Load Packages

Study 1

Confirmatory Factor Analysis

Three-Factor Model (Efficacy Scales)

ThreeFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1_t2 + DSE_Aware_2_t2 + DSE_Aware_3_t2

  # Factor 2: Self-Regulation Efficacy
  Regulation =~ DSE_Regulate_1_t2 + DSE_Regulate_2_t2 + DSE_Regulate_3_t2 +
                DSE_Regulate_4_t2 + DSE_Regulate_5_t2

  # Factor 3: Intergroup-Management Efficacy
  Management =~ DSE_Management_1_t2 + DSE_Management_2_t2 + DSE_Management_3_t2 +
                DSE_Management_4_t2 + DSE_Management_5_t2
'

ThreeFactor_fit <- cfa(ThreeFactor_model, Study_1_CFA, estimator = "ML")

# plot CFA results
semPaths(ThreeFactor_fit, "std", weighted = FALSE, nCharNodes = 7, 
         shapeMan = "rectangle", sizeMan = 8, sizeMan2 = 5)

## Fit Indices:
## 
##   chisq      df  pvalue     cfi    srmr 
## 178.794  62.000   0.000   0.957   0.042
## Standardized Factor Loadings:
## 
##                     Awrnss Regltn Mngmnt
## DSE_Aware_1_t2       0.894  0.000  0.000
## DSE_Aware_2_t2       0.866  0.000  0.000
## DSE_Aware_3_t2       0.912  0.000  0.000
## DSE_Regulate_1_t2    0.000  0.784  0.000
## DSE_Regulate_2_t2    0.000  0.847  0.000
## DSE_Regulate_3_t2    0.000  0.807  0.000
## DSE_Regulate_4_t2    0.000  0.814  0.000
## DSE_Regulate_5_t2    0.000  0.870  0.000
## DSE_Management_1_t2  0.000  0.000  0.891
## DSE_Management_2_t2  0.000  0.000  0.879
## DSE_Management_3_t2  0.000  0.000  0.912
## DSE_Management_4_t2  0.000  0.000  0.916
## DSE_Management_5_t2  0.000  0.000  0.866
## 
## 
## Explained Variance (R²):
## 
##      DSE_Aware_1_t2      DSE_Aware_2_t2      DSE_Aware_3_t2   DSE_Regulate_1_t2 
##               0.799               0.750               0.832               0.614 
##   DSE_Regulate_2_t2   DSE_Regulate_3_t2   DSE_Regulate_4_t2   DSE_Regulate_5_t2 
##               0.717               0.651               0.662               0.757 
## DSE_Management_1_t2 DSE_Management_2_t2 DSE_Management_3_t2 DSE_Management_4_t2 
##               0.793               0.773               0.831               0.839 
## DSE_Management_5_t2 
##               0.751

One-Factor Model (Efficacy Scales)

OneFactor_model <- '
  # One Factor: Bias-Awareness, Self-Regulation, & Intergroup-Management Efficacy
  OneFactor =~ DSE_Aware_1_t2 + DSE_Aware_2_t2 + DSE_Aware_3_t2 + 
               DSE_Regulate_1_t2 + DSE_Regulate_2_t2 + DSE_Regulate_3_t2 +
               DSE_Regulate_4_t2 + DSE_Regulate_5_t2 +
               DSE_Management_1_t2 + DSE_Management_2_t2 + DSE_Management_3_t2 +
                DSE_Management_4_t2 + DSE_Management_5_t2
'

OneFactor_fit <- cfa(OneFactor_model, Study_1_CFA, estimator = "ML")
## Fit Indices:
## 
##   chisq      df  pvalue     cfi    srmr 
## 783.767  65.000   0.000   0.738   0.125
## Standardized Factor Loadings:
## 
##                     OnFctr
## DSE_Aware_1_t2       0.782
## DSE_Aware_2_t2       0.799
## DSE_Aware_3_t2       0.794
## DSE_Regulate_1_t2    0.495
## DSE_Regulate_2_t2    0.580
## DSE_Regulate_3_t2    0.640
## DSE_Regulate_4_t2    0.589
## DSE_Regulate_5_t2    0.645
## DSE_Management_1_t2  0.885
## DSE_Management_2_t2  0.864
## DSE_Management_3_t2  0.871
## DSE_Management_4_t2  0.881
## DSE_Management_5_t2  0.865
## 
## 
## Explained Variance (R²):
## 
##      DSE_Aware_1_t2      DSE_Aware_2_t2      DSE_Aware_3_t2   DSE_Regulate_1_t2 
##               0.611               0.639               0.631               0.245 
##   DSE_Regulate_2_t2   DSE_Regulate_3_t2   DSE_Regulate_4_t2   DSE_Regulate_5_t2 
##               0.337               0.410               0.347               0.416 
## DSE_Management_1_t2 DSE_Management_2_t2 DSE_Management_3_t2 DSE_Management_4_t2 
##               0.783               0.746               0.758               0.777 
## DSE_Management_5_t2 
##               0.748
## 
## 
##  Three-Factor vs One-Factor Model:
## 
## Chi-Squared Difference Test
## 
##                 Df    AIC    BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)
## ThreeFactor_fit 62 6180.3 6279.1 178.79                                      
## OneFactor_fit   65 6779.3 6867.8 783.77     604.97 0.94858       3  < 2.2e-16
##                    
## ThreeFactor_fit    
## OneFactor_fit   ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Seven-Factor Measurement Model (All Seven Multi-Item Scales)

SevenFactor_model <- '
  # Factor 1: Bias-Awareness Efficacy
  Awareness =~ DSE_Aware_1_t2 + DSE_Aware_2_t2 + DSE_Aware_3_t2

  # Factor 2: Self-Regulation Efficacy
  Regulation =~ DSE_Regulate_1_t2 + DSE_Regulate_2_t2 + DSE_Regulate_3_t2 +
                DSE_Regulate_4_t2 + DSE_Regulate_5_t2

  # Factor 3: Intergroup-Management Efficacy
  Management =~ DSE_Management_1_t2 + DSE_Management_2_t2 + DSE_Management_3_t2 +
                DSE_Management_4_t2 + DSE_Management_5_t2

  # Factor 4: Inclusive Leadership
  InclusiveLeadership =~ Inclusive_Leader_1_t1 + Inclusive_Leader_2_t1 +
                         Inclusive_Leader_3_t1 + Inclusive_Leader_4_t1

  # Factor 5: Pro-Diversity Attitudes
  ProDiversity =~ ProDiversity_1_t1 + ProDiversity_2_t1 +
                  ProDiversity_3_t1 + ProDiversity_4_t1

  # Factor 6: Relational Allyship
  RelationalAlly =~ Relational_Allyship_1_t3 + Relational_Allyship_2_t3 +
                    Relational_Allyship_3_t3 + Relational_Allyship_4_t3 +
                    Relational_Allyship_5_t3 + Relational_Allyship_6_t3 +
                    Relational_Allyship_7_t3

  # Factor 7: Organizational Allyship
  OrgAlly =~ Org_Allyship_1_t3 + Org_Allyship_2_t3 + Org_Allyship_3_t3 +
             Org_Allyship_4_t3 + Org_Allyship_5_t3 + Org_Allyship_6_t3 +
             Org_Allyship_7_t3 + Org_Allyship_8_t3 + Org_Allyship_9_t3 +
'

SevenFactor_fit <- cfa(SevenFactor_model, Study_1_CFA, estimator = "ML")
## Fit Indices:
## 
##    chisq       df   pvalue      cfi     srmr 
## 1263.032  608.000    0.000    0.936    0.046
## Standardized Factor Loadings:
## 
##                          Awrnss Regltn Mngmnt InclsL PrDvrs RltnlA OrgAll
## DSE_Aware_1_t2            0.895  0.000  0.000  0.000  0.000  0.000  0.000
## DSE_Aware_2_t2            0.865  0.000  0.000  0.000  0.000  0.000  0.000
## DSE_Aware_3_t2            0.912  0.000  0.000  0.000  0.000  0.000  0.000
## DSE_Regulate_1_t2         0.000  0.791  0.000  0.000  0.000  0.000  0.000
## DSE_Regulate_2_t2         0.000  0.855  0.000  0.000  0.000  0.000  0.000
## DSE_Regulate_3_t2         0.000  0.790  0.000  0.000  0.000  0.000  0.000
## DSE_Regulate_4_t2         0.000  0.805  0.000  0.000  0.000  0.000  0.000
## DSE_Regulate_5_t2         0.000  0.878  0.000  0.000  0.000  0.000  0.000
## DSE_Management_1_t2       0.000  0.000  0.890  0.000  0.000  0.000  0.000
## DSE_Management_2_t2       0.000  0.000  0.878  0.000  0.000  0.000  0.000
## DSE_Management_3_t2       0.000  0.000  0.915  0.000  0.000  0.000  0.000
## DSE_Management_4_t2       0.000  0.000  0.919  0.000  0.000  0.000  0.000
## DSE_Management_5_t2       0.000  0.000  0.870  0.000  0.000  0.000  0.000
## Inclusive_Leader_1_t1     0.000  0.000  0.000  0.884  0.000  0.000  0.000
## Inclusive_Leader_2_t1     0.000  0.000  0.000  0.948  0.000  0.000  0.000
## Inclusive_Leader_3_t1     0.000  0.000  0.000  0.932  0.000  0.000  0.000
## Inclusive_Leader_4_t1     0.000  0.000  0.000  0.936  0.000  0.000  0.000
## ProDiversity_1_t1         0.000  0.000  0.000  0.000  0.901  0.000  0.000
## ProDiversity_2_t1         0.000  0.000  0.000  0.000  0.932  0.000  0.000
## ProDiversity_3_t1         0.000  0.000  0.000  0.000  0.864  0.000  0.000
## ProDiversity_4_t1         0.000  0.000  0.000  0.000  0.902  0.000  0.000
## Relational_Allyship_1_t3  0.000  0.000  0.000  0.000  0.000  0.879  0.000
## Relational_Allyship_2_t3  0.000  0.000  0.000  0.000  0.000  0.877  0.000
## Relational_Allyship_3_t3  0.000  0.000  0.000  0.000  0.000  0.918  0.000
## Relational_Allyship_4_t3  0.000  0.000  0.000  0.000  0.000  0.924  0.000
## Relational_Allyship_5_t3  0.000  0.000  0.000  0.000  0.000  0.907  0.000
## Relational_Allyship_6_t3  0.000  0.000  0.000  0.000  0.000  0.820  0.000
## Relational_Allyship_7_t3  0.000  0.000  0.000  0.000  0.000  0.852  0.000
## Org_Allyship_1_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.929
## Org_Allyship_2_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.920
## Org_Allyship_3_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.933
## Org_Allyship_4_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.917
## Org_Allyship_5_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.930
## Org_Allyship_6_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.930
## Org_Allyship_7_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.918
## Org_Allyship_8_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.921
## Org_Allyship_9_t3         0.000  0.000  0.000  0.000  0.000  0.000  0.934
## 
## 
## Explained Variance (R²):
## 
##           DSE_Aware_1_t2           DSE_Aware_2_t2           DSE_Aware_3_t2 
##                    0.801                    0.748                    0.831 
##        DSE_Regulate_1_t2        DSE_Regulate_2_t2        DSE_Regulate_3_t2 
##                    0.625                    0.732                    0.624 
##        DSE_Regulate_4_t2        DSE_Regulate_5_t2      DSE_Management_1_t2 
##                    0.648                    0.771                    0.792 
##      DSE_Management_2_t2      DSE_Management_3_t2      DSE_Management_4_t2 
##                    0.770                    0.837                    0.844 
##      DSE_Management_5_t2    Inclusive_Leader_1_t1    Inclusive_Leader_2_t1 
##                    0.758                    0.782                    0.899 
##    Inclusive_Leader_3_t1    Inclusive_Leader_4_t1        ProDiversity_1_t1 
##                    0.869                    0.875                    0.812 
##        ProDiversity_2_t1        ProDiversity_3_t1        ProDiversity_4_t1 
##                    0.868                    0.746                    0.813 
## Relational_Allyship_1_t3 Relational_Allyship_2_t3 Relational_Allyship_3_t3 
##                    0.773                    0.769                    0.843 
## Relational_Allyship_4_t3 Relational_Allyship_5_t3 Relational_Allyship_6_t3 
##                    0.853                    0.823                    0.672 
## Relational_Allyship_7_t3        Org_Allyship_1_t3        Org_Allyship_2_t3 
##                    0.725                    0.864                    0.846 
##        Org_Allyship_3_t3        Org_Allyship_4_t3        Org_Allyship_5_t3 
##                    0.870                    0.841                    0.865 
##        Org_Allyship_6_t3        Org_Allyship_7_t3        Org_Allyship_8_t3 
##                    0.865                    0.842                    0.848 
##        Org_Allyship_9_t3 
##                    0.872

Reliability Estimates (Cronbach Alpha) - Study 1 Measures

# Reliability estimates for self-efficacy scales
awareness_alpha <- alpha(Study_1_CFA[, c("DSE_Aware_1_t2", "DSE_Aware_2_t2", "DSE_Aware_3_t2")])

regulation_alpha <- alpha(Study_1_CFA[, c("DSE_Regulate_1_t2", "DSE_Regulate_2_t2", "DSE_Regulate_3_t2", "DSE_Regulate_4_t2", "DSE_Regulate_5_t2")])
                                           
management_alpha <- alpha(Study_1_CFA[, c("DSE_Management_1_t2", "DSE_Management_2_t2", "DSE_Management_3_t2", "DSE_Management_4_t2", "DSE_Management_5_t2")]) 
                                           
cat("Alpha for bias-awareness efficacy:    ", awareness_alpha$total$raw_alpha, "\n",
    "Alpha for self-regulation efficacy:   ", regulation_alpha$total$raw_alpha, "\n",
    "Alpha for intergroup-management efficacy:", management_alpha$total$raw_alpha, "\n")                                   
## Alpha for bias-awareness efficacy:     0.9173952 
##  Alpha for self-regulation efficacy:    0.9139933 
##  Alpha for intergroup-management efficacy: 0.9512536
# Reliability estimates for ally work scales
rel_ally_alpha <- alpha(Study_1_CFA[, c("Relational_Allyship_1_t3", "Relational_Allyship_2_t3", "Relational_Allyship_3_t3", "Relational_Allyship_4_t3", "Relational_Allyship_5_t3", "Relational_Allyship_6_t3", "Relational_Allyship_7_t3")])

org_ally_alpha <- alpha(Study_1_CFA[, c("Org_Allyship_1_t3", "Org_Allyship_2_t3", "Org_Allyship_3_t3", "Org_Allyship_4_t3", "Org_Allyship_5_t3", "Org_Allyship_6_t3", "Org_Allyship_7_t3", "Org_Allyship_8_t3", "Org_Allyship_9_t3")])
                                         
cat("Alpha for relational ally work:", rel_ally_alpha$total$raw_alpha, "\n",
    "Alpha for organizational ally work:", org_ally_alpha$total$raw_alpha, "\n")
## Alpha for relational ally work: 0.9608815 
##  Alpha for organizational ally work: 0.9817662
# Reliability estimates for leader diversity advocacy and pro-diversity
incl_leader_alpha <- alpha(Study_1_CFA[, c("Inclusive_Leader_1_t1", "Inclusive_Leader_2_t1", "Inclusive_Leader_3_t1", "Inclusive_Leader_4_t1")])
                                            
prodiversity_alpha <- alpha(Study_1_CFA[, c("ProDiversity_1_t1", "ProDiversity_2_t1", "ProDiversity_3_t1", "ProDiversity_4_t1")])

cat("Alpha for leader diversity advocacy:", incl_leader_alpha$total$raw_alpha, "\n",
    "Alpha for pro-diversity attitudes:", prodiversity_alpha$total$raw_alpha, "\n")
## Alpha for leader diversity advocacy: 0.9596095 
##  Alpha for pro-diversity attitudes: 0.9409475

Table 1: Descriptives & Correlations

## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable       M    SD   1            2           3            4         
##   1. Male        0.59 0.49                                                 
##                                                                            
##   2. White       0.71 0.46 -.06                                            
##                            [-.19, .07]                                     
##                                                                            
##   3. Ideology    3.31 1.88 .15*         .10                                
##                            [.02, .28]   [-.03, .23]                        
##                                                                            
##   4. LdrAdvocacy 3.27 1.23 -.11         -.11        -.06                   
##                            [-.24, .02]  [-.24, .02] [-.19, .07]            
##                                                                            
##   5. PDB         4.32 0.98 -.24**       -.08        -.48**       .45**     
##                            [-.36, -.12] [-.20, .06] [-.57, -.37] [.34, .55]
##                                                                            
##   6. AWARE       3.69 1.08 -.14*        .00         -.23**       .38**     
##                            [-.26, -.01] [-.13, .13] [-.35, -.10] [.26, .48]
##                                                                            
##   7. REGULATE    4.28 0.77 -.15*        .08         -.16*        .29**     
##                            [-.27, -.02] [-.05, .21] [-.28, -.03] [.17, .41]
##                                                                            
##   8. MANAGE      3.41 1.20 -.12         -.03        -.19**       .51**     
##                            [-.24, .01]  [-.16, .11] [-.31, -.06] [.41, .61]
##                                                                            
##   9. OrgAlly     2.56 1.28 -.09         -.03        -.12         .56**     
##                            [-.22, .04]  [-.17, .10] [-.25, .01]  [.46, .64]
##                                                                            
##   10. RelAlly    3.55 0.95 -.16*        -.03        -.27**       .55**     
##                            [-.29, -.03] [-.16, .10] [-.38, -.14] [.45, .63]
##                                                                            
##   5          6          7          8          9         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##   .41**                                                 
##   [.30, .51]                                            
##                                                         
##   .37**      .58**                                      
##   [.26, .48] [.49, .66]                                 
##                                                         
##   .41**      .77**      .57**                           
##   [.30, .52] [.72, .82] [.48, .65]                      
##                                                         
##   .41**      .48**      .25**      .59**                
##   [.30, .52] [.38, .58] [.12, .37] [.50, .67]           
##                                                         
##   .61**      .51**      .51**      .54**      .68**     
##   [.51, .68] [.41, .60] [.41, .60] [.44, .63] [.61, .75]
##                                                         
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Grand-Mean Center Predictor Variables

Table 2 (Step 1, A-Path): Leader Diversity Advocacy and Efficacy Beliefs

###effects of leader diversity advocacy on employee efficacy beliefs
model.AWARE <- lm(AWARE ~ PDB_c + LdrAdvocacy_c, Study1_vars)
model.REGULATE <- lm(REGULATE ~ PDB_c + LdrAdvocacy_c, Study1_vars)
model.MANAGE <- lm(MANAGE ~ PDB_c + LdrAdvocacy_c, Study1_vars)

tab_model(model.AWARE, model.REGULATE, model.MANAGE, 
          show.p = TRUE,
          show.se = TRUE,
          show.stat = TRUE,
          digits = 3,
          title = "Leader Diversity Advocacy and Efficacy Beliefs")
Leader Diversity Advocacy and Efficacy Beliefs
  AWARE REGULATE MANAGE
Predictors Estimates std. Error CI Statistic p Estimates std. Error CI Statistic p Estimates std. Error CI Statistic p
(Intercept) 3.690 0.064 3.564 – 3.817 57.379 <0.001 4.278 0.047 4.184 – 4.371 90.271 <0.001 3.409 0.067 3.277 – 3.541 50.733 <0.001
PDB c 0.335 0.074 0.189 – 0.481 4.528 <0.001 0.240 0.055 0.133 – 0.348 4.405 <0.001 0.281 0.077 0.129 – 0.433 3.637 <0.001
LdrAdvocacy c 0.212 0.059 0.096 – 0.328 3.611 <0.001 0.099 0.043 0.014 – 0.184 2.284 0.023 0.404 0.061 0.283 – 0.524 6.578 <0.001
Observations 224 224 224
R2 / R2 adjusted 0.215 / 0.208 0.160 / 0.153 0.307 / 0.300

Table 2 (B-Path): Efficacy Beliefs and Ally Work

##effects of efficacy beliefs on employee diversity effort
model.ALLY_R <- lm(RelAlly ~ Ideology_c + PDB_c + LdrAdvocacy_c + AWARE + REGULATE, Study1_vars)
model.ALLY_O <- lm(OrgAlly ~ Ideology_c + PDB_c + LdrAdvocacy_c + AWARE + MANAGE, Study1_vars)

tab_model(model.ALLY_R, model.ALLY_O, 
          show.p = TRUE,
          show.se = TRUE,
          show.stat = TRUE,
          digits = 3,
          title = "Efficacy Beliefs and Allyship Behavior") 
Efficacy Beliefs and Allyship Behavior
  RelAlly OrgAlly
Predictors Estimates std. Error CI Statistic p Estimates std. Error CI Statistic p
(Intercept) 1.913 0.270 1.381 – 2.445 7.085 <0.001 1.071 0.263 0.552 – 1.590 4.069 <0.001
Ideology c -0.013 0.027 -0.066 – 0.040 -0.469 0.640 0.024 0.040 -0.054 – 0.103 0.613 0.541
PDB c 0.318 0.060 0.200 – 0.436 5.329 <0.001 0.165 0.088 -0.007 – 0.338 1.890 0.060
LdrAdvocacy c 0.215 0.042 0.133 – 0.297 5.183 <0.001 0.318 0.066 0.188 – 0.447 4.834 <0.001
AWARE 0.115 0.052 0.012 – 0.217 2.204 0.029 0.077 0.096 -0.112 – 0.265 0.801 0.424
REGULATE 0.281 0.070 0.143 – 0.420 4.000 <0.001
MANAGE 0.358 0.092 0.178 – 0.538 3.911 <0.001
Observations 224 224
R2 / R2 adjusted 0.542 / 0.532 0.447 / 0.435

Hypothesis 1a: Mediation Analysis

# Extract coefficients
a_est <- coef(model.AWARE)["LdrAdvocacy_c"]  # Effect of X on M (a-path)
b_est <- coef(model.ALLY_R)["AWARE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- summary(model.AWARE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.ALLY_R)$coefficients["AWARE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .05, sims = 10000, method = "parametric")

# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.02430963
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.01328022
# Monte Carlo CI: Advocacy -> Bias-Awareness -> Relational Allyship
cat("Monte Carlo 95% CI: [", mc_ci$`95% CI`[1], ",", mc_ci$`95% CI`[2], "]\n")
## Monte Carlo 95% CI: [ 0.002251457 , 0.05389142 ]

Hypothesis 1b: Mediation Analysis (Not Supported)

# Extract coefficients
a_est <- coef(model.AWARE)["LdrAdvocacy_c"]  # Effect of X on M (a-path)
b_est <- coef(model.ALLY_O)["AWARE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- summary(model.AWARE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.ALLY_O)$coefficients["AWARE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")

# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.01625865
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.02154227
# Print Monte Carlo CI: Advocacy -> Bias-Awareness -> Relational Allyship
cat("Monte Carlo 90% CI: [", mc_ci$`90% CI`[1], ",", mc_ci$`90% CI`[2], "]\n")
## Monte Carlo 90% CI: [ -0.01687366 , 0.05350855 ]

Hypothesis 2: Mediation Analysis

# Extract coefficients
a_est <- coef(model.REGULATE)["LdrAdvocacy_c"]  # Effect of X on M (a-path)
b_est <- coef(model.ALLY_R)["REGULATE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- summary(model.REGULATE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.ALLY_R)$coefficients["REGULATE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .05, sims = 10000, method = "parametric")

# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.02780824
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.01434579
# Print Monte Carlo CI: Advocacy -> Self-Regulation -> Relational Allyship
cat("Monte Carlo 95% CI: [", mc_ci$`95% CI`[1], ",", mc_ci$`95% CI`[2], "]\n")
## Monte Carlo 95% CI: [ 0.003482145 , 0.05941749 ]

Hypothesis 3: Mediation Analysis

# Extract coefficients
a_est <- coef(model.MANAGE)["LdrAdvocacy_c"]  # Effect of X on M (a-path)
b_est <- coef(model.ALLY_O)["MANAGE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_se <- summary(model.MANAGE)$coefficients["LdrAdvocacy_c", "Std. Error"]
b_se <- summary(model.ALLY_O)$coefficients["MANAGE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_est, mu.y = b_est, se.x = a_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")

# Coefficients for Indirect Effect
cat("Indirect effect estimate:", mc_ci$Estimate, "\n")
## Indirect effect estimate: 0.1444608
cat("Indirect effect standard error:", mc_ci$SE, "\n")
## Indirect effect standard error: 0.04333847
# Print Monte Carlo CI: Advocacy -> Diversity Management -> Organizational Allyship
cat("Monte Carlo 99% CI: [", mc_ci$`99% CI`[1], ",", mc_ci$`99% CI`[2], "]\n")
## Monte Carlo 99% CI: [ 0.04570033 , 0.2700162 ]

Table 2 (Step 2, A-Path): Moderation Analyses

Leader Diversity Advocacy & Pro-Diversity Attitudes

###moderation
model_AWARE <- lm(AWARE ~ LdrAdvocacy_c*PDB_c, Study1_vars)
model_REGULATE <- lm(REGULATE ~ LdrAdvocacy_c*PDB_c, Study1_vars)
model_MANAGE <- lm(MANAGE ~ LdrAdvocacy_c*PDB_c, Study1_vars)

tab_model(model_AWARE, model_REGULATE, model_MANAGE,
          show.p = TRUE,
          show.se = TRUE,
          show.stat = TRUE,
          digits = 3,
          title = "Regression Results (Interaction)") 
Regression Results (Interaction)
  AWARE REGULATE MANAGE
Predictors Estimates std. Error CI Statistic p Estimates std. Error CI Statistic p Estimates std. Error CI Statistic p
(Intercept) 3.587 0.070 3.449 – 3.724 51.308 <0.001 4.233 0.052 4.130 – 4.336 80.808 <0.001 3.294 0.073 3.151 – 3.437 45.248 <0.001
LdrAdvocacy c 0.172 0.059 0.057 – 0.288 2.941 0.004 0.082 0.044 -0.005 – 0.168 1.861 0.064 0.360 0.061 0.239 – 0.480 5.896 <0.001
PDB c 0.531 0.093 0.349 – 0.714 5.739 <0.001 0.325 0.069 0.188 – 0.461 4.681 <0.001 0.498 0.096 0.308 – 0.688 5.167 <0.001
LdrAdvocacy c × PDB c 0.194 0.057 0.081 – 0.307 3.394 0.001 0.084 0.043 -0.001 – 0.168 1.952 0.052 0.215 0.060 0.097 – 0.332 3.604 <0.001
Observations 224 224 224
R2 / R2 adjusted 0.254 / 0.244 0.174 / 0.163 0.345 / 0.336
# Compare Models: Significant change in R²?
anova(model.AWARE, model_AWARE)
## Analysis of Variance Table
## 
## Model 1: AWARE ~ PDB_c + LdrAdvocacy_c
## Model 2: AWARE ~ LdrAdvocacy_c * PDB_c
##   Res.Df    RSS Df Sum of Sq     F    Pr(>F)    
## 1    221 204.78                                 
## 2    220 194.60  1     10.19 11.52 0.0008166 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model.REGULATE, model_REGULATE)
## Analysis of Variance Table
## 
## Model 1: REGULATE ~ PDB_c + LdrAdvocacy_c
## Model 2: REGULATE ~ LdrAdvocacy_c * PDB_c
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    221 111.16                              
## 2    220 109.27  1    1.8925 3.8102 0.05221 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model.MANAGE, model_MANAGE)
## Analysis of Variance Table
## 
## Model 1: MANAGE ~ PDB_c + LdrAdvocacy_c
## Model 2: MANAGE ~ LdrAdvocacy_c * PDB_c
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    221 223.51                                  
## 2    220 211.05  1     12.46 12.989 0.0003876 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple Slopes Analyses

sim_slopes(model_AWARE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-.98, 0, .98))
## JOHNSON-NEYMAN INTERVAL
## 
## When PDB_c is OUTSIDE the interval [-2.64, -0.25], the slope of
## LdrAdvocacy_c is p < .05.
## 
## Note: The range of observed values of PDB_c is [-3.32, 0.68]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of LdrAdvocacy_c when PDB_c = -0.98: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.02   0.09    -0.20   0.84
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.00: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.17   0.06     2.94   0.00
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.98: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.36   0.07     5.00   0.00
sim_slopes(model_REGULATE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-.98, 0, .98))
## JOHNSON-NEYMAN INTERVAL
## 
## When PDB_c is INSIDE the interval [0.05, 122.21], the slope of
## LdrAdvocacy_c is p < .05.
## 
## Note: The range of observed values of PDB_c is [-3.32, 0.68]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of LdrAdvocacy_c when PDB_c = -0.98: 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.00   0.07    -0.00   1.00
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.00: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.08   0.04     1.86   0.06
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.98: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.16   0.05     3.01   0.00
sim_slopes(model_MANAGE, pred = "LdrAdvocacy_c", modx = "PDB_c", modx.values = c(-.98, 0, .98))
## JOHNSON-NEYMAN INTERVAL
## 
## When PDB_c is OUTSIDE the interval [-4.08, -0.87], the slope of
## LdrAdvocacy_c is p < .05.
## 
## Note: The range of observed values of PDB_c is [-3.32, 0.68]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of LdrAdvocacy_c when PDB_c = -0.98: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.15   0.09     1.61   0.11
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.00: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.36   0.06     5.90   0.00
## 
## Slope of LdrAdvocacy_c when PDB_c =  0.98: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.57   0.08     7.55   0.00
## Warning: 0.97508025323059 is outside the observed range of PDB_c
## 0.97508025323059 is outside the observed range of PDB_c
## 0.97508025323059 is outside the observed range of PDB_c

Figures 1 & 2: Create J-N interaction plots

# Generate Johnson-Neyman plots and add custom titles
## Figure 1
plot1 <- johnson_neyman(model_AWARE, pred = "LdrAdvocacy_c", modx = "PDB_c", plot = TRUE)$plot +
  labs(x = "Leader Diversity Advocacy", y = "Bias-Awareness Efficacy",title = NULL)

## Not significant at .05 alpha level
plot2 <- johnson_neyman(model_REGULATE, pred = "LdrAdvocacy_c", modx = "PDB_c", plot = TRUE)$plot + labs(x = "Leader Diversity Advocacy", y = "Self-Regulation Efficacy",title = NULL)

## Figure 2
plot3 <- johnson_neyman(model_MANAGE, pred = "LdrAdvocacy_c", modx = "PDB_c", plot = TRUE)$plot +
  labs(x = "Leader Diversity Advocacy", y = "Intergroup-Management Efficacy",title = NULL)

# Arrange in 2×2 grid (with one blank space if only 3 plots)
gridExtra::grid.arrange(plot1, plot2, plot3, ncol = 2)

Hypothesis 4a: Moderated Mediation (Bias-Awareness Efficacy and Relational Ally Work)

# Extract coefficients
a_int <- coef(model_AWARE)["LdrAdvocacy_c:PDB_c"]  # Effect of XW on M (a-path)
b_est <- coef(model.ALLY_R)["AWARE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- summary(model_AWARE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.ALLY_R)$coefficients["AWARE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .05, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.02224868
## Standard error: 0.01240032
## Monte Carlo 95% CI: [ 0.001943587 , 0.05005854 ]
## 
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: -0.002
## Standard error (LOW PDB): 0.01
## Monte Carlo 90% CI: [ -0.02 , 0.014 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.042
## Standard error (HIGH PDB): 0.021
## Monte Carlo 95% CI: [ 0.004 , 0.088 ]

Hypothesis 4b: Moderated Mediation (Self-Regulation Efficacy and Relational Ally Work)

# Extract coefficients
a_int <- coef(model_REGULATE)["LdrAdvocacy_c:PDB_c"]  # Effect of XW on M (a-path)
b_est <- coef(model.ALLY_R)["REGULATE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- summary(model_REGULATE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.ALLY_R)$coefficients["REGULATE", "Std. Error"]

# Compute Monte Carlo confidence interval (alpha = .10)
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.02353364
## Standard error: 0.01374995
## Monte Carlo 90% CI: [ 0.00331021 , 0.04793587 ]
## 
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: -8e-05
## Standard error (LOW PDB): 0.018
## Monte Carlo 90% CI: [ -0.029 , 0.029 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.046
## Standard error (HIGH PDB): 0.021
## Monte Carlo 95% CI: [ 0.011 , 0.092 ]

Hypothesis 5a: Moderated Mediation (Bias-Awareness Efficacy and Organizational Ally Work)

# Extract coefficients
a_int <- coef(model_AWARE)["LdrAdvocacy_c:PDB_c"]  # Effect of XW on M (a-path)
b_est <- coef(model.ALLY_O)["AWARE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- summary(model_AWARE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.ALLY_O)$coefficients["AWARE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .10, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.01488025
## Standard error: 0.01986081
## Monte Carlo 90% CI: [ -0.01542985 , 0.04939741 ]

Hypothesis 5b: Moderated Mediation (Intergroup-Management Efficacy and Organizational Ally Work)

# Extract coefficients
a_int <- coef(model_MANAGE)["LdrAdvocacy_c:PDB_c"]  # Effect of XW on M (a-path)
b_est <- coef(model.ALLY_O)["MANAGE"]  # Effect of M on Y (b-path)

# Extract standard errors
a_int_se <- summary(model_MANAGE)$coefficients["LdrAdvocacy_c:PDB_c", "Std. Error"]
b_se <- summary(model.ALLY_O)$coefficients["MANAGE", "Std. Error"]

# Compute Monte Carlo confidence interval
mc_ci <- medci(mu.x = a_int, mu.y = b_est, se.x = a_int_se, se.y = b_se,
               rho = 0, alpha = .01, sims = 10000, method = "parametric")
## 
## --- Index of Moderated Mediation ---
## Estimate: 0.07682129
## Standard error: 0.02949443
## Monte Carlo 99% CI: [ 0.01593752 , 0.1671988 ]
## 
## --- Conditional Indirect Effects ---
## At LOW PDB (-1 SD):
## Indirect effect estimate: 0.05342
## Standard error (LOW PDB): 0.03405
## Monte Carlo 90% CI: [ 0.003 , 0.114 ]
## At HIGH PDB (+1 SD):
## Indirect effect estimate: 0.204
## Standard error (HIGH PDB): 0.06077
## Monte Carlo 99% CI: [ 0.065 , 0.38 ]