2 DSE_Regulate_3 DSE_Regulate_4 DSE_Regulate_5
## 0.602 0.563 0.675 0.601
## DSE_Management_1 DSE_Management_2 DSE_Management_3 DSE_Management_4
## 0.696 0.667 0.629 0.635
## DSE_Management_5 Inclusive_Leader_1 Inclusive_Leader_2 Inclusive_Leader_3
## 0.594 0.670 0.761 0.726
## Inclusive_Leader_4 ProDiversity_1 ProDiversity_2 ProDiversity_3
## 0.811 0.809 0.792 0.695
## ProDiversity_4 Org_Allyship_1 Org_Allyship_2 Org_Allyship_3
## 0.688 0.465 0.707 0.630
## Org_Allyship_4 Org_Allyship_5 Org_Allyship_6 Org_Allyship_7
## 0.663 0.675 0.759 0.689
## Org_Allyship_8 Org_Allyship_9
## 0.757 0.762
Reliability Estimates (Cronbach Alpha) - Study 1 Measures
# Reliability estimates for self-efficacy scales
awareness_alpha <- alpha(Study_2_CFA[, c("DSE_Aware_1", "DSE_Aware_2", "DSE_Aware_3")])
regulation_alpha <- alpha(Study_2_CFA[, c("DSE_Regulate_1", "DSE_Regulate_2", "DSE_Regulate_3", "DSE_Regulate_4", "DSE_Regulate_5")])
management_alpha <- alpha(Study_2_CFA[, c("DSE_Management_1", "DSE_Management_2", "DSE_Management_3", "DSE_Management_4", "DSE_Management_5")])
cat("Alpha for bias-awareness efficacy:", awareness_alpha$total$raw_alpha, "\n",
"Alpha for self-regulation efficacy:", regulation_alpha$total$raw_alpha, "\n",
"Alpha for intergroup-management efficacy:", management_alpha$total$raw_alpha, "\n")
## Alpha for bias-awareness efficacy: 0.8230046
## Alpha for self-regulation efficacy: 0.8899173
## Alpha for intergroup-management efficacy: 0.9015689
org_ally_alpha <- alpha(Study_2_CFA[, c("Org_Allyship_1", "Org_Allyship_2", "Org_Allyship_3", "Org_Allyship_4", "Org_Allyship_5", "Org_Allyship_6", "Org_Allyship_7", "Org_Allyship_8", "Org_Allyship_9")])
cat("Alpha for organizational ally work:", org_ally_alpha$total$raw_alpha, "\n")
## Alpha for organizational ally work: 0.9499809
# Reliability estimates for leader diversity advocacy and pro-diversity
incl_leader_alpha <- alpha(Study_2_CFA[, c("Inclusive_Leader_1", "Inclusive_Leader_2", "Inclusive_Leader_3", "Inclusive_Leader_4")])
prodiversity_alpha <- alpha(Study_2_CFA[, c("ProDiversity_1", "ProDiversity_2", "ProDiversity_3", "ProDiversity_4")])
cat("Alpha for leader diversity advocacy:", incl_leader_alpha$total$raw_alpha, "\n",
"Alpha for pro-diversity attitudes:", prodiversity_alpha$total$raw_alpha, "\n")
## Alpha for leader diversity advocacy: 0.917747
## Alpha for pro-diversity attitudes: 0.9107846
Table 1: Descriptives & Correlations
##
##
## Means, standard deviations, and correlations with confidence intervals
##
##
## Variable M SD 1 2 3
## 1. Male 0.50 0.50
##
## 2. White 0.59 0.49 -.00
## [-.13, .13]
##
## 3. Ideology 3.79 1.59 .01 .22**
## [-.12, .14] [.09, .34]
##
## 4. LdrAdvocacy 3.75 1.09 .03 -.14* -.24**
## [-.10, .15] [-.26, -.01] [-.36, -.11]
##
## 5. PDB 5.63 1.19 -.03 -.10 -.23**
## [-.16, .10] [-.23, .03] [-.35, -.10]
##
## 6. AWARE 3.83 0.93 .04 -.20** -.23**
## [-.09, .17] [-.32, -.07] [-.34, -.10]
##
## 7. REGULATE 4.12 0.72 .09 -.09 -.12
## [-.04, .22] [-.21, .04] [-.25, .00]
##
## 8. MANAGE 3.85 0.85 .05 -.16* -.24**
## [-.08, .17] [-.29, -.04] [-.36, -.12]
##
## 9. OrgAlly 3.11 1.05 .02 -.04 -.25**
## [-.10, .15] [-.17, .09] [-.37, -.13]
##
## 10. Diversity_Voice 4.82 1.42 .05 -.05 -.15*
## [-.08, .18] [-.18, .08] [-.27, -.02]
##
## 11. Interracial_Contact 4.16 0.76 .00 .02 -.01
## [-.12, .13] [-.11, .14] [-.14, .12]
##
## 12. Familiarity 3.18 0.86 .17* -.01 .05
## [.04, .29] [-.14, .12] [-.08, .18]
##
## 4 5 6 7 8 9
##
##
##
##
##
##
##
##
##
##
##
## .47**
## [.36, .56]
##
## .29** .36**
## [.17, .40] [.24, .46]
##
## .38** .46** .52**
## [.26, .48] [.35, .56] [.42, .61]
##
## .35** .44** .51** .69**
## [.23, .46] [.33, .54] [.41, .60] [.62, .75]
##
## .50** .27** .22** .19** .40**
## [.40, .59] [.15, .39] [.10, .34] [.07, .31] [.29, .51]
##
## .60** .31** .31** .33** .46** .76**
## [.51, .68] [.19, .43] [.19, .42] [.21, .44] [.35, .56] [.70, .81]
##
## .25** .50** .27** .56** .45** .08
## [.13, .37] [.40, .59] [.15, .38] [.46, .64] [.34, .54] [-.05, .21]
##
## .15* .08 .22** .24** .25** .13*
## [.02, .27] [-.05, .21] [.09, .34] [.11, .35] [.13, .37] [.00, .25]
##
## 10 11
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## .18**
## [.06, .30]
##
## .24** .09
## [.12, .36] [-.04, .22]
##
##
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations
## that could have caused the sample correlation (Cumming, 2014).
## * indicates p < .05. ** indicates p < .01.
##
Grand-Mean Center Predictor Variables
Table 2 (Step 1, A-Path): Leader Diversity Advocacy and Efficacy
Beliefs
###effects of leader diversity advocacy on employee efficacy beliefs
model.AWARE <- lm(AWARE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
model.REGULATE <- lm(REGULATE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
model.MANAGE <- lm(MANAGE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
tab_model(model.AWARE, model.REGULATE, model.MANAGE,
show.p = TRUE,
show.se = TRUE,
show.stat = TRUE,
digits = 3,
title = "Leader Diversity Advocacy and Efficacy Beliefs")
Leader Diversity Advocacy and Efficacy Beliefs
|
|
AWARE
|
REGULATE
|
MANAGE
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
3.833
|
0.056
|
3.721 – 3.944
|
67.946
|
<0.001
|
4.118
|
0.041
|
4.036 – 4.199
|
99.758
|
<0.001
|
3.852
|
0.049
|
3.755 – 3.948
|
78.424
|
<0.001
|
|
PDB c
|
0.220
|
0.054
|
0.114 – 0.326
|
4.096
|
<0.001
|
0.221
|
0.039
|
0.143 – 0.298
|
5.613
|
<0.001
|
0.250
|
0.047
|
0.158 – 0.343
|
5.345
|
<0.001
|
|
LdrAdvocacy c
|
0.134
|
0.058
|
0.019 – 0.249
|
2.292
|
0.023
|
0.138
|
0.043
|
0.054 – 0.222
|
3.226
|
0.001
|
0.141
|
0.051
|
0.041 – 0.241
|
2.772
|
0.006
|
|
Observations
|
234
|
234
|
234
|
|
R2 / R2 adjusted
|
0.146 / 0.139
|
0.246 / 0.239
|
0.217 / 0.211
|
Table 2 (B-Path): Efficacy Beliefs and Ally Work
##effects of efficacy beliefs on organizational ally work
model.ALLY_O <- lm(OrgAlly ~ Ideology_c + PDB_c + LdrAdvocacy_c + AWARE + MANAGE, Study2_vars)
tab_model(model.ALLY_O,
show.p = TRUE,
show.se = TRUE,
show.stat = TRUE,
digits = 3,
title = "Efficacy Beliefs and Allyship Behavior")
Efficacy Beliefs and Allyship Behavior
|
|
OrgAlly
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
1.963
|
0.336
|
1.301 – 2.626
|
5.840
|
<0.001
|
|
Ideology c
|
-0.070
|
0.038
|
-0.144 – 0.005
|
-1.844
|
0.067
|
|
PDB c
|
-0.050
|
0.058
|
-0.165 – 0.064
|
-0.865
|
0.388
|
|
LdrAdvocacy c
|
0.403
|
0.061
|
0.284 – 0.522
|
6.657
|
<0.001
|
|
AWARE
|
-0.052
|
0.073
|
-0.196 – 0.092
|
-0.716
|
0.475
|
|
MANAGE
|
0.347
|
0.084
|
0.182 – 0.512
|
4.142
|
<0.001
|
|
Observations
|
234
|
|
R2 / R2 adjusted
|
0.325 / 0.311
|
Table 2 (Step 2, A-Path): Moderation Analyses
Leader Diversity Advocacy & Pro-Diversity Attitudes
###moderation
model_AWARE <- lm(AWARE ~ LdrAdvocacy_c*PDB_c, Study2_vars)
model_REGULATE <- lm(REGULATE ~ LdrAdvocacy_c*PDB_c, Study2_vars)
model_MANAGE <- lm(MANAGE ~ LdrAdvocacy_c*PDB_c, Study2_vars)
tab_model(model_AWARE, model_REGULATE, model_MANAGE,
show.p = TRUE,
show.se = TRUE,
show.stat = TRUE,
digits = 3,
title = "Regression Results (Interaction)")
Regression Results (Interaction)
|
|
AWARE
|
REGULATE
|
MANAGE
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
3.783
|
0.062
|
3.662 – 3.904
|
61.384
|
<0.001
|
4.079
|
0.045
|
3.990 – 4.168
|
90.547
|
<0.001
|
3.784
|
0.053
|
3.680 – 3.889
|
71.370
|
<0.001
|
|
LdrAdvocacy c
|
0.176
|
0.062
|
0.054 – 0.298
|
2.837
|
0.005
|
0.171
|
0.045
|
0.081 – 0.260
|
3.766
|
<0.001
|
0.198
|
0.053
|
0.093 – 0.303
|
3.716
|
<0.001
|
|
PDB c
|
0.224
|
0.054
|
0.119 – 0.330
|
4.194
|
<0.001
|
0.224
|
0.039
|
0.147 – 0.301
|
5.730
|
<0.001
|
0.256
|
0.046
|
0.165 – 0.347
|
5.558
|
<0.001
|
|
LdrAdvocacy c × PDB c
|
0.082
|
0.042
|
-0.001 – 0.165
|
1.938
|
0.054
|
0.064
|
0.031
|
0.003 – 0.125
|
2.067
|
0.040
|
0.112
|
0.036
|
0.040 – 0.183
|
3.073
|
0.002
|
|
Observations
|
234
|
234
|
234
|
|
R2 / R2 adjusted
|
0.160 / 0.149
|
0.260 / 0.250
|
0.248 / 0.238
|
# Compare Models: Significant change in R²?
anova(model.AWARE, model_AWARE)
## Analysis of Variance Table
##
## Model 1: AWARE ~ PDB_c + LdrAdvocacy_c
## Model 2: AWARE ~ LdrAdvocacy_c * PDB_c
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 231 171.98
## 2 230 169.22 1 2.764 3.7568 0.05382 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model.REGULATE, model_REGULATE)
## Analysis of Variance Table
##
## Model 1: REGULATE ~ PDB_c + LdrAdvocacy_c
## Model 2: REGULATE ~ LdrAdvocacy_c * PDB_c
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 231 92.088
## 2 230 90.409 1 1.6798 4.2733 0.03983 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model.MANAGE, model_MANAGE)
## Analysis of Variance Table
##
## Model 1: MANAGE ~ PDB_c + LdrAdvocacy_c
## Model 2: MANAGE ~ LdrAdvocacy_c * PDB_c
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 231 130.39
## 2 230 125.25 1 5.1418 9.4422 0.002376 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Simple Slopes Analyses
sim_slopes(model_AWARE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-1.19, 0, 1.19))
## JOHNSON-NEYMAN INTERVAL
##
## When PDB_c is INSIDE the interval [-0.73, 97.91], the slope of
## LdrAdvocacy_c is p < .05.
##
## Note: The range of observed values of PDB_c is [-3.63, 1.37]
##
## SIMPLE SLOPES ANALYSIS
##
## Slope of LdrAdvocacy_c when PDB_c = -1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.08 0.06 1.21 0.23
##
## Slope of LdrAdvocacy_c when PDB_c = 0.00:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.18 0.06 2.84 0.00
##
## Slope of LdrAdvocacy_c when PDB_c = 1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.27 0.09 2.96 0.00
sim_slopes(model_REGULATE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-1.19, 0, 1.19))
## JOHNSON-NEYMAN INTERVAL
##
## When PDB_c is OUTSIDE the interval [-47.13, -1.21], the slope of
## LdrAdvocacy_c is p < .05.
##
## Note: The range of observed values of PDB_c is [-3.63, 1.37]
##
## SIMPLE SLOPES ANALYSIS
##
## Slope of LdrAdvocacy_c when PDB_c = -1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.09 0.05 2.00 0.05
##
## Slope of LdrAdvocacy_c when PDB_c = 0.00:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.17 0.05 3.77 0.00
##
## Slope of LdrAdvocacy_c when PDB_c = 1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.25 0.07 3.65 0.00
sim_slopes(model_MANAGE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-1.19, 0, 1.19))
## JOHNSON-NEYMAN INTERVAL
##
## When PDB_c is OUTSIDE the interval [-4.46, -0.87], the slope of
## LdrAdvocacy_c is p < .05.
##
## Note: The range of observed values of PDB_c is [-3.63, 1.37]
##
## SIMPLE SLOPES ANALYSIS
##
## Slope of LdrAdvocacy_c when PDB_c = -1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.07 0.06 1.18 0.24
##
## Slope of LdrAdvocacy_c when PDB_c = 0.00:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.20 0.05 3.72 0.00
##
## Slope of LdrAdvocacy_c when PDB_c = 1.19:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.33 0.08 4.16 0.00

Supplementary Analyses #2: Diversity Voice
###effects of leader diversity advocacy on employee efficacy beliefs
model.AWARE <- lm(AWARE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
model.REGULATE <- lm(REGULATE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
model.MANAGE <- lm(MANAGE ~ PDB_c + LdrAdvocacy_c, Study2_vars)
tab_model(model.AWARE, model.REGULATE, model.MANAGE,
show.p = TRUE,
show.se = TRUE,
show.stat = TRUE,
digits = 3,
title = "Leader Diversity Advocacy and Efficacy Beliefs")
Leader Diversity Advocacy and Efficacy Beliefs
|
|
AWARE
|
REGULATE
|
MANAGE
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
3.833
|
0.056
|
3.721 – 3.944
|
67.946
|
<0.001
|
4.118
|
0.041
|
4.036 – 4.199
|
99.758
|
<0.001
|
3.852
|
0.049
|
3.755 – 3.948
|
78.424
|
<0.001
|
|
PDB c
|
0.220
|
0.054
|
0.114 – 0.326
|
4.096
|
<0.001
|
0.221
|
0.039
|
0.143 – 0.298
|
5.613
|
<0.001
|
0.250
|
0.047
|
0.158 – 0.343
|
5.345
|
<0.001
|
|
LdrAdvocacy c
|
0.134
|
0.058
|
0.019 – 0.249
|
2.292
|
0.023
|
0.138
|
0.043
|
0.054 – 0.222
|
3.226
|
0.001
|
0.141
|
0.051
|
0.041 – 0.241
|
2.772
|
0.006
|
|
Observations
|
234
|
234
|
234
|
|
R2 / R2 adjusted
|
0.146 / 0.139
|
0.246 / 0.239
|
0.217 / 0.211
|
##effects of efficacy beliefs on diversity voice
model.VOICE <- lm(Diversity_Voice ~ Ideology_c + PDB_c + LdrAdvocacy_c + AWARE + MANAGE, Study2_vars)
tab_model(model.VOICE,
show.p = TRUE,
show.se = TRUE,
show.stat = TRUE,
digits = 3,
title = "Efficacy Beliefs and Diversity Voice")
Efficacy Beliefs and Diversity Voice
|
|
Diversity_Voice
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
Statistic
|
p
|
|
(Intercept)
|
2.697
|
0.415
|
1.878 – 3.515
|
6.494
|
<0.001
|
|
Ideology c
|
0.036
|
0.047
|
-0.056 – 0.128
|
0.766
|
0.444
|
|
PDB c
|
-0.080
|
0.072
|
-0.221 – 0.062
|
-1.108
|
0.269
|
|
LdrAdvocacy c
|
0.685
|
0.075
|
0.538 – 0.832
|
9.163
|
<0.001
|
|
AWARE
|
0.056
|
0.090
|
-0.122 – 0.234
|
0.621
|
0.535
|
|
MANAGE
|
0.499
|
0.104
|
0.295 – 0.703
|
4.816
|
<0.001
|
|
Observations
|
234
|
|
R2 / R2 adjusted
|
0.439 / 0.427
|
Hypothesis 1b
# Extract coefficients
a_est <- coef(model.AWARE)["LdrAdvocacy_c"] # Effect of X on M (a-path)
b_est <- coef(model.VOICE)["AWARE"] # Effect of M on Y (b-path)
# Extract standard errors
a_se <- summary(model.AWARE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.VOICE)$coefficients["AWARE", "Std. Error"]
# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
rho = 0, alpha = .10, sims = 10000, method = "parametric")
# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.007501663
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.01358523
# Print Monte Carlo CI: Advocacy -> Bias-Awareness -> Diversity Voice
cat("Monte Carlo 90% CI: [", mc_ci$`90% CI`[1], ",", mc_ci$`90% CI`[2], "]\n")
## Monte Carlo 90% CI: [ -0.01254505 , 0.03165335 ]
Hypothesis 3
# Extract coefficients
a_est <- coef(model.MANAGE)["LdrAdvocacy_c"] # Effect of X on M (a-path)
b_est <- coef(model.VOICE)["MANAGE"] # Effect of M on Y (b-path)
# Extract standard errors
a_se <- summary(model.MANAGE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.VOICE)$coefficients["MANAGE", "Std. Error"]
# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
rho = 0, alpha = .01, sims = 10000, method = "parametric")
# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.07034473
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.02975314
# Print Monte Carlo CI: Advocacy -> Diversity Management -> Diversity Voice
cat("Monte Carlo 99% CI: [", mc_ci$`99% CI`[1], ",", mc_ci$`99% CI`[2], "]\n")
## Monte Carlo 99% CI: [ 0.004644486 , 0.1598071 ]
Hypothesis 5a
# Extract coefficients
a_int <- coef(model_AWARE)["LdrAdvocacy_c:PDB_c"] # Effect of XW on M (a-path)
b_est <- coef(model.VOICE)["AWARE"] # Effect of M on Y (b-path)
# Extract standard errors
a_int_se <- summary(model_AWARE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.VOICE)$coefficients["AWARE", "Std. Error"]
# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
rho = 0, alpha = .10, sims = 10000, method = "parametric")
##
## --- Index of Moderated Mediation ---
## Estimate: 0.004577472
## Standard error: 0.008627602
## Monte Carlo 90% CI: [ -0.007786407 , 0.0201442 ]
Hypothesis 5b
# Extract coefficients
a_int <- coef(model_MANAGE)["LdrAdvocacy_c:PDB_c"] # Effect of XW on M (a-path)
b_est <- coef(model.VOICE)["MANAGE"] # Effect of M on Y (b-path)
# Extract standard errors
a_int_se <- summary(model_MANAGE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.VOICE)$coefficients["MANAGE", "Std. Error"]
# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
rho = 0, alpha = .01, sims = 10000, method = "parametric")
##
## --- Index of Moderated Mediation ---
## Estimate: 0.05561241
## Standard error: 0.02179405
## Monte Carlo 99% CI: [ 0.008163945 , 0.1211712 ]
##
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: 0.03265
## Standard error (LOW PDB): 0.0356
## Monte Carlo 90% CI: [ -0.023 , 0.093 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.165
## Standard error (HIGH PDB): 0.04894
## Monte Carlo 99% CI: [ 0.059 , 0.31 ]