datos2=scan("http://robjhyndman.com/tsdldata/data/nybirths.dat")
datos3=scan("http://robjhyndman.com/tsdldata/data/fancy.dat")
head(datos3)
## [1] 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74
datos3
## [1] 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74 4349.61
## [8] 3566.34 5021.82 6423.48 7600.60 19756.21 2499.81 5198.24
## [15] 7225.14 4806.03 5900.88 4951.34 6179.12 4752.15 5496.43
## [22] 5835.10 12600.08 28541.72 4717.02 5702.63 9957.58 5304.78
## [29] 6492.43 6630.80 7349.62 8176.62 8573.17 9690.50 15151.84
## [36] 34061.01 5921.10 5814.58 12421.25 6369.77 7609.12 7224.75
## [43] 8121.22 7979.25 8093.06 8476.70 17914.66 30114.41 4826.64
## [50] 6470.23 9638.77 8821.17 8722.37 10209.48 11276.55 12552.22
## [57] 11637.39 13606.89 21822.11 45060.69 7615.03 9849.69 14558.40
## [64] 11587.33 9332.56 13082.09 16732.78 19888.61 23933.38 25391.35
## [71] 36024.80 80721.71 10243.24 11266.88 21826.84 17357.33 15997.79
## [78] 18601.53 26155.15 28586.52 30505.41 30821.33 46634.38 104660.67
length(datos3)
## [1] 84
st=ts(datos3,start = c(1987,1),frequency = 12)
plot(st)
st
## Jan Feb Mar Apr May Jun Jul
## 1987 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74 4349.61
## 1988 2499.81 5198.24 7225.14 4806.03 5900.88 4951.34 6179.12
## 1989 4717.02 5702.63 9957.58 5304.78 6492.43 6630.80 7349.62
## 1990 5921.10 5814.58 12421.25 6369.77 7609.12 7224.75 8121.22
## 1991 4826.64 6470.23 9638.77 8821.17 8722.37 10209.48 11276.55
## 1992 7615.03 9849.69 14558.40 11587.33 9332.56 13082.09 16732.78
## 1993 10243.24 11266.88 21826.84 17357.33 15997.79 18601.53 26155.15
## Aug Sep Oct Nov Dec
## 1987 3566.34 5021.82 6423.48 7600.60 19756.21
## 1988 4752.15 5496.43 5835.10 12600.08 28541.72
## 1989 8176.62 8573.17 9690.50 15151.84 34061.01
## 1990 7979.25 8093.06 8476.70 17914.66 30114.41
## 1991 12552.22 11637.39 13606.89 21822.11 45060.69
## 1992 19888.61 23933.38 25391.35 36024.80 80721.71
## 1993 28586.52 30505.41 30821.33 46634.38 104660.67
desde enero a diciembre de 1987 se obserba un increnmento en las ventas seguido por una caida estrepitosa y asi constantemente en los siguientes años, con el mes de noviembre y diciembre es dode observamos más ventas de recuerdos. se observa una lijera tendencia.
library(writexl)
## Warning: package 'writexl' was built under R version 4.5.1
write_xlsx(as.data.frame(datos2),"datos2_examen1.xlsx")
write_xlsx(as.data.frame(datos3),"datos3_examen1.xlsx")
st1d=diff(st,1)
plot(st1d)
st1d12=diff(st1d,12)
plot(st1d12)