wave_var <- "Wave"
wave_order <- c("First", "Second", "Third", "Fourth", "Fifth", "Sixth")

community_var <- "pe_left_center_right"
community_title <- "Political Orientation"
community_order <- c("left", "center", "right") # Set "center" as the reference level since it is the 'neutral' level.

dimension_vars <- c("Ideology" = "pe_ideology", "Violence" = "pe_violence","Intolerance" = "pe_intolerance")

demographic_vars <- c("gender", "age_group") # , "education"

respondent_id_var <- "respondent_id" 

var_labels = c("event_occurred" = "Event Main Effect",
               "pe_left_center_right" = "Political Orientation",
               "gender" = "Gender",
               "age_group" = "Age Group",
               "event_occurred:pe_left_center_right" = "Event × Political Orientation"
               )

event_var <- "event_occurred"
event_names = c("Inland Terror", "Bennet Gov. Fall", "Judicial Reform", "Gallant Dismissal", "Oct. 7th War")


# Read the data from indices_table.txt
df <- as.data.frame(readRDS("Israel Survey/data/il_pe.RDS"))

# Calculate the Political Extremism Gauge Indices
indices_result <- af_gauge_indices(df, pop_var1 = wave_var, comm_var1 = community_var)
df <- indices_result$df

1 Pairwise Analysis

m1 <- af_manova_model(data = df, wave_pair = c("First", "Second"), is_panel = FALSE,
                      extremism_vars = dimension_vars, wave_var = wave_var,
                      group_var = community_var, control_vars = demographic_vars,
                      id_var = respondent_id_var, event_var = event_var)

m2 <- af_manova_model(data = df, wave_pair = c("Second", "Third"), is_panel = FALSE,
                      extremism_vars = dimension_vars, wave_var = wave_var,
                      group_var = community_var, control_vars = demographic_vars,
                      id_var = respondent_id_var, event_var = event_var)

m3 <- af_manova_model(data = df, wave_pair = c("Third", "Fourth"), is_panel = TRUE,
                      extremism_vars = dimension_vars, wave_var = wave_var,
                      group_var = community_var, control_vars = demographic_vars,
                      id_var = respondent_id_var, event_var = event_var)

m4 <- af_manova_model(data = df, wave_pair = c("Fourth", "Fifth"), is_panel = FALSE,
                      extremism_vars = dimension_vars, wave_var = wave_var,
                      group_var = community_var, control_vars = demographic_vars,
                      id_var = respondent_id_var, event_var = event_var)

m5 <- af_manova_model(data = df, wave_pair = c("Fifth", "Sixth"), is_panel = FALSE,
                      extremism_vars = dimension_vars, wave_var = wave_var,
                      group_var = community_var, control_vars = demographic_vars,
                      id_var = respondent_id_var, event_var = event_var)

r1 <- af_manova_results(m1, group_legend_title = community_title, plot_title = event_names[1])
r2 <- af_manova_results(m2, group_legend_title = community_title, plot_title = event_names[2])
r3 <- af_manova_results(m3, group_legend_title = community_title, plot_title = event_names[3])
r4 <- af_manova_results(m4, group_legend_title = community_title, plot_title = event_names[4])
r5 <- af_manova_results(m5, group_legend_title = community_title, plot_title = event_names[5])

model_results_list <- list(r1, r2, r3, r4, r5)
names(model_results_list) <- event_names

The study examines how various types of destabilizing events differently affect people with different political affiliations (left-wing, center-wing, right-wing), thereby increasing or decreasing their level of political extremism dimensions.

The hypotheses we test are:

  • H1: Various dimensions of political extremism do not respond uniformly to socio-political events.
  • H2: The effect of different destabilizing events will be moderated by political orientation.

We use Multivariate Analysis of Variance (MANOVA) analysis on each consecutive pair of Political Extremism Survey waves. A destabilizing event occurred between the two waves of each pair. The target of the analysis is to determine whether the event influenced the three dimensions of political extremism and whether this effect was moderated by the political orientation of the survey respondents. The third and forth waves were panel survey waves. We thus analyze them using Repeated measures MANOVA.

The response variables are the three dimensions of political extremism: Cognitive (Ideology) dimension: pe_ideology, Behavioral (Violence) dimension: pe_violence, and Social (Intolerance) dimension: pe_intolerance. The events are flagged by the event_occurred variable, set to 0 for the first wave and 1 for the second wave. Political orientation is identified by the pe_left_center_right variable. Gender (gender) and age group (age_group) are control variables.

The MANOVA analysis tests whether the political orientation groups differ on the combination of the three political extremism dimensions (our three dependent variables) simultaneously. Instead of testing each extremism dimension separately, it asks: “Do the groups differ when we consider all three dimensions together?”

We selected MANOVA Pillai’s Trace (scale 0 to 1, higher values = stronger multivariate effect.) as the main the test statistic for the analysis since it is the most robust MANOVA test statistic to violations of assumptions (especially unequal covariance matrices) and since it is the most conservative (less likely to find false positives).

The detailed results section in the supplemntary appendix provides the results for all four Manova test statistics: Pillai Trace, Wilks’ Lambda, Hotelling-Lawley, and Roy’s Greatest Root.

1.1 Results

manova_table_c <- af_manova_summary_table(model_list = model_results_list,
                                          variable_labels = var_labels,
                                          panel_model_ids = c("Judicial Reform"),
                                          show_intercept = FALSE,
                                          test_statistics = c("Pillai"),
                                          title = "MANOVA Results Across Destabilizing Events",
                                          subtitle = "Multivariate Tests of Event Effects on Political Extremism Dimensions")

manova_table_c
MANOVA Results Across Destabilizing Events
Multivariate Tests of Event Effects on Political Extremism Dimensions
Variable Inland Terror Bennet Gov. Fall Judicial Reform § Gallant Dismissal Oct. 7th War
Event Main Effect 0.011*** 0.003† 0.002 0.002 0.001
Political Orientation 0.098*** 0.175*** 0.105*** 0.080*** 0.083***
Gender 0.035*** 0.046*** 0.063*** 0.056*** 0.045***
Age Group 0.031*** 0.042*** 0.067*** 0.040*** 0.030***
Event × Political Orientation 0.007*** 0.006* 0.006 0.004 0.005†
Test statistic: Pillai's Trace. *** p < .001; ** p < .01; * p < .05; † p < .10. § Panel analysis (same respondents across waves). Panel model columns highlighted in blue

1.2 Interpretation

The multivariate analysis of variance revealed differential patterns of political extremism responses across the five destabilizing events examined. For Inland Terror, the MANOVA demonstrated significant multivariate effects for the event occurrence (Pillai’s trace = 0.011, p < 0.001), political orientation (Pillai’s trace = 0.098, p < 0.001), and their interaction (Pillai’s trace = 0.007, p < 0.001), indicating that this security threat influenced the combination of extremism dimensions differently across political groups. The Bennett Government Fall showed a marginally significant main event effect (Pillai’s trace = 0.003, p = 0.051) but maintained significant political orientation effects (Pillai’s trace = 0.175, p < 0.001) and a significant interaction (Pillai’s trace = 0.006, p = 0.028), suggesting politically differentiated responses to this governmental transition. The Judicial Reform, occurring between panel waves with the same respondents, exhibited non-significant main event effects (Pillai’s trace = 0.002, p = 0.488) and interaction effects (Pillai’s trace = 0.006, p = 0.201), though political orientation remained highly significant (Pillai’s trace = 0.105, p < 0.001), indicating that this constitutional crisis may have had more subtle or delayed impacts on extremism dimensions. The Gallant Dismissal similarly showed non-significant event effects (Pillai’s trace = 0.002, p = 0.241) and interactions (Pillai’s trace = 0.004, p = 0.218), while maintaining strong political orientation effects (Pillai’s trace = 0.080, p < 0.001). Finally, the October 7th War displayed non-significant main event effects (Pillai’s trace = 0.001, p = 0.418) but a marginally significant interaction (Pillai’s trace = 0.005, p = 0.057), alongside robust political orientation effects (Pillai’s trace = 0.083, p < 0.001).

1.3 Discussion

The findings provide mixed support for our first two hypotheses regarding the differential nature of political extremism responses to destabilizing events. Hypothesis 1, positing that various dimensions of political extremism do not respond uniformly to socio-political events, receives partial support, as evidenced by the significant multivariate effects observed for Inland Terror and the marginally significant effects for Bennett Government Fall, indicating that at least some events produce differentiated responses across the ideology, violence, and intolerance dimensions. However, the non-significant main effects for Judicial Reform, Gallant Dismissal, and October 7th War suggest that not all destabilizing events generate uniform multivariate impacts on extremism dimensions. Hypothesis 2, predicting that political orientation moderates the effect of destabilizing events, receives stronger empirical support, with significant interaction effects observed for Inland Terror and Bennett Government Fall, and marginally significant interactions for October 7th War, demonstrating that citizens’ political affiliations systematically condition their extremism responses to external shocks.

These results advance our understanding of how various types of destabilizing events differentially affect citizens with different political affiliations, revealing that the relationship between external threats and political extremism is contingent upon both the nature of the destabilizing event and the political identity of the affected population.

1.4 Results Plot

plot_list <- list (r1$profile_plot, r2$profile_plot, r3$profile_plot, r4$profile_plot, r5$profile_plot)
title <- "Events Impact on Extremism Dimensions by Political Orientation"
subtitle <- "Pairwise multivariate ANOVA (MANOVA) analysis"
note <- "models 1,2,4,5 include cross-sectional survey waves, model 3 includes panel survey waves."
y_title <- "Mean Scores"

combined_plot <- af_combine_manova_plots(
  plot_list = plot_list, main_title = title, subtitle = subtitle, note = note, y_axis_title = y_title)

print(combined_plot)

1.5 Robustness (For SI)

1.5.1 Inland Terror

rob1 <- af_test_manova_prerequisites(
  data = df %>% filter(df$Wave %in% c("First", "Second")), 
  dependent_vars = c("pe_ideology", "pe_violence", "pe_intolerance"),
  grouping_var = community_var
)

# Print overall summary
cat(rob1$overall_assessment$summary)

The MANOVA prerequisites assessment examined 6 key assumptions across 3215 observations with 3 dependent variables and 3 groups. Multivariate normality was violated (Shapiro-Wilk W = 0.6664 , p = 0 ), This is a common finding with large datasets. However, because your sample size is large (n > 200), MANOVA is considered robust to this violation due to the Central Limit Theorem. Covariance matrix homogeneity was violated (Box’s M χ² = 296.14 , p = 0 ), which is adequately addressed by using Pillai’s trace as the test statistic. Linear relationships showed some concerns (correlations range: 0.026 to 0.239 ) that warrant careful interpretation of results. Multicollinearity levels were acceptable (correlation matrix determinant = 9.28e-01 ). Multivariate outliers were within acceptable limits (2.8% of cases exceed critical value). Sample size was adequate for robust analysis (minimum group size = 488 , recommended minimum total N = 19 ).

MANOVA analysis may proceed with appropriate caution regarding assumption violations. The use of robust test statistics like Pillai’s trace is recommended.


# # Print individual detailed reports
# cat(rob1$sample_size$detailed_report)
# cat(rob1$multivariate_normality$detailed_report)
# cat(rob1$covariance_homogeneity$detailed_report)
# cat(rob1$linearity$detailed_report)
# cat(rob1$multicollinearity$detailed_report)
# cat(rob1$outliers$detailed_report)

1.5.2 Bennet Gov. Fall

rob2 <- af_test_manova_prerequisites(
  data = df %>% filter(df$Wave %in% c("Second", "Third")), 
  dependent_vars = c("pe_ideology", "pe_violence", "pe_intolerance"),
  grouping_var = community_var
)

# Print overall summary
cat(rob2$overall_assessment$summary)

The MANOVA prerequisites assessment examined 6 key assumptions across 2493 observations with 3 dependent variables and 3 groups. Multivariate normality was violated (Shapiro-Wilk W = 0.8283 , p = 0 ), This is a common finding with large datasets. However, because your sample size is large (n > 200), MANOVA is considered robust to this violation due to the Central Limit Theorem. Covariance matrix homogeneity was violated (Box’s M χ² = 327.99 , p = 0 ), which is adequately addressed by using Pillai’s trace as the test statistic. Linear relationships showed some concerns (correlations range: 0.073 to 0.238 ) that warrant careful interpretation of results. Multicollinearity levels were acceptable (correlation matrix determinant = 9.24e-01 ). Multivariate outliers were within acceptable limits (2.4% of cases exceed critical value). Sample size was adequate for robust analysis (minimum group size = 351 , recommended minimum total N = 19 ).

MANOVA analysis may proceed with appropriate caution regarding assumption violations. The use of robust test statistics like Pillai’s trace is recommended.


# # Print individual detailed reports
# cat(rob2$sample_size$detailed_report)
# cat(rob2$multivariate_normality$detailed_report)
# cat(rob2$covariance_homogeneity$detailed_report)
# cat(rob2$linearity$detailed_report)
# cat(rob2$multicollinearity$detailed_report)
# cat(rob2$outliers$detailed_report)

1.5.3 Judicial Reform

df3 <- df %>% filter(df$Wave %in% c("Third", "Fourth"))

# Find respondents who appear in both waves
wave1_ids <- df3 %>% filter(Wave=="Third") %>% pull(respondent_id)
wave2_ids <- df3 %>% filter(Wave=="Fourth") %>% pull(respondent_id)
common_ids <- intersect(wave1_ids, wave2_ids)
df3 <- df3 %>% filter(respondent_id %in% common_ids)

rob3 <- af_test_repeated_measures_manova_prerequisites(
  data = df3, 
  dependent_vars = c("pe_ideology", "pe_violence", "pe_intolerance"),
  wave_var = "Wave", grouping_var = community_var, subject_id_var = "respondent_id"
)

# Print overall summary
cat(rob3$overall_assessment$summary)

The Repeated Measures MANOVA prerequisites assessment examined 3 key assumptions across 1342 observations from 671 subjects. The data structure is appropriate for a repeated measures design, confirming independence between subjects. Multivariate normality was violated in at least one group, though Repeated Measures MANOVA maintains robustness with an adequate number of subjects. Sphericity was not assessed as it requires three or more waves.

The Repeated Measures MANOVA analysis may proceed with appropriate caution regarding assumption violations. The use of corrections for sphericity is recommended if applicable.


# # Print individual detailed reports
# cat(rob3$sample_size$detailed_report)
# cat(rob3$multivariate_normality$detailed_report)
# cat(rob3$covariance_homogeneity$detailed_report)
# cat(rob3$linearity$detailed_report)
# cat(rob3$multicollinearity$detailed_report)
# cat(rob3$outliers$detailed_report)

1.5.4 Gallant Dismissal

rob4 <- af_test_manova_prerequisites(
  data = df %>% filter(df$Wave %in% c("Fourth", "Fifth")), 
  dependent_vars = c("pe_ideology", "pe_violence", "pe_intolerance"),
  grouping_var = community_var
)

# Print overall summary
cat(rob4$overall_assessment$summary)

The MANOVA prerequisites assessment examined 6 key assumptions across 2221 observations with 3 dependent variables and 3 groups. Multivariate normality was violated (Shapiro-Wilk W = 0.8409 , p = 0 ), This is a common finding with large datasets. However, because your sample size is large (n > 200), MANOVA is considered robust to this violation due to the Central Limit Theorem. Covariance matrix homogeneity was violated (Box’s M χ² = 120.94 , p = 0 ), which is adequately addressed by using Pillai’s trace as the test statistic. Linear relationships showed some concerns (correlations range: 0.081 to 0.135 ) that warrant careful interpretation of results. Multicollinearity levels were acceptable (correlation matrix determinant = 9.67e-01 ). Multivariate outliers were within acceptable limits (2.8% of cases exceed critical value). Sample size was adequate for robust analysis (minimum group size = 267 , recommended minimum total N = 19 ).

MANOVA analysis may proceed with appropriate caution regarding assumption violations. The use of robust test statistics like Pillai’s trace is recommended.


# # Print individual detailed reports
# cat(rob4$sample_size$detailed_report)
# cat(rob4$multivariate_normality$detailed_report)
# cat(rob4$covariance_homogeneity$detailed_report)
# cat(rob4$linearity$detailed_report)
# cat(rob4$multicollinearity$detailed_report)
# cat(rob4$outliers$detailed_report)

1.5.5 Oct. 7th War

rob5 <- af_test_manova_prerequisites(
  data = df %>% filter(df$Wave %in% c("Fifth", "Sixth")), 
  dependent_vars = c("pe_ideology", "pe_violence", "pe_intolerance"),
  grouping_var = community_var
)

# Print overall summary
cat(rob5$overall_assessment$summary)

The MANOVA prerequisites assessment examined 6 key assumptions across 2638 observations with 3 dependent variables and 3 groups. Multivariate normality was violated (Shapiro-Wilk W = 0.846 , p = 0 ), This is a common finding with large datasets. However, because your sample size is large (n > 200), MANOVA is considered robust to this violation due to the Central Limit Theorem. Covariance matrix homogeneity was violated (Box’s M χ² = 128.99 , p = 0 ), which is adequately addressed by using Pillai’s trace as the test statistic. Linear relationships showed some concerns (correlations range: 0.084 to 0.122 ) that warrant careful interpretation of results. Multicollinearity levels were acceptable (correlation matrix determinant = 9.71e-01 ). Multivariate outliers were within acceptable limits (2.5% of cases exceed critical value). Sample size was adequate for robust analysis (minimum group size = 302 , recommended minimum total N = 19 ).

MANOVA analysis may proceed with appropriate caution regarding assumption violations. The use of robust test statistics like Pillai’s trace is recommended.


# # Print individual detailed reports
# cat(rob5$sample_size$detailed_report)
# cat(rob5$multivariate_normality$detailed_report)
# cat(rob5$covariance_homogeneity$detailed_report)
# cat(rob5$linearity$detailed_report)
# cat(rob5$multicollinearity$detailed_report)
# cat(rob5$outliers$detailed_report)

1.6 Detailed results (For SI)

1.6.1 Full Results table

manova_table_f <- af_manova_summary_table(model_list = model_results_list,
                                          variable_labels = var_labels,
                                          panel_model_ids = c("Judicial Reform"),
                                          show_intercept = FALSE,
                                          test_statistics = c("Pillai", "Wilks", "Hotelling", "Roy"),
                                          title = "Full MANOVA Results Across Destabilizing Events",
                                          subtitle = "Multivariate Tests of Event Effects on Political Extremism Dimensions")

manova_table_f
Full MANOVA Results Across Destabilizing Events
Multivariate Tests of Event Effects on Political Extremism Dimensions
Variable Inland Terror Bennet Gov. Fall Judicial Reform § Gallant Dismissal Oct. 7th War
Pillai Wilks Hotelling Roy Pillai Wilks Hotelling Roy Pillai Wilks Hotelling Roy Pillai Wilks Hotelling Roy Pillai Wilks Hotelling Roy
Event Main Effect 0.011*** 0.989*** 0.011*** 0.011*** 0.003† 0.997† 0.003† 0.003† 0.002 0.998 0.002 0.002 0.002 0.998 0.002 0.002 0.001 0.999 0.001 0.001
Political Orientation 0.098*** 0.904*** 0.105*** 0.087*** 0.175*** 0.829*** 0.202*** 0.178*** 0.105*** 0.896*** 0.115*** 0.108*** 0.080*** 0.920*** 0.086*** 0.079*** 0.083*** 0.918*** 0.089*** 0.084***
Gender 0.035*** 0.965*** 0.037*** 0.037*** 0.046*** 0.954*** 0.048*** 0.048*** 0.063*** 0.937*** 0.067*** 0.067*** 0.056*** 0.944*** 0.059*** 0.059*** 0.045*** 0.955*** 0.047*** 0.047***
Age Group 0.031*** 0.969*** 0.032*** 0.029*** 0.042*** 0.958*** 0.043*** 0.033*** 0.067*** 0.934*** 0.070*** 0.051*** 0.040*** 0.961*** 0.041*** 0.033*** 0.030*** 0.970*** 0.031*** 0.028***
Event × Political Orientation 0.007*** 0.993*** 0.007*** 0.007*** 0.006* 0.994* 0.006* 0.004* 0.006 0.994 0.006 0.006* 0.004 0.996 0.004 0.004* 0.005† 0.995† 0.005† 0.004*
Test statistics: Pillai's Trace, Wilks's Trace, Hotelling-Lawley's Trace, Roy's Trace. *** p < .001; ** p < .01; * p < .05; † p < .10. § Panel analysis (same respondents across waves). Panel model columns highlighted in blue

1.6.2 Inland Terror

af_cat(summary(r1$manova_summary))
Type III MANOVA Tests:

Sum of squares and products for error:
               pe_ideology pe_violence pe_intolerance
pe_ideology     10981.3193   -696.3135       144.3300
pe_violence      -696.3135   2907.8640       959.1213
pe_intolerance    144.3300    959.1213      6414.8861

------------------------------------------
 
Term: (Intercept) 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       7555.819    3314.650       7542.454
pe_violence       3314.650    1454.098       3308.787
pe_intolerance    7542.454    3308.787       7529.113

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.6853927 2325.983      3   3203 < 2.22e-16 ***
Wilks             1 0.3146073 2325.983      3   3203 < 2.22e-16 ***
Hotelling-Lawley  1 2.1785662 2325.983      3   3203 < 2.22e-16 ***
Roy               1 2.1785662 2325.983      3   3203 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       80.74783  -31.163465     -23.938914
pe_violence      -31.16347   12.027093       9.238881
pe_intolerance   -23.93891    9.238881       7.097053

Multivariate Tests: event_occurred
                 Df test stat approx F num Df den Df    Pr(>F)    
Pillai            1 0.0107042  11.5522      3   3203 1.572e-07 ***
Wilks             1 0.9892958  11.5522      3   3203 1.572e-07 ***
Hotelling-Lawley  1 0.0108200  11.5522      3   3203 1.572e-07 ***
Roy               1 0.0108200  11.5522      3   3203 1.572e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      252.83967  -18.909131      -139.8934
pe_violence      -18.90913    5.361815        52.0852
pe_intolerance  -139.89337   52.085200       516.2625

Multivariate Tests: pe_left_center_right
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            2 0.0978791 54.95704      6   6408 < 2.22e-16 ***
Wilks             2 0.9035655 55.53018      6   6406 < 2.22e-16 ***
Hotelling-Lawley  2 0.1051279 56.10326      6   6404 < 2.22e-16 ***
Roy               2 0.0866842 92.57874      3   3204 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: gender 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology    255.8700441  78.9899000   -0.759273691
pe_violence     78.9899000  24.3850519   -0.234396149
pe_intolerance  -0.7592737  -0.2343961    0.002253083

Multivariate Tests: gender
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.0352332  38.9911      3   3203 < 2.22e-16 ***
Wilks             1 0.9647668  38.9911      3   3203 < 2.22e-16 ***
Hotelling-Lawley  1 0.0365199  38.9911      3   3203 < 2.22e-16 ***
Roy               1 0.0365199  38.9911      3   3203 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: age_group 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       50.87196   -23.75719       37.14001
pe_violence      -23.75719    28.39269      -47.78936
pe_intolerance    37.14001   -47.78936       81.48543

Multivariate Tests: age_group
                 Df test stat approx F num Df   den Df     Pr(>F)    
Pillai            3 0.0314536 11.31967      9 9615.000 < 2.22e-16 ***
Wilks             3 0.9686313 11.41743      9 7795.411 < 2.22e-16 ***
Hotelling-Lawley  3 0.0322968 11.48930      9 9605.000 < 2.22e-16 ***
Roy               3 0.0293085 31.31124      3 3205.000 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred:pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       35.61209  -13.931134      -26.33292
pe_violence      -13.93113    5.486435       10.00659
pe_intolerance   -26.33292   10.006587       21.83676

Multivariate Tests: event_occurred:pe_left_center_right
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            2 0.0073738 3.952186      6   6408 0.00059880 ***
Wilks             2 0.9926284 3.957075      6   6406 0.00059145 ***
Hotelling-Lawley  2 0.0074240 3.961959      6   6404 0.00058419 ***
Roy               2 0.0071046 7.587759      3   3204 4.6942e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6.3 Bennet Gov. Fall

af_cat(summary(r2$manova_summary))
Type III MANOVA Tests:

Sum of squares and products for error:
               pe_ideology pe_violence pe_intolerance
pe_ideology     6867.35866   -524.5048       20.87414
pe_violence     -524.50482   2386.0624      741.03880
pe_intolerance    20.87414    741.0388     5125.00075

------------------------------------------
 
Term: (Intercept) 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       5158.019    2781.156       5852.324
pe_violence       2781.156    1499.573       3155.518
pe_intolerance    5852.324    3155.518       6640.086

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.7150793 2075.562      3   2481 < 2.22e-16 ***
Wilks             1 0.2849207 2075.562      3   2481 < 2.22e-16 ***
Hotelling-Lawley  1 2.5097480 2075.562      3   2481 < 2.22e-16 ***
Roy               1 2.5097480 2075.562      3   2481 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       2.390096    2.265898       5.270528
pe_violence       2.265898    2.148155       4.996654
pe_intolerance    5.270528    4.996654      11.622323

Multivariate Tests: event_occurred
                 Df test stat approx F num Df den Df   Pr(>F)  
Pillai            1 0.0031309 2.597418      3   2481 0.050748 .
Wilks             1 0.9968691 2.597418      3   2481 0.050748 .
Hotelling-Lawley  1 0.0031408 2.597418      3   2481 0.050748 .
Roy               1 0.0031408 2.597418      3   2481 0.050748 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      329.48267   -67.05813      -331.6678
pe_violence      -67.05813    28.52099       149.6096
pe_intolerance  -331.66784   149.60957       787.1407

Multivariate Tests: pe_left_center_right
                 Df test stat  approx F num Df den Df     Pr(>F)    
Pillai            2 0.1747714  79.21980      6   4964 < 2.22e-16 ***
Wilks             2 0.8287895  81.41308      6   4962 < 2.22e-16 ***
Hotelling-Lawley  2 0.2022823  83.61002      6   4960 < 2.22e-16 ***
Roy               2 0.1781666 147.40317      3   2482 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: gender 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      208.39212    68.23992     -31.521768
pe_violence       68.23992    22.34579     -10.322094
pe_intolerance   -31.52177   -10.32209       4.768039

Multivariate Tests: gender
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.0460056 39.88137      3   2481 < 2.22e-16 ***
Wilks             1 0.9539944 39.88137      3   2481 < 2.22e-16 ***
Hotelling-Lawley  1 0.0482241 39.88137      3   2481 < 2.22e-16 ***
Roy               1 0.0482241 39.88137      3   2481 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: age_group 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       95.63705   -25.12365       46.20348
pe_violence      -25.12365    31.62212      -40.89030
pe_intolerance    46.20348   -40.89030       57.62548

Multivariate Tests: age_group
                 Df test stat approx F num Df   den Df     Pr(>F)    
Pillai            3 0.0419780 11.74563      9 7449.000 < 2.22e-16 ***
Wilks             3 0.9583368 11.83472      9 6038.253 < 2.22e-16 ***
Hotelling-Lawley  3 0.0431460 11.88751      9 7439.000 < 2.22e-16 ***
Roy               3 0.0333643 27.61455      3 2483.000 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred:pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     18.6344266  -0.6357863       7.806405
pe_violence     -0.6357863   0.7568399       2.692659
pe_intolerance   7.8064052   2.6926588      15.180429

Multivariate Tests: event_occurred:pe_left_center_right
                 Df test stat approx F num Df den Df   Pr(>F)  
Pillai            2 0.0057064 2.367308      6   4964 0.027592 *
Wilks             2 0.9943001 2.367041      6   4962 0.027609 *
Hotelling-Lawley  2 0.0057261 2.366772      6   4960 0.027625 *
Roy               2 0.0041530 3.435914      3   2482 0.016267 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6.4 Judicial Reform

af_cat(summary(r3$manova_summary))
Type III MANOVA Tests:

Sum of squares and products for error:
               pe_ideology pe_violence pe_intolerance
pe_ideology     3653.53584   -263.4479      -12.16402
pe_violence     -263.44787   1132.1982      299.64894
pe_intolerance   -12.16402    299.6489     2974.11061

------------------------------------------
 
Term: (Intercept) 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       2308.418   1200.5620       2650.462
pe_violence       1200.562    624.3884       1378.452
pe_intolerance    2650.462   1378.4524       3043.188

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1  0.682026 950.9107      3   1330 < 2.22e-16 ***
Wilks             1  0.317974 950.9107      3   1330 < 2.22e-16 ***
Hotelling-Lawley  1  2.144911 950.9107      3   1330 < 2.22e-16 ***
Roy               1  2.144911 950.9107      3   1330 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     0.01397858  -0.1694271    -0.04529566
pe_violence    -0.16942711   2.0535379     0.54900512
pe_intolerance -0.04529566   0.5490051     0.14677432

Multivariate Tests: event_occurred
                 Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0018233 0.8098173      3   1330 0.48842
Wilks             1 0.9981767 0.8098173      3   1330 0.48842
Hotelling-Lawley  1 0.0018267 0.8098173      3   1330 0.48842
Roy               1 0.0018267 0.8098173      3   1330 0.48842

------------------------------------------
 
Term: pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       154.0407   -33.99090     -158.57989
pe_violence       -33.9909    10.07508       46.57252
pe_intolerance   -158.5799    46.57252      215.33734

Multivariate Tests: pe_left_center_right
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            2 0.1046494 24.49650      6   2662 < 2.22e-16 ***
Wilks             2 0.8960533 25.00905      6   2660 < 2.22e-16 ***
Hotelling-Lawley  2 0.1152208 25.52140      6   2658 < 2.22e-16 ***
Roy               2 0.1079561 47.89651      3   1331 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: gender 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      152.76377   54.727708      24.470573
pe_violence       54.72771   19.606233       8.766597
pe_intolerance    24.47057    8.766597       3.919836

Multivariate Tests: gender
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.0631004 29.85861      3   1330 < 2.22e-16 ***
Wilks             1 0.9368996 29.85861      3   1330 < 2.22e-16 ***
Hotelling-Lawley  1 0.0673502 29.85861      3   1330 < 2.22e-16 ***
Roy               1 0.0673502 29.85861      3   1330 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: age_group 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      109.12662   -33.14113       29.34509
pe_violence      -33.14113    37.90901      -20.08097
pe_intolerance    29.34509   -20.08097       16.74445

Multivariate Tests: age_group
                 Df test stat approx F num Df   den Df     Pr(>F)    
Pillai            3 0.0673814 10.20158      9 3996.000 1.0968e-15 ***
Wilks             3 0.9335516 10.30644      9 3237.021 7.9428e-16 ***
Hotelling-Lawley  3 0.0701798 10.36062      9 3986.000 5.7450e-16 ***
Roy               3 0.0510979 22.68748      3 1332.000 2.5101e-14 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred:pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     0.63911481 -0.08173498      0.1043172
pe_violence    -0.08173498  6.59379216     -0.7907546
pe_intolerance  0.10431721 -0.79075456      0.1088301

Multivariate Tests: event_occurred:pe_left_center_right
                 Df test stat approx F num Df den Df   Pr(>F)  
Pillai            2 0.0063987 1.424005      6   2662 0.201355  
Wilks             2 0.9936024 1.424976      6   2660 0.200985  
Hotelling-Lawley  2 0.0064377 1.425943      6   2658 0.200617  
Roy               2 0.0062575 2.776245      3   1331 0.040095 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6.5 Gallant Dismissal

af_cat(summary(r4$manova_summary))
Type III MANOVA Tests:

Sum of squares and products for error:
               pe_ideology pe_violence pe_intolerance
pe_ideology      6721.3933   -447.1900      -147.6616
pe_violence      -447.1900   1958.5432       478.3327
pe_intolerance   -147.6616    478.3327      5054.3931

------------------------------------------
 
Term: (Intercept) 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       2947.947   1463.9190       3389.280
pe_violence       1463.919    726.9665       1683.080
pe_intolerance    3389.280   1683.0803       3896.684

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.6097896 1150.683      3   2209 < 2.22e-16 ***
Wilks             1 0.3902104 1150.683      3   2209 < 2.22e-16 ***
Hotelling-Lawley  1 1.5627199 1150.683      3   2209 < 2.22e-16 ***
Roy               1 1.5627199 1150.683      3   2209 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       9.477481   2.2029277     -1.1054014
pe_violence       2.202928   0.5120444     -0.2569374
pe_intolerance   -1.105401  -0.2569374      0.1289280

Multivariate Tests: event_occurred
                 Df test stat approx F num Df den Df Pr(>F)
Pillai            1 0.0018994 1.401218      3   2209 0.2406
Wilks             1 0.9981006 1.401218      3   2209 0.2406
Hotelling-Lawley  1 0.0019030 1.401218      3   2209 0.2406
Roy               1 0.0019030 1.401218      3   2209 0.2406

------------------------------------------
 
Term: pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      230.53549  -15.386354    -207.255724
pe_violence      -15.38635    2.506649       3.717557
pe_intolerance  -207.25572    3.717557     255.470549

Multivariate Tests: pe_left_center_right
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            2 0.0801917 30.77106      6   4420 < 2.22e-16 ***
Wilks             2 0.9203320 31.20875      6   4418 < 2.22e-16 ***
Hotelling-Lawley  2 0.0859954 31.64629      6   4416 < 2.22e-16 ***
Roy               2 0.0787716 58.02839      3   2210 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: gender 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     208.458219   92.256367      5.9826152
pe_violence      92.256367   40.829463      2.6476977
pe_intolerance    5.982615    2.647698      0.1716972

Multivariate Tests: gender
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.0559363 43.62817      3   2209 < 2.22e-16 ***
Wilks             1 0.9440637 43.62817      3   2209 < 2.22e-16 ***
Hotelling-Lawley  1 0.0592506 43.62817      3   2209 < 2.22e-16 ***
Roy               1 0.0592506 43.62817      3   2209 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: age_group 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       82.37454   -31.09623       44.26317
pe_violence      -31.09623    31.64215      -35.71754
pe_intolerance    44.26317   -35.71754       49.55744

Multivariate Tests: age_group
                 Df test stat  approx F num Df   den Df     Pr(>F)    
Pillai            3 0.0396330  9.866846      9 6633.000 3.6370e-15 ***
Wilks             3 0.9606080  9.946311      9 5376.276 2.7849e-15 ***
Hotelling-Lawley  3 0.0407568  9.997483      9 6623.000 2.1294e-15 ***
Roy               3 0.0334432 24.647674      3 2211.000 1.0997e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred:pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      18.380618   -4.278467      -8.537851
pe_violence      -4.278467    1.130429       1.784352
pe_intolerance   -8.537851    1.784352       4.272206

Multivariate Tests: event_occurred:pe_left_center_right
                 Df test stat approx F num Df den Df   Pr(>F)  
Pillai            2 0.0037405 1.380331      6   4420 0.218437  
Wilks             2 0.9962600 1.380801      6   4418 0.218245  
Hotelling-Lawley  2 0.0037534 1.381270      6   4416 0.218054  
Roy               2 0.0036024 2.653741      3   2210 0.047084 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6.6 Oct. 7th War

af_cat(summary(r5$manova_summary))
Type III MANOVA Tests:

Sum of squares and products for error:
               pe_ideology pe_violence pe_intolerance
pe_ideology      8357.2436   -541.8413      -261.9729
pe_violence      -541.8413   2401.0483       575.1074
pe_intolerance   -261.9729    575.1074      6144.8528

------------------------------------------
 
Term: (Intercept) 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       5459.225    2712.203       6027.581
pe_violence       2712.203    1347.452       2994.569
pe_intolerance    6027.581    2994.569       6655.108

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.6965669 2009.432      3   2626 < 2.22e-16 ***
Wilks             1 0.3034331 2009.432      3   2626 < 2.22e-16 ***
Hotelling-Lawley  1 2.2956196 2009.432      3   2626 < 2.22e-16 ***
Roy               1 2.2956196 2009.432      3   2626 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     0.01331587 -0.01323362     -0.2962955
pe_violence    -0.01323362  0.01315187      0.2944654
pe_intolerance -0.29629553  0.29446535      6.5929646

Multivariate Tests: event_occurred
                 Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0010786 0.9451729      3   2626 0.41785
Wilks             1 0.9989214 0.9451729      3   2626 0.41785
Hotelling-Lawley  1 0.0010798 0.9451729      3   2626 0.41785
Roy               1 0.0010798 0.9451729      3   2626 0.41785

------------------------------------------
 
Term: pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology     197.988429   1.3765715    -234.984413
pe_violence       1.376572   0.5315731      -9.383015
pe_intolerance -234.984413  -9.3830145     393.932021

Multivariate Tests: pe_left_center_right
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            2 0.0829274 37.87898      6   5254 < 2.22e-16 ***
Wilks             2 0.9175072 38.50364      6   5252 < 2.22e-16 ***
Hotelling-Lawley  2 0.0894360 39.12826      6   5250 < 2.22e-16 ***
Roy               2 0.0837825 73.36550      3   2627 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: gender 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology      175.55221   90.800794     -15.415967
pe_violence       90.80079   46.964854      -7.973594
pe_intolerance   -15.41597   -7.973594       1.353740

Multivariate Tests: gender
                 Df test stat approx F num Df den Df     Pr(>F)    
Pillai            1 0.0451116 41.35318      3   2626 < 2.22e-16 ***
Wilks             1 0.9548884 41.35318      3   2626 < 2.22e-16 ***
Hotelling-Lawley  1 0.0472428 41.35318      3   2626 < 2.22e-16 ***
Roy               1 0.0472428 41.35318      3   2626 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: age_group 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       98.32895   -42.90311       52.51452
pe_violence      -42.90311    24.15415      -32.16636
pe_intolerance    52.51452   -32.16636       47.34359

Multivariate Tests: age_group
                 Df test stat  approx F num Df   den Df     Pr(>F)    
Pillai            3 0.0300046  8.849857      9 7884.000 2.2418e-13 ***
Wilks             3 0.9700720  8.921462      9 6391.145 1.7415e-13 ***
Hotelling-Lawley  3 0.0307725  8.974162      9 7874.000 1.3510e-13 ***
Roy               3 0.0279726 24.503987      3 2628.000 1.2340e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------
 
Term: event_occurred:pe_left_center_right 

Sum of squares and products for the hypothesis:
               pe_ideology pe_violence pe_intolerance
pe_ideology       5.073683    5.856826       2.295252
pe_violence       5.856826    7.440281       4.314510
pe_intolerance    2.295252    4.314510       5.118435

Multivariate Tests: event_occurred:pe_left_center_right
                 Df test stat approx F num Df den Df   Pr(>F)  
Pillai            2 0.0046517 2.041398      6   5254 0.056849 .
Wilks             2 0.9953504 2.042114      6   5252 0.056761 .
Hotelling-Lawley  2 0.0046693 2.042828      6   5250 0.056673 .
Roy               2 0.0041835 3.663331      3   2627 0.011894 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1